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Abstract—We develop a dynamic control strategy for min- 0)
imizing energy expenditure in a time varying wireless network ] 999‘@ S = {Excellent)
with adaptive transmission rates. The algorithm operates without ® ;

wp)

knowledge of traffic rates or channel statistics, and yields average o S ={Good)}
power that is arbitrarily close to the minimum possible value O !

achieved by an algorithm optimized with complete knowledge of / % OO
future events. Proximity to this optimal solution is shown to be in- . ’

@)
versely proportional to network delay. We then present a similar O O O;W'@

S ={Average}

S ={Bad}

algorithm that solves the related problem of maximizing network | /"< 1-~’ S = fzero}

throughput subject to peak and average power constraints. The 0=
techniques used in this paper are novel and establish a foundation

for stochastic network optimization. Fig. 1. A cell-partitioned wireless network, and an example set of rate-power
Index Terms— Wireless Networking, Stochastic Optimization, curves for5 different channel states.
Queueing Analysis, Distributed Algorithms

power p

The transmission rates of each data link are determined every
timeslot by link channel conditions and network power allo-
Wireless systems operate over time varying channels that asgion decisions according to drdimensional rate function
influenced by random environmental conditions, wireless fag{ P(t), S(t)), whereP(t) is a vector of power allocations and
ing, and power allocation decisions. To improve performangit) is a vector of parameters describing the current channel
and meet the ever increasing demand for high throughm#nditions. An example collection of rate-power curves for
and low delay, modern wireless devices are designed wishe data link with a discrete set of possible channel states in
channel monitoring capabilities and rate adaptive technologfiown in Fig. 1. Although the network topology is assumed
Such technology is currently being implemented for cellulap remain fixed, link conditions may vary dramatically due to
communication with High Data Rate (HDR) services [2], angnvironmental effects, local mobility, or wireless fading.
the ability to measure and react to channel information is Power vectors are restricted to a compactef acceptable
expected to improve significantlylt is of central importance power allocations, so that(t) € II for all . All of our results
to develop control strategies that take maximum advantaget@id for general rate functiong(P,S) and general power
this information to improve network performance and energetsII. For example, the transmission rates over a particular
efficiency. link [ can be modeled as a concave function of the signal to
In this paper, we develop throughput optimal control stratgnterference ratio at the receiver of the link, so thatP, S)
gies that conform to peak power constraints while minimizingepends on the full vector of power allocations and channel
average power expenditure. This design goal is crucial étates [14] [11] [16]. However, to simplify the multiple access
all modern wireless scenarios, regardless of whether tragentrol layer while capturing the geographic structure and

missions take place at a basestation, a hand-held unit,ifterference properties of ad-hoc networks, we focus oslia
at a node within an ad-hoc sensor network. Indeed, pegirtitioned network model

power constraints are important in systems with fixed hardwareunder this model, the network region is divided into cells,
saturation levels or external environment regulations, whikch containing a distinct set of nodes. Specifically, we define
average power levels are important to extend network Iifetin@@u(n) as the cell of each node € {1,..., N}, and define
in systems with limited energy resources. tran(l) and rec(l) as the transmitting and receiving nodes
Here, we consider an ad-hoc network with nodes and associated with a given wireless linke {1,...,L}. We
L wireless links, as shown in Fig. 1. We assume a slottgdsume that each cell can support at most one active link
structure with slots equal ta time unit. Packets randomly transmission per timeslot, and that nodes can transmit only
arrive to the network every timeslot and must be delivered o other nodes in the same cell or in adjacent cells. That
their destinations, perhaps by routing over multi-hop paths, the feasible power sdf includes the constraint that if
L o ) ) P> 0 for some link{, then P; = 0 for all links [ such
Indeed, it is claimed in [3] that channel measurements can be obtai

d ~
almost as often as the symbol rate of the link in certain local area wirelxral&at cell(tran(l)) = cell(tran(l)). We further assume that
networks. the transmission rate of each link depends only on the channel

I. INTRODUCTION
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state and the power allocated to that link, so tﬁieﬁ, 5‘) = varying channel states and unknown packet arrival rates. Two
(1(P1,S1),...,ur(Pr,St)). This structure arises if nodesfurther differences are that we optimize multi-hop transfers
in neighboring cells transmit over orthogonal frequency bandsver all possible decisions, and that we consider the full effects
In this way, if a node is transmitting then it cannot concurrentlgf queueing. Indeed, we show that queue information can be
receive from nodes within the same cell, and any data ekploited to make energy optimal control decisions.

receives from adjacent cells must be on a different frequencypior work in the area oftochasticoptimization and dy-

band. It is well known that only) orthogonal subbands arenamic control for wireless networks considers much smaller
required if the cell structure is rectilinear, and this number C?stems with more a-priori information. In [16], an energy
be reduced (@ if cells are arranged according to a hexagongfytima| transmission rule is developed for a static wireless
pattern. While the cell partitioned structure is not critical tQgwnlink with one queue and with packet arrival times that
our analysis, it simplifies exposition and allows schedulinge nown in advance. A similar problem is formulated in [17]
decisions to be decoupled cell by cell. Relaxations or furthgy, 5 gingle-user satellite downlink with stochastic arrivals and
restrictions on power assignment can easily be incorporated iy, nne| ‘states (with known arrival and channel probabilities),
modifying the set constrairi or the rate functioni(,5).  ang optimal strategies are constructed with respect to energy
The _goal of this paper is t_o develop a decentrallged POWEAd delay using dynamic programming. The capacity of a
allocation and routing algorithm that supports all incoming, iti.yser wireless downlink with randomly varying channels
traffic while minimizing total energy. We develop a robusfs gstaplished in [18], although the capacity achieving solution
policy that does not require knowledge of input rates Qfsgymes perfect knowledge of channel statistics and traffic
channel probabilities yet uses a total energy that is arbitrarilyies and does not consider stochastic arrivals and queueing.
close to the minimum energy expended by a system optimizgQe|ated downlink problem is treated in [19], where a utility

with complete knowledge of future events. Distance to thgyimal scheduling rule is designed and shown to conform
minimum energy level is controlled by a paraméteeffecting 5 5 simple index policy. The indices can be computed (in

an explicit tradeoff in average end-to-end network delay. rinciple) if channel probabilities are fully known, or are

Previous work in the area of power allocation for Wirelesﬁpproximated based on long-term measurements of channel
systems can be categorized into static optimization solutiog$ngitions.

[4]-[11] and dynamic control algorithms [12]-[21]. In [4], a ) ) ) _ .

utility optimization problem is presented for a static wireless A Wireless downlink with stochastic arrivals, peak and
downlink, and pricing schemes are developed to enable pov@frage power constraints, and queueing is developed in [21],
allocations to converge to a fair allocation vector. Linedtnd the strategy is shown to be delay-optimal under certain
programming, geometric programming, and other convex opYMMetry assumptions. This work makes use of a Lyapunov
timization methods are considered in [5]-[9] for routing and"ift theory for stable scheduling, although it requires full
power allocation problems in wireless systems and sendglowledge of channel probabilities in order to meet the
networks. Such techniques rely on the mathematical theory@Y€rage energy requirement. Lyapunov theory can be used to
Lagrangian duality (see, for example, [22]). This theory wdlesign stabl.hzmg power aIIocatlgn and routing algorlthms.th_at
applied in the landmark paper [23] to develop a mechanism 1%9 not require knowledge of arrival rates or channe! statistics
reaching an optimal static resource allocation in a non-wireld8s¢aS€s Whgre there are Or_1|y peak power constraints on the
network. wireless devices [14]. Historically, Lyapunov theory has been

We note that convex optimization approaches traditionalfjiremely useful in the development of stable queue control
yield single-operating point solutions, which may not be wellolicies for radio networks and SWItChII’I.g systems [12] [20]
suited to cases when optimal networking invohamamic [19] [25] [13]. However, there was previously no Lyapunov
allocation of resources. Indeed, in [11] it is shown that minimethod for performing system optimization (such as stabiliz-
mizing energy in an ad-hoc network with interference involved89 & System with minimum energy). In this paper, we develop
the computation of geriodic schedulewhere wireless links & NOVel Lyapunov drift technique that enables system stability
are scheduled for transmission on a slot-by-slot basis to m@8f Performance optimization to be achieved simultaneously.
a given set of data transmission requirements. Specificaly!€ technique bridges the gap between convex optimization
the work in [11] treats a static network with known rate and'€0"y and stochastic control problems, and establishes a new
channel parameters. Lagrangian duality is used to determ{fgnework fordynamic network optimization
the structure of the optimal schedule by defining the solutionFor simplicity of exposition and to highlight the issues of
variables as thé&actions of timeeach particular resource con-{power allocation, in the first half of this paper we consider only
figuration is scheduled, yielding dramatic improvements ovsingle-hop networks with no routing. The paper is organized as
any fixed resource allocation. A similar scheduling probleriollows: In the next section we consider a motivating example
is shown to be NP-complete in [10], and a polynomial timef a 2-user wireless downlink. In Section Il we develop
algorithm for achieving a solution within a factor 8ffrom an energy-minimizing control policy for one-hop networks.
optimality is given in [24] for a network with independentin Section IV we treat a related problem of maximizing
channels and transmission and reception constraints. The wntoughput subject to peak and average power constraints
in [11] [10] [24] is the most relevant to our current paperfor cases when traffic is either supportable or insupportable).
although the same optimization techniques cannot be udedensions to multi-hop networks are treated in Section V,
because we consider stochastic networkwith randomly and simulations are presented in Section VI.
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Il. A SIMPLE EXAMPLE _ t |0]1]2)3]|4]5/6]7|8
. - . _ . Arrivals | A;(¢) | 310|300 |1|0]|1]O0
To illustrate the decisions involved in energy-optimal
. . _ A@t)|2]0ol1]o|1|1]|0|0]0O
scheduling, we consider the following example of a two-queue
X : . ) Channels| Si(t) |[c |G |M|M|G|G|M|M|G
wireless downlink, where a single node (labeled ‘ndde
; . . : So(t) [ Mm|mM|B|M|[B|M|B|G|B
transmits data to two different stations over downlink channeis :
1 and2 (as in Fig. 1 in the case when only nodés active). Max Ul“l Up(t) | O 080 1,112
The system operates in slotted time, and every slot the channelP2licy | Ua(t) | 0 ]2 |2 2 2|0
states are measured, power allocation decisions are made, angetter | Ui(¢) | 0 | 3 | 3 1
new arrivals are queued according to their destinations. Choices | Us(t) [ 0] 2 | 2 1123 0

Let Uy (t) and Ux(t) represent the current backlog queuegig. 2. An example set of arrivals, channel conditions, and queue backlogs
for transmission to destinations and 2, respectively, and foratvvp queue wireless_d_ownlink gnder two different s_cheduling algorithms,
consider the decision of whether or not to allocate power ﬂgfj:reag?ﬁvg‘se ;n%wsrr]:nfgglegge?'”s enabled by having full knowledge of
channell. Clearly no power should be allocatedlif (t) = 0.

When U, (t) > 0, we must decide whether to allocate power
on the current slot or wait for a more energy-efficient futureut of every9, yielding an average power consumption of
channel state. In this example, we consider only ON/OFRE,, = 8/9 Watt. Similar power consumption levels are
power constraints and assume that either no power is allocagéderved when the policy is simulated for random arrivals and
to any channel, or full power of Watt is allocated to either channel states with the same steady state distributions as this
channell or channel2. Link conditions for each channdl example (see Section VI).
and?2 vary between Good, * Medium, and ‘Bad’ states: Now consider the alternate policy of waiting until sito
= allocate power, and then making decisions as shown in the
P(t) = (A(t), 2(?)) € IT={(0,0), (1,0), (0, 1)} figure. These decisions also leave the system empty af slot

S1(t),82(t) € {G, M, B} but yield an average power expenditure Bf, = 5/9 Watt
, , . ) over the9 slot interval.
Assume identical rate functions for= 1,2, given by: The above example illustrates the energy gains available

1:(0,5;) = 0 units/slot  for allS; € {G, M, B} by more intelligent sch_edulmg. In. cases where power can
) be allocated as a continuous variable, more complex deci-
1i(1,G) = 3, pui(1, M) = 2, ;1;(1, B) = 1 (units/slot) sions are involved: Should we exploit better channel states

Let A;(t) and A,(t) represent the number of new datdy transmitting at _hi_gher data rates with the same power
units arriving during slott and destined for nodes and |€vel, or by transmitting at the same data rate with reduced
9, respectively. Queueing dynamics proceed according to @Ver? Optimizing over all of these decisions is a daunting
equation: task, and is conjectured to be impossible in [26] due to the
uncertainties of future events. Remarkably, in the next section

U;(t + 1) = max([U;(t) — p; (Pi(t), Si(¢)), 0] + A;(t) we develop a simple decision making strategy that does not

. i require knowledge of future events, traffic rates, or channel
_Suppose arrivalgl;(¢) and chan_nel s_tate_Si(t) for the flrs_t statistics, yet yields an average power expenditure that is
9 timeslotst € {0, ...,8} are as given in Fig. 2, and consider,

. : . bitrarily cl t timal.
the policy of allocating power to the channel with the Iargesatr frarlly close 1o optima
rate-backlog produdV; (¢)u;(t). This policy can be shown to
stabilize the system whenever possible [20] [15] [13], although . _ _ _
it is not necessarily energy-efficient. According to the figure, Consider the wireless network of Fig. 1 witf nodes and.

both gueues are empty at time= 0 when arrivals enter the links, where each link Corresponds to a directed transmission
system according to vectgr (0), 42(0)) = (3,2), resulting from one node to another. Packets randomly arrive to the
in a backlog vecto(U; (1), Us(1)) = (3,2) at the beginning System and are queued according to their destinations. This is
of slot 1. Because the channel states at sloare given @ single-hop network, and hence incoming data is associated
by (S1(1),S55(1)) = (G, M), the rate-backlog indices forwith a particular transmission link € {1,...,;} and is
channelsl and? at slot1 are given byl ()1 (1, S1(t)) = 9, assumed to leave the network once it is transmitted.A;ét)
Us(t)pa(1, So(t)) = 4, so that the Max; u; policy places full represent the amount of bits arriving for transmission over
power to channel (as indicated by the boxed values in théink I during slot¢, and letU,(t) represent the current queue

I1l. SINGLE HOP NETWORKS

figure). backlog (or ‘unfinished work’) in queuk Let S(¢) and P(t)
Because there were no new arrivals during $ldhe result- represent theL-dimensional vectors of channel states and

ing backlog vector at time = 2 is given by (U, (t),Uy(t)) = Power allocations. In vector notation, the queueing dynamics

(0,2), as shown in the figure. The policy proceeds by exdre:

pending1 Watt of power for timet € {1,...,8}, and the l7(t+ 1) = max[ﬁ(t) —ﬁ(ﬁ(t),g(t)),o] +/T(t) (1)

scheduling decision at slot = 8 will leave the system

again empty at tim¢ = 9. If the same arrival and channelwhereﬁ(ﬁ, §) is the rate function associated with the given
patterns were extended periodically everymeslots, the Max physical layer modulation and coding strategies used for
U;(t)ui(t) policy would allocatel Watt of power8 timeslots wireless communication.
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We assume that there are a finite number of channel statateﬁ(t) and then randomly allocate a power vec@? with
vectors S, and that/i(P, S) is a continuous function of the probabilitya; . The value ofP;, is the resulting average power
power vectorP for each channel stats. Every timeslot a of this stationary policy, angi,, is the resulting time average
power vector P(t) is chosen in reaction to queue backlogransmission rate vector. This is expressed in the following
and current channel conditions, subject to the constraint thafrollary to Theorem 1.

P(t) € I for all ¢, wherell is a compact set of acceptable Corollary 1: Minimum power for stability is given by the
power vectors. Throughout this paper, we use these gene/glle P , minimized over the class of all stationary random-
rate functions and set constraints to present our main resuifgd algorithms yielding:

However, in all examples of distributed implementation, we

assume the rate function has the structure fia®,S) = Y E{P(t)} =P},
(1 (Pr,S1), -, pr(Pr, Sp)). Further, we assume thdfl l
consists of all vector® satisfying the cell-partition constraint S P ﬁ(t), §(t) > X )

(ie., that if P} > 0 for some linkl, thenFy =0 forall L such 0 g g proven via the following two claims: (Claim

that cell(tran(l)) = cell(tran(1))) and such that each Nty 1) No algorithm can achieve stability with a smaller average
i '? limited by a peaktv"flllﬁl]:dzp‘}gk <ac]§ord|ng iﬁ el(;her t?e power P}, and (Claim 2) any rate vector strictly interior to
Coo,f,',gggus power cotns.::)l 0 lPi peak OF INE CISCIELE "\ " an be stabilized with an average power that is arbitrarily
power constrainf € {0, Fpear}- close toP;,. Claim 1 is proven in Appendix A by extending
the dimensionality of the system fromto L+ 1 and applying

A. Minimum Power For Stability Caratheodory’s Theorem [22]. Below we prove Claim
Here we characterize the minimum average power requiredProof: (Claim 2) The network capacity regioh is proven
to stabilize the system. We begin with a precise definition of [1] to consist of all rate vectors such that a stationary

stability in terms of theoverflow functiong(M) associated power allocation rule exists satisfying (2). The valueRjf, is

with a queue with unfinished work proce&gt): by definition the average power consumption, minimized over
‘ all such stationary rules. IA is strictly interior to A, there
1 . " bnd 5 .
g(M)2 limsup - Z PrlU(r) > M] EXIS.tS a p_osmve value sych that\ + € € A (wherec is the
t—oo 1t L-dimensional vector with all entries equal & It follows

=0
. N . that there exists a stationary power allocation rule satisfying:
The functiong(M) represents the largest limiting fraction of v P fying

time the unfinished work is above the valié.? _ (B & S al T
Definition 1: A queue with unfinished work proceg(t) E {M (P(t)ﬁ(t))} ZA+E>A
is stableif g(M) — 0 asM — oo. A network of queues is ;4 \ve defin
stableif all individual queues are stable.
Assume that inputs and channel processes are ergodic

ePr (e) as the minimum average power con-

sumed by any such stationary policy. The time average trans-
. -~ i~ V\‘Hgsion rate of each queue is strictly larger than the arrival
arrival ratesA = () and channel probabilitiesg. In [1], rate, and hence the network is stable [1]. This holds for

tEe netwofrk lciapacrty region. s qlgflnteld as the closure Ofarbitrarily small values o, and by continuity it follows that
the set of all rate vectors stabilizable under some POWg (€) — P*, ase — 0. 0

H H H av av

;i3|l(zcat|or11_[ al_lg_gr(])ntff]rrlll th_at ct(;]nforms to th_?_ pomer C(_)n_stramt We note that the concept of randomization used in Theorem

(t) € IL The fo owing theoreém Specilies the minimum, o vitally important to treat the general case where the
average power required for network stability, among the clagg

of all algorithms with complete knowledge of future events t{ﬁ(ﬁ’ §) | P e 11} is not necessarily convex. Otherwise,
o e ‘optimali n hiev r hat all fix
Theorem 1:(Minimum Power for Stability) If the network optimality can be achieved by a strategy that allocates a fixed

1 55 . =
is stabilizable (so thah € A), the minimum power required power vector”” whenever the channel is in state Note

N - . . that even if there are only two possible channel states for
for stability is given byP , where P}, is the solution to the . :
i . ,avt P . ; very link, the total number of channel state vectorgfs
following nonlinear optimization problem (defined in terms o . . L : o
i babilit iables,d and tordS f hus, while the above static optimization defines the minimum
auxtiary probability variablesy, and power vectorssy: for power level P, it is not practical to envision solving the

all $'and fork € {1,..., L+ 2}): optimization via standard techniques, even if the channel
Minimize: Pop = Y575 Zéﬁ aff/ﬁg state probabilitie_37r§ are fully known. !n the next sectilon
. L. 42 §-/ 385 & w T we overcome this problem by developing a nostchastic
Subject t0:  fiav= 2 55 32y AR A(EL,5) 2 A optimizationtechnique.
PSell,af >0 forallk,S

20 =1 forall § B. An En ; i
. - o= L . . ergy-Optimal Control Algorithm
That is, minimum power for stability is achieved among the ay=-p 9

class of stationary policies that measure the current channeHere we develop a practical control algorithm that stabilizes
the system and expends an average power that is arbitrarily
The notion oflim sup is used because the limit always exists, even fog|gse to the minimum power SO|utIOﬁ;,. H|:0r Slmp|IC|ty of

non-ergodic sequences. Then sup is equal to the regular limit when queues iti th ival taft) is iid
are Markovian [1], as is the case in this paper, and throughout we simplffKPOSIlION, We assume the arrival vec (t) is iid. over

exposition by considering only regular limits. timeslots with arrival ratéEl{ff} = ), and that the channel
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state vectorsS(t) are i.i.d. over timeslots with channel prob- To evaluate the above algorithm, defidg, ., x2%,, and
abilities 7.3 The algorithm below uses an arbitrary controB as follows:

S
gzlr:;weteﬂ/ > 0 that affects a tradeoff in average queueing A s max Z E {A?}
Energy-Efficient Control Algorithm (EECA)Every times- 1€ o
lot, observe the current levels of queue backig¢t) and Hoae 2 max Yy u(P,S)
channel statesS(t) and allocate a power vectoP(t) = {(n.S.Pell} g,
(Py,...,Pp) according to the following optimization: B £ A%+ (uo)? (4)

Maximize: Zlel 2U; (t)m(ﬁ’ §(t)) — Vpl} (3) Now assume thak is strictly interior to the network capacity
_ L regionA, and define the scalar valla;aﬂaqm as the largest value
Subject to: P=(P,....P)ell that can be added to each component b that the resulting

Distributed ImplementatianFor cell-partitioned networks, we vector is still within the capacity region, i.&; +€maz) € A.

have i(P,S) = (u1(Py, S1),- .., pr(Pr,SL)). In this case,
the above optimization is implemented according to the fo!a'l
lowing simple algorithm: Each node measures the chan
stateS;(t) for each of its own outgoing links and computes

Theorem 2:If X is strictly interior to A, then the EECA
9orithm with any V' > 0 stabilizes the system, with a
r}gsulting average congestion, U; given by:

a quality value @Q;, where @, is the maximum value of o 1 =l BN + VNP,
U, (t)1u (P, Sy(t)) — V P, over either the continuous interval Y _ U= lim 7 S E{U()} < 26—1)
0 < P, < Pyeqr Or the2-valued setP, € {0, Pyeqr }. Define l =0 L 1 s

P, as thequality maximizing power levéor link [. DefineS2,,  Furthermore, average powét,, is given by:
as the set of linké € {1,..., L} such thattran(l) = n. Each

t—1
noden then computes’ and(Q);,, defined as follows: Pavétlim > Z ZE{PI(T)} < P, + BNV
7=0 l

lSargmaxQr, Qi
€ where P, is the minimum power solution of the optimization

The value of@;; is the contribution that node brings to the jn Theorem 1.

summation in (3) if it is chosen for transmission. Each node Thys, theV parameter can be chosen so tHan /v is

then broadcasts its value ¢f;, to all other nodes in its cell, arbitrarily small, yielding average power that is arbitrarily

and the node: with the largesty;, is selected to transmit in close to the optimum. However, the congestion bound grows

that cell (t|eS are broken al’bltl’al’l|y). Transmission takes plaﬁﬂea”y with V. By Little’s Theorem’ average back'og is

over link I = I, with power levelP,. _ proportional to average bit delay. Hence, power can be pushed
Example 1 Under the ON/OFF constraif; € {0, Ppear},  arbitrarily close to the minimum value, with a corresponding
the powerP; for each link! is given by: linear increase in average delay. This holds becausel/the

parameter effectively determines the amount by which the time
average transmission rate vecfay, is larger than the input
rate \. Pushingji,, downward towards\ decreases average
In this case, we see that power is allocated only when thewer consumption while increasing queueing delay. Theorem
backlog exceeds a channel state dependent threshold. 2 is proved in the next subsection using a novel drift argument.
Example 2 Suppose we have a continuous constraint
P, < Pyeqr and that rate functions have a logarithmic profilec': Performance Analvsis
w(P,S) = log(1 + vsP), wherevg is an attenuation/noise ~~ Y
coefficient associated with channel sta#teln this case, the  To prove the performance results of the previous subsection,
optimal power level is a continuous function of the queuwe first establish a novel Lyapunov drift technique enabling
backlog. Indeed, for any link with channel states;(t) = S stability and performance optimization to be achieved si-
and queue backlod;(t) = U, the quality maximizerP, is a Mmultaneously. Let/(t) be a vector of queue backlogs as a
critical point of 2U (P, S) — V P over the interval) < P < function of time. To measure aggregate network congestion,

—

B, — | Frear 1 2018 u(Pocar, Si(t) > V Ppeat
0 else

P,..x- Differentiating with respect to power, we have: define aLyapunov functionZ(U) as the sum of squares of
the individual queue backlogd:(U)2 Y, U2, Let P(t) =
d QU’}/S .
— RUw(P,S) - VP = —— — (Pi(t),..., PL(t)) represent a process of non-negative aux-
ar L+ysP iliary control variables. Lety(P) be any non-negative cost
and it easily follows that: function of the vectorP, and letg” represent a target cost
20(1) 1 value. The goal is to stabilize tHé(¢) process while keeping
l

P, = min [max [ 0} 7Ppeak} O the time average cost of P(t)) near or below the value gf .
(Note that ifg(P) = >, P, then minimizing cost corresponds

3 . . to minimizing time average power).
We note that the i.i.d. assumptions are not necessary, and the sam 1+ (L Drif ith” Perf Ontimi
algorithms can be used for general ergodic arrivals and channels, resultinj-emma :(Lyapunov Drift with Performance Optimiza-

in modified but more involved delay expressions [1]. tion) If there are positive constanig B, e such that for all

VSi(t) 7
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timeslotst the one-step Lyapunov drift satisfies: into a form suitable for application of Lemma 1 by adding
. . and subtracting the same value. We have:
EJLU@t+1)—L{U®{); <B—-¢> E{U/()} + .
{L@+1) - LOW)} SIE 0] AT <
Vo VE{PW)} & x5, u B {uF0.50)| 00} - A]
then the system is stable and time average backlog satisfies:  y, SE {B(t) | U’(t)} ~VY,E {Pl(t) | ﬁ(t)}
| Mol BiVar . . . S
Z U, 2 lim sup — Z ZE{UZ(T)} < g Rearranging terms on the right hand side yields:
! M—oo M 1= 4 € 7
A< BN — VZIE{Pl(t) | U(t)} +25, Ui(t)N
while time average cost satisfies: S -
- “E{%, 200w (Pt), Sw) - vE®| 1 T0}  ©
g4 lim sup % Z E {g(ﬁ(T))} <g¢"+B/V The design principle behind the EECA algorithm of section
M—oo

=0 o ) I1I-B is now apparentThe EECA algorithm (3) was designed
From the above statement, it is clear that if tieparameter 4 minimize the value of the final term in the above expression
can be increased while holding all other constants fixed, th@} over all possible power allocation strategies.

the time average cost can .be pushed arbitra}rily near or pelo"‘Suppose now thaX is strictly interior to the capacity region
the target cost level*, with a corresponding tradeoff in A, and lete be a positive value such that+ € € A. From
average queue backlog. Corollary 1, it follows that there exists a stationary randomized

Proof: The drift condition is satisfied for all timeslots  qer allocation strategy that chooses power independent of
Summing (5) over timeslotse {0,..., M — 1} and dividing queue backlog, and such that:

by M yields: Z
) 4 E{P(t)} = Paule) (10)

E{ L(T(M))—L(T(0)) . _

(OO OO} < o S22 S B AU()) |

Vgt — LR {g(ﬁ(r))} (6) E {uz (P(t% S(t))}

WherePM(ﬁ is the minimum power required to stabilize the
data rates\ + €. Note thatP,,(¢) — P;, ase — 0. Because
this stationary rule is simply a particular power allocation

1 EM_l S E{U(7)} < B+Vg*+E{L(U(0))}/M strategy, the final term i9) under the EECA algorithm is

M fer=0 £ Ny = € less than or equal to the resulting value under the stationary
Taking limits of the above inequality ak/ — oo yields the rule. However, this value in (9) under the stationary rule can
time average backlog bound. In [1], it is shown that this tim@e explicitly calculated using (10) and (11), and we have:

average backlog bound implies system stability. A(U(t)) < BN - VZE {Pl(t) | U’(t)} " 2ZUz(t)>\z
l l

Y

A +e (foralll) (11)

By non-negativity of the Lyapunov function and of tbéﬁ)
function, a simple manipulation of (6) yields:

Similarly, by again manipulating (6) we obtain:

]\Z]élE{g(ﬁ(T))} <4t g . ]E{L‘E[]]w(o))} o ’

2 U(t) (M +€) = VPay(e)
l

Canceling thdJ;(t) \; terms in the above expression and taking

Taking limits asM — oo yields the result. . T ; i
The art of stochastic optimal networking is designing gxpectatlons over the distribution of() yields:

strategy to ensure the drift condition of Lemma 1 is satisfie@.{L((j(t 1) — L(ﬁ(t))} < BN — 2621}3 (Ut} +
In the remainder of this section, we illustrate the technique .
with a constructive proof of Theorem 2. The first step is to
establish a general expression for Lyapunov drift under any VPar(e) - V;E{Pl(t)}
power allocation policy.

Lemma 2:1f arrivals A(t) are i.i.d. every slot with rates
E{A(t)} = X = (\1,...,Ar), then the conditional Lyapunov
drift under any power allocation policy satisfies:

The above expression is in the exact form specified in Lemma

1 in the caseg(P) = >, F,. It follows that time average

unfinished work satisfies:

ZUz < BN + V Pyy(€) < BN + VNPpear
p 2e 2e

(12)

ATW)2E{ LT +1) - LO®) | T®)} <
BN — 23, Ui(t) {IE {ul(ﬁ(t), S(t)) | ﬁ(t)} - /\z} (8) and time average power satisfies:

where B is defined in (4)0 Pay =Y P < Pay(€) + BN/V (13)
The lemma follows simply by squaring the dynamical !

queueing equation (1) and taking expectations, and is provedhe performance bounds in (12) and (13) hold for any value
in Appendix B. We now massage the right hand side of (8)> 0 such that\ + € € A. However, the particular choice
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of € only affects the bound calculation and does not affeptoblem. This optimum could in principle be computed if
the EECA allocation policy or change any sample path dfie arrival rates\ and the capacity regioA were known in
system dynamics. We can thus optimize the bounds in (1&jvance. Below we design a practical algorithm that performs
and (13) separately over all possibdevalues. The bound arbitrarily close to the utility ofR*.

in (13) is clearly minimized by taking a limit as — 0,

yielding: >°, P; < P, + BN/V. Conversely, the bound o The Virtual Power Queue

in (12) is_minimized by considering the largest feasible We fi blish | hani ¢ : h
such thatX + & € A (defined aseay), yielding: S5, U; < e first establish a novel mechanism for ensuring the

(BN + VNPpear)/(2emas). This proves Theorem 2. average power.con.straln_ts are met at every_node. To this end,
each noden maintains avirtual power queuavith occupancy

X, (t) equal to the maximum excess power expended beyond

the average power constraint over any interval ending at slot
In this section we consider a related problem of maxi- Indeed, definingX,,(0) = 0, we propagate th&, (¢) values

mizing network throughput subject to both peak and average follows:

power constraints. Specifically, we consider the same one-hop

network of the previous section, but assume that each node Xn(t+1) = max[Xy(t) — Py, 0] + Z Bi(t) (15)

IV. AVERAGE POWER CONSTRAINTS

n € {1,..., N} must satisfy the average power constraint: 1€€n
i1 Thus, theX,, (t) process acts as a single server queue with
lim EZ Z P(r)| <P, (14) constant server rate given by the average power constraint
t—oo t = lea, B P, with ‘arrivals’ given by the total power allocated for

outgoing transmissions of nodeon the current timeslot. The

fhtuition behind this construction is given by the following

observationif a power allocation algorithm conforms to the
ower constraintP(¢) e II for all ¢ while stabilizing all
Sual queued;(t) and all virtual queuesX, (t) (for I €
1,...,L}, n € {1,...,N}), then the strategy also satisfies

shown that the new capacity regidnreduces to the set of all
ratesX for which there exists a stationary randomized pow
allocation scheme such that (2) is satisfied, and such that
additional constraint&® {}",., Fi(t)} < Py, are satisfied

for all n € {1,..., N}. Here we consider cases where thg, o oy erage power constraints for each notieis observation
arrival rate vector) is either inside the capacity region or

ide of th ; ohi ) dditional holds because if the excess backlag(¢) in virtual power
outside of the capacity regiohis requires an additiona Setéueuen is stabilized, it must be the case that the time average

of admission control decisions to be made on top of the pow Lbwer arrivals’ > P, (corresponding to time average
allocation decisions, as only a fraction of the arriving traffi ower expenditureleisr?l"nodﬁ) is less than or equal to the
can be successfully delivered if inputs exceed capacity (Sggrvice rate’ P

av*

Fig. 3).
Let R;(t) represent the packets accepted into the net- _ )

work at queuel on timslot ¢ (where Ry(t) < A,(t), that B. An Energy Constrained Control Algorithm (ECCA)

is, R;(t) is the fraction of new arrivals that are accepted We use the virtual power queues in the following energy

on slot ¢, where the remaining data is dropped). Defineonstrained control algorithm. Assume the weighisare

Ri2lim; o %Zi;IOE{Rl(T)} as the long term expectedknown to the controllers, and 1&f > 0 represent an arbitrary

admission rate into queuke and letR,, = (Ry,...,R.). control parameter.

The goal is to design a joint strategy for power allocation Admission Control Every timeslot and for each queug

and admission control that satisfies all power constraints white allow the full set of new arrivalsi;(t) into the queue

maximizing the weighted throughput metic, 6,R; (where WwheneverU,(t) < V'6,/2. Else, we drop all new arrivals for

6, values are arbitrary positive weights) subject to the demafdeuel entering on that timeslot. B

requirementR,, < X and the stability requiremenk,, < Power Allocation Allocate powerP(t) = P according to

A. Define B* as the optimal admission rate vector for thi¢he following optimization:

Max: Y0, Sieq, [DiOm(P,5(0) - Xu ()R] (26)
Subject to: Pell

Ai

The virtual power queueX, (t) are then updated via (15).
Note that distributed implementation of this algorithm for

the casei(P,S) = (u1(Py, 1), ..., pr(Pr,SL)) is similar

to the implementation of EECA given in Section IlI-B. The

only difference here is that the quality maximizing values

are computed by using the val@&, () instead of the scalar

V [compare (16) and (3)]. To simplify the analysis of the above

Fig. 3. A capacity regiom (illustrated in2 dimensions) with a rate vector algorithm, we additionally assume that the total arr_lvals to any

XM strictly in the interior. The rate vectox(®) is outside of the capacity Node are bounded by a constant valdg,, every timeslot,

region. that is,Zlegn Ai(t) < Apag for all nodesn. Further, assume
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that the rate functions are differentiable with respect to powdihe lemma follows by summing the corresponding drift of
and defines as the maximum value of the partial derivativéhe actual queues and virtual queues (compare with Lemma

over all links, power levels, and channel states: 2), and the derivation is omitted for brevity. Adding and
9 L subtracting the optimization metri¢ 3°, 6,E {Rl | ﬁ,)f} to
p= z glg}e(n [apl (P, S)] the right hand side of the drift expression and rearranging
terms vyields:

Theorem 3:For any input rate vectoR, the above ECCA
algorithm conforms to both peak and average power cod-< N(B + C) + VZG;E {Rl | U, X} — 2ZX
straints and yields a performance bound of:

(B U, -V R|U,X
ZelRl > ZelRl +C) (17) +; : E { !l }
N
where:C2P2 , + 1N (pn )2 23> > E{vy - XuP| U, X}
Further, for each queukand slott, backlog satsifies: n=11€Q,
V&l The design methodology of the ECCA algorithm is now ap-

Ui(t) < U2 2 + Amaa parent:The admission control algorithm minimizes the second

and for each node and for allt, excess energy satisfies:  to last term of the above expression over all possible admission

% decisions, and the power allocation algorithm minimizes the

X, (t) < xmers—— 5 max{@l} + BAmaz + Ppeak last term of the above expression over all possible power
cisions.

In part|cular the optimal input rate vectoR* =
...,R}) could in principle be achieved by the simple
backlog independent admission control algorithm of including
@II new arrivalsA,(t) for a given link! and slott independently

with probability a; = R; /), yielding:

Note that the queue backlog is bounded for every msta%
of time. Hence, the algorithm yields the same performanc(:e
if all buffers are finite with buffer siz8uffer= V0,,.../2 +
Anqz- In systems with finite buffers, the parametécould be
defined according to this equation, resulting in performanc

(B + C)NOmas
oR, > S 6,R — L.
Z 2 Z = S Buffer— Ay E{Rl | U,X} —E{R}=aE{A)}=R  (18)

anq he_nce pgrformapce can be pu;hed arbitrarily close Lﬁﬁewise, becaus&* € A, there must exist a stationary power
optimality by increasing the buffer size. The excess ener

WMocation policy that chooses power independent of backlo
bound is also very strong, and implies that the total ener policy P P g

#d yields:
expended by node: over any interval of sizeM is less y
than or equal taM/ P,,, + X™**, It is remarkable that these_ _ E {m | [j’j} =E{w}=R; (19)
performance guarantees do not depend on the channel statistics

or arrival rates. ]E{ZP”[?,)?}:E{ZB}SPZ}U (20)

. 1eQ 1eQ
C. Performance Analysis

We analyze the above strategy in a manner similar to the
EECA algorithm of the previous section. In particular, the
R,(t) variables play the role of packet arrivalg(t):

Uit +1) = max{Uy(t) — m(P(t), (1)), 0] + Ru(t)

The virtual queue backlog& (t)qevglve according to (15).
Define the Lyapunov functiod(U, X) = >, U? + >, X2,

lugging in the expectations (18)-(20) of the particular
acklog independent policies into the last two terms of the
above drift expression for the ECCA algorithm thus preserves
the bound, and vyields:

A(U(t), X(t)) < N(B+C)
VS, 0F {Rl(t) | T, X} ~VY,0R (21)

and define the one-step drift: where we have canceled the common tefms2U, R; and
AU (), X (t)2 >, Xn P} Taking expectations of (21) with respectlio X
- > - > = > and summing fromt =0tot = M — 1 yields:
B{ L0+ 1), £(t+1) - LO@, X)) | @), £0)} amming Y
M-1
To simplify formulas, below we use the shortened notation - Z ZQZ]E (Ri(7)} > 29131 _N(B + N(B+C)
A, U U, and X to represent\ (U (t)), w(P(t),5(t)), U(t), =
and X (¢ ) #0). ¥
Lemma 3:The one-step drift satisfies: { (U(0), X (0))} /(MV)
SR hich yields (17) as\l — oo.
A<NB+C) -2 UE{w-R|U,X w
< N( ) Zz: ! {M !l } Furthermore, the backlog bound;(¢t) < U/™** follows
immediately from the definition of the ECCA admission
,QZX P —E Z P U, X control policy: No new arrivals are admittedi (¢) > V6,/2,
" e, so thatU;(t) < V6,/2 + Apna. for all ¢t (where in the worst
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case we add an amount,,,,, when backlog is exactly at the stably supported, considering all possible power allocation
V6,/2 threshold). and routing strategies. There, it was shown that any rate
Likewise, by definition of the ECCA power allocationmatrix (A\,.) € A is supportable via a randomized algorithm
algorithm, we clearly sef?, = 0 if the partial derivative of for choosing power allocation:?(t) and routing variables
Uy (t)u (P, S(t)) with respect toP; is smaller thanx,, (¢) for wi(t). Here, we assume the rate matrix is inside the capacity
all P € II. The largest possible value for this derivative isegion, and develop an energy efficient stabilizing algorithm.
Bmax;eq, {U™**}, and hence no power is allocated to anjlowever, note that the objective of minimizing average power
outgoing link of noden if X, (t) > fmaxicq, {U™*"}. It expenditure in a multihop network may place an unfair power
follows that X,,(t) < Bmaxieq, {U"*"} + Ppeqr always, burden on centrally located nodes that are used by many

proving Theorem 3. others. Thus, to balance power more evenly, we consider the
more general objective of minimizing the time average of
V. MULTI-HOP NETWORKS > n 9n(Xicq, Pi(t)), whereg,(p) is any convex increasing

. cost function of the power expended by nade
Here we consider the same network as before but assumf)eﬁne U (1) = 0 for all ¢, and define:

that data can be routed over multi-hop paths to reach its
destination (we assume the networkcisnnected so this is A2 A maXZ]E{( A2))
always possible, see Fig. 1). We optimize over all possible L

power allocation and routing algorithms. Thus, incoming data i 2 max Z m(ﬁ §>

is not necessarily associated with any particular link, and so ma {n.5,Pemy 55 ’

we redefine the arrival processes in terms of the origin and in o out \2
destination of the datad® (¢)2 amount of data exogenously D= (Amar + Himaz)” + (tmaa)

arriving to noden at slot¢ that is destined for node. All et L(U) = >, (US)?. The one-step drifiA(U) for any
data (from any source node) that is destined for a particulgélicy is found by squaring the dynamical equation (23) as
nodec € {1,..., N} is defined axommodityc data. Data is jn Lemma 2, and is given in [14] as follows: If arrivals and
stored in each node according to its destination, and we {g{annel states are i.i.d. over timeslots, then

US(t) represent the current backlog of commoditylata in Lemma 4:A(U(t)) < DN +23,  US(t)Ane

|>

noden.
_ -V E{gn P)| U
Suppose power vectdr(t) is allocated in slot, so that the 2Bl (2ico, A TUC )}
transmission rate over a linkis 1;(P(t),S(t)). A routing *ZnE{ZzeQn > 20 W) (U y (8) = U0 (£)
decision must be made to establish which commodity to —Vgn(zlegnpl(t))}g(t)}

transfer over link. In general, multiple commodities could berpa apove drift expression for multi-hop networks is the
transfered over the same link simultaneodsind we define same as that given in [14], with the exception that

routing variables.; (t) as the rate allocated to commodity \e have added and subtracted the optimization metric

data over linkl during slott. The problem is to allocate powervz E {g > B(t))] U(t)} Minimizing the last term
. . > n n 1eQ, - )
every timeslot according to the power constraftit) € Iland i, e ahove drift expression over all power allocations satis-

then to route data according to thiek rate constraint fying Pelland all routing strategies satisfying (22) leads to

N L the following multi-hop EECA algorithm
> ui(t) < m(P(t), 5(t)) (22) 1) For all links!, find the commodity:; (¢) such that:
c=1

Recall that(2,, is the set of all links such thattran(l) = n. ¢j (t) = arg max {Utcran(l)(t) - Ufecu)(t)}

Further defined,, as the set of all link$ such thatrec(l) = n.

The resulting 1-step queueing equation for backltidt) thus and define:
satisfies (fOI’C ?é n): I/V;< (t) = maX[Ut(fan(l) (t) - U:é*c(l) (t)7 O]
Un(t+1) < max{Uy(t) — Z wi(t), 0] 2) Power Allocation:Choose a power vectdp(t) € II that
1St maximizes:
A+ Y pi() (23)
1€0x oD 2P SO = Vaa( D R)| (24)
The above expression is an inequality rather than an equality n L€, e,

because the incoming commodity data to noden may 3y Routing: Over link I, transmit commodityc in the

be less thar) ;.o puf(t) if the corresponding transmitting amount Ofmin[UlC(t)7ul(]3(t)75’(15))].
nodes have little or no data of this commodity waiting to be

transfered.
In [14], the network layer capacity regioh is defined
as the closure of the set of rate matriges,.) that can be

Distributed ImplementatianGiven a cell partitioned net-
work with backlog valuesU¢(t) for all neighbor nodes:,

the distributed method for allocating power and choosing
which node transmits in every cell is similar to the im-

4We find that the capacity achieving solution needs only route a singﬂ!ememaﬂon of E.ECA in_ SeCtion ”H?’ with the .e>§cep-
commodity over any link during a timeslot. tion that the quality maximizer value® now maximize
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[20(Py, Si(8)W) =V girany(P)], representing the contri- VI. SIMULATIONS

butipn to (24) if link [ is_ chosen for transmis_sion_(recall that o brevity, we present simulation results only for the simple
a given noden may activate only one outgoing linkc 2,  two-queue downlink example of Section Il. Packets arrive to
during a timeslot). . the system according to Poisson processes with rates

Tc_J_ find the backlog values of neighbors, note that fo(;g/g’)\2 = 5/9, which are the same as the empirical rates
rectilinear networks there are at mast queues that change gptained by averaging over the figstimeslots of the example
_thelr backlog values dur.ln_g a timeslot in any given cell. Thig, Fig. 2. Channel states arise as i.i.d. vectofs(t), Sa(t))
is because the transmitting node may transmit to anothgfery siot. The probability of each vector state is matched to
node in the same cell (increasing the queue level of thgs empirical occurrence frequency in the example, so that
transmitted commodity in the receiving node, and decreasing|(G, Ar)| = 3/9, Pr[(M, B)] = 2/9, Pr[(M, M)] = 1/9,
it in the transmitting node), and there are at m8sbther gic. e first simulate the policy of serving the queue with the
data receptlon_s in the same cell (due to potential tranmlss!qaﬁqest rate-backlog indel; (¢)p.;(), a strategy that stabilizes
from the 8 adjacent cells). Knowledge of backlog levels inphe system whenever possible but does not necessarily make
neighboring nodes can thus be maintained by broadcasting fiagy efficient decisions [20] [15] [13]. The simulation was
backlog changes to all nodes in the same cell and in adjacggy for 10 million timeslots. The resulting average power is

cells. Each update requires a triplet of informatidn; ¢, §), P,, = 0.898 Watts, and the resulting time average backlog is
wheren is the nodec is the commodity that was changedy 5 packets.

and is the amount of the change. Thus, the bandwidth of Next, we consider the EECA algorithm, where power

the broadcast control channel must be sufficient to support i¢,cation decisions are determined by the solution of the
transmission of up td0 update triplets per cell per timeslot. optimization problem (3). First note that?, = = 2 A2y

nax

Theorem 4:1f the rate matrix(\,.) is interior to the ca- . _ 9y poet — 3 and hence from (4) we havé = 11.54.

max

pacity regionA, then the above multihop EECA algorithm fory; ¢o|iows from Theorem 2 that the resulting average power
routing and power allocation stabilizes the network and yield§ers from optimality by no more thahl.54/V, whereV is

a time average congestion bound of: the control parameter of the algorithm (note that= 1 in this
T < DN +V 3", gn(Ppeak) example). Furthermore, it can be shown that, = 0.489 for
Z "= 2€maz this example, and hence by Theorem 2 we know the average

nc

. backlog in the system satisfies the following inequality:
(wheree, . is the largest such that(\,. + €) € A).

Further, the time average cost satisfies: U, + U, < 116537—2 v
t—1 :
Zgné lim 1 Z Z gl Z P(r)| <g*+ DN By Little’s Theorem, dividing both sides of the above inequal-
- tmoo t | o ea, N 14 ity by (A1 + A\2) yields an upper bound on average delay.

We simulated the EECA algorithm f@0 different values
the control parametel/, ranging from1 to 10*. Each

The proof is similar to the proof of Theorem 2, and so W§imulgtion was run forlO'miIIion timeslpts. In Fig. 4 the
present only an outline: The dynamic algorithm minimize'é,eSUItIng average power is plotted against the time average

the final term of Lemma 4 over all policies. In [14] it is?acklo%vﬂ;_e C(j:oLresponding upper b(;)und is also S.hOW'? _in the
shown that if there is am such that(\.. + ¢) € A, then igure. We find that average power decreases to its minimum

a single stationary power allocation and routing strategy c¥f!ue 0f0-518 Watts as the control parameteris increased,
be developed to satisfy:

where g* represents the minimum time average cost of ar&/c
stabilizing policy.

Average Power versus Average Backlo
Z ZE {:u;:(t)} ( tcran(l) - Uﬁec(l)) = Z Uﬁ()\nc + 6) ! ' : ' : :
l c n,c 0.95
for all non-negativel/$ values. Further, the stationary policy vl
also satisfies " VE {g(>"cq, Pi(t)} = g*(€), whereg*(e) Smutte Curve N

is the minimum cost for stabilizing rat¢s,,. +¢) and satisfies
g*(e) — ¢g* ase — 0. Plugging these particular policies into
the last term of the drift expression in Lemma 4 thus preserves
the bound and yields:

A(U(t)) < DN =23 Us(t)e

0.75

Average Power

o
3

V0 E{gn(Cieq, H®) | UM} +Vg*
which yields the result upon application of Lemmall. oss|
We note that the multi-hop EECA algorithm delivers all data

to its destinatiorwithout knowing the network topologyhe " o e+ 0o scae w0’ o'
algorithm effectively accomplishes this by expending initial

energy transmitting data to neighbors in order to learn efficient. 4. Average power versus average backlog for a two queue downlink
routes, which emerge from backlog information. under the EECA algorithm.
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" Average Backiog versus V To prove (25), we first establish some convenient notation.
For each S, define T5(M) as the set of timeslots <

. {0, ..., M} during which the channel state vector is equal to

’ S, and let||T5(M)|| represent the total number of such slots.

, Define the conditional empirical average of transmission rate

and power consumption as follows:

10+

Upper Bound
5 5 i(B(r),5):T" B(r)
(MQSU(M); va(M)> =X rerean (HTS(—M)H)

.
S
T

Lemma 5:For every M, there exist probabilitiesyf[M]

E[U, + U] (log scale)

N\ Simulated Data 55 .
and power vector$; [M] € II such that:
10tf i R L+2 . .
s (M) = Y af(ni(Pi).S)  (2e)
k=1
— L+2 — —
‘ ‘ ‘ P (M) = > o (M)T'F (M) (27)
10° 10" 10° 10° 10° k=1

V (log scale)

Proof: Defined(P)2 (ﬁ(ﬁ 3); T’ﬁ) as a function map-
Fig. 5. Average backlog versus tfhié parameter fromi0 million iterations ping the L. dimensional power vector intd + 1 dimensional
of the EECA algorithm for a two queue downlink. The analytical upper bou 1 (D ; i
 also plotted. n§payce. The W= ZTETg(M) @(P(T))_ls a convex com_b|
nation of points in the image of the+1 dimensional function
®5(P) (for P ¢ II), and is therefore (by Caratheodory's

with a corresponding tradeoff in average delay. In Fig. 5 weorem [22]) expressible by a convex combination of at most
plot average backlog versus theparameter together with the L + 2 elements of the image. -
backlog bound, illustrating that average delay grows linearly Now define:

in V, as suggested by the performance bound. As a point of( T (M); Pay(M) 254 || Tg(M)|| <ﬁ§ (M);PQS;(M))

reference, we note that &t = 50, the average power .53 TS M @
Watts and the average sum backlogis0 packets. For brevity, we outline the rest of the proof: For eash,
the number ofaf (M) and PS (M) values is at mostL +
VIl. CONCLUSIONS 2)Card({S}) (where Card({S}) represents the number of

ssible channel state vectors). By compactness, we can thus
pd an appropriate subsequence of integéfs such that
Mk’ — oo and such that there exist limiting probabilities
d power Ievelsﬁ,f € II satisfying:

We have developed energy-efficient control strategies wi
performance that can be pushed arbitrarily close to optim
with a corresponding tradeoff in average network delay. O
algorithms adapt to local link conditions without requirind
knowledge of traffic rates, channel statistics, or global network_ z g g g
topology. For simplicity of exposition, channels were modeledyb’f(M’“) =B ap(My) = af s Pau(My) = Py,
as being independent from slot to slot. However, the algorithmsgecause channel states are ergodic, we H ga«éMk)H _
can be shown to yield similar results for more general channel Using these limits with Lemma 5 shows thﬁiu(Mw
processes, and are robust to situations when channel statistf erges to a vectqi,, satisfying the same inequalities as
or traffic loadings change over time [1]. The analysis presentgghce in the optimization problem of Theorem 1. Furthermore,
here uses a new Lyapunov drift technique enabling stabilift-5,se the system is stable we must have > by (a
anq performance optimization to be achieved simqltaneousr%cessary condition for stability, see [1]). It follows thay,
This research creates a general framework for designing praggisfies the feasibility constraints for the optimization problem
tical control algorithms that are provably optimal. of Theorem 1, and thereforB,, > Pr,.

APPENDIXA — MINIMUM POWER FORSTABILITY APPENDIXB — THE DRIET EXPRESSION

Here we prove Claim 1 of Theorem IConsider any  pere we prove the drift expression of Lemma 2: Suppose
allocation rule for choosing(¢) subject toP(t) € 11, perhaps g rivals Ay(t) are i.id. every slot with rat&€ {4;(t)} = ..
one that uses full knowledge of future arrivals and channgl,; e5ch queug consider the evolution equatidi (t +1) =
states. If the rule stabilizes the system, then: max|Uy(t) — u(P(t), S(t)), 0] + Ay(t) from (1). By squaring

this equation and noting thé@tax[z,0])? < x2, we obtain:
> P
7=0 l

(Uit +1))* < (U(1) + 1 = 201(1) (1 — Ar) + A7
where P, is the minimum power obtained from the optimizawhere we have simpliﬂed the notation by writing and
tion in Theorem 1. A; in place of u;(P(t), S(t)) and A;(t). Taking conditional

1 t—1
Bavélitrgiorclf n

2 Poy (25)
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expectations and summing over aWields:

AOW) < U E{up + 421 T(1)}
—2 5, uit) (BE{m | Tt} - N)

Noting that the first term on the right hand side of the above

expression is bounded b (

out
Hmaz

result.]
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