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Abstract— We develop a dynamic control strategy for min-
imizing energy expenditure in a time varying wireless network
with adaptive transmission rates. The algorithm operates without
knowledge of traffic rates or channel statistics, and yields average
power that is arbitrarily close to the minimum possible value
achieved by an algorithm optimized with complete knowledge of
future events. Proximity to this optimal solution is shown to be in-
versely proportional to network delay. We then present a similar
algorithm that solves the related problem of maximizing network
throughput subject to peak and average power constraints. The
techniques used in this paper are novel and establish a foundation
for stochastic network optimization.

Index Terms— Wireless Networking, Stochastic Optimization,
Queueing Analysis, Distributed Algorithms

I. I NTRODUCTION

Wireless systems operate over time varying channels that are
influenced by random environmental conditions, wireless fad-
ing, and power allocation decisions. To improve performance
and meet the ever increasing demand for high throughput
and low delay, modern wireless devices are designed with
channel monitoring capabilities and rate adaptive technology.
Such technology is currently being implemented for cellular
communication with High Data Rate (HDR) services [2], and
the ability to measure and react to channel information is
expected to improve significantly.1 It is of central importance
to develop control strategies that take maximum advantage of
this information to improve network performance and energy
efficiency.

In this paper, we develop throughput optimal control strate-
gies that conform to peak power constraints while minimizing
average power expenditure. This design goal is crucial in
all modern wireless scenarios, regardless of whether trans-
missions take place at a basestation, a hand-held unit, or
at a node within an ad-hoc sensor network. Indeed, peak
power constraints are important in systems with fixed hardware
saturation levels or external environment regulations, while
average power levels are important to extend network lifetime
in systems with limited energy resources.

Here, we consider an ad-hoc network withN nodes and
L wireless links, as shown in Fig. 1. We assume a slotted
structure with slots equal to1 time unit. Packets randomly
arrive to the network every timeslot and must be delivered to
their destinations, perhaps by routing over multi-hop paths.

1Indeed, it is claimed in [3] that channel measurements can be obtained
almost as often as the symbol rate of the link in certain local area wireless
networks.
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Fig. 1. A cell-partitioned wireless network, and an example set of rate-power
curves for5 different channel states.

The transmission rates of each data link are determined every
timeslot by link channel conditions and network power allo-
cation decisions according to anL-dimensional rate function
~µ(~P (t), ~S(t)), where~P (t) is a vector of power allocations and
~S(t) is a vector of parameters describing the current channel
conditions. An example collection of rate-power curves for
one data link with a discrete set of possible channel states in
shown in Fig. 1. Although the network topology is assumed
to remain fixed, link conditions may vary dramatically due to
environmental effects, local mobility, or wireless fading.

Power vectors are restricted to a compact setΠ of acceptable
power allocations, so that~P (t) ∈ Π for all t. All of our results
hold for general rate functions~µ(~P , ~S) and general power
setsΠ. For example, the transmission rates over a particular
link l can be modeled as a concave function of the signal to
interference ratio at the receiver of the link, so thatµl(~P , ~S)
depends on the full vector of power allocations and channel
states [14] [11] [16]. However, to simplify the multiple access
control layer while capturing the geographic structure and
interference properties of ad-hoc networks, we focus on acell
partitioned network model.

Under this model, the network region is divided into cells,
each containing a distinct set of nodes. Specifically, we define
cell(n) as the cell of each noden ∈ {1, . . . , N}, and define
tran(l) and rec(l) as the transmitting and receiving nodes
associated with a given wireless linkl ∈ {1, . . . , L}. We
assume that each cell can support at most one active link
transmission per timeslot, and that nodes can transmit only
to other nodes in the same cell or in adjacent cells. That
is, the feasible power setΠ includes the constraint that if
Pl > 0 for some link l, then Pl̃ = 0 for all links l̃ such
that cell(tran(l̃)) = cell(tran(l)). We further assume that
the transmission rate of each link depends only on the channel
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state and the power allocated to that link, so that~µ(~P , ~S) =
(µ1(P1, S1), . . . , µL(PL, SL)). This structure arises if nodes
in neighboring cells transmit over orthogonal frequency bands.
In this way, if a node is transmitting then it cannot concurrently
receive from nodes within the same cell, and any data it
receives from adjacent cells must be on a different frequency
band. It is well known that only9 orthogonal subbands are
required if the cell structure is rectilinear, and this number can
be reduced to7 if cells are arranged according to a hexagonal
pattern. While the cell partitioned structure is not critical to
our analysis, it simplifies exposition and allows scheduling
decisions to be decoupled cell by cell. Relaxations or further
restrictions on power assignment can easily be incorporated by
modifying the set constraintΠ or the rate function~µ(~P , ~S).

The goal of this paper is to develop a decentralized power
allocation and routing algorithm that supports all incoming
traffic while minimizing total energy. We develop a robust
policy that does not require knowledge of input rates or
channel probabilities yet uses a total energy that is arbitrarily
close to the minimum energy expended by a system optimized
with complete knowledge of future events. Distance to the
minimum energy level is controlled by a parameterV effecting
an explicit tradeoff in average end-to-end network delay.

Previous work in the area of power allocation for wireless
systems can be categorized into static optimization solutions
[4]-[11] and dynamic control algorithms [12]-[21]. In [4], a
utility optimization problem is presented for a static wireless
downlink, and pricing schemes are developed to enable power
allocations to converge to a fair allocation vector. Linear
programming, geometric programming, and other convex op-
timization methods are considered in [5]-[9] for routing and
power allocation problems in wireless systems and sensor
networks. Such techniques rely on the mathematical theory of
Lagrangian duality (see, for example, [22]). This theory was
applied in the landmark paper [23] to develop a mechanism for
reaching an optimal static resource allocation in a non-wireless
network.

We note that convex optimization approaches traditionally
yield single-operating point solutions, which may not be well
suited to cases when optimal networking involvesdynamic
allocation of resources. Indeed, in [11] it is shown that mini-
mizing energy in an ad-hoc network with interference involves
the computation of aperiodic schedule, where wireless links
are scheduled for transmission on a slot-by-slot basis to meet
a given set of data transmission requirements. Specifically,
the work in [11] treats a static network with known rate and
channel parameters. Lagrangian duality is used to determine
the structure of the optimal schedule by defining the solution
variables as thefractions of timeeach particular resource con-
figuration is scheduled, yielding dramatic improvements over
any fixed resource allocation. A similar scheduling problem
is shown to be NP-complete in [10], and a polynomial time
algorithm for achieving a solution within a factor of3 from
optimality is given in [24] for a network with independent
channels and transmission and reception constraints. The work
in [11] [10] [24] is the most relevant to our current paper,
although the same optimization techniques cannot be used
because we consider astochastic networkwith randomly

varying channel states and unknown packet arrival rates. Two
further differences are that we optimize multi-hop transfers
over all possible decisions, and that we consider the full effects
of queueing. Indeed, we show that queue information can be
exploited to make energy optimal control decisions.

Prior work in the area ofstochasticoptimization and dy-
namic control for wireless networks considers much smaller
systems with more a-priori information. In [16], an energy
optimal transmission rule is developed for a static wireless
downlink with one queue and with packet arrival times that
are known in advance. A similar problem is formulated in [17]
for a single-user satellite downlink with stochastic arrivals and
channel states (with known arrival and channel probabilities),
and optimal strategies are constructed with respect to energy
and delay using dynamic programming. The capacity of a
multi-user wireless downlink with randomly varying channels
is established in [18], although the capacity achieving solution
assumes perfect knowledge of channel statistics and traffic
rates, and does not consider stochastic arrivals and queueing.
A related downlink problem is treated in [19], where a utility
optimal scheduling rule is designed and shown to conform
to a simple index policy. The indices can be computed (in
principle) if channel probabilities are fully known, or are
approximated based on long-term measurements of channel
conditions.

A wireless downlink with stochastic arrivals, peak and
average power constraints, and queueing is developed in [21],
and the strategy is shown to be delay-optimal under certain
symmetry assumptions. This work makes use of a Lyapunov
drift theory for stable scheduling, although it requires full
knowledge of channel probabilities in order to meet the
average energy requirement. Lyapunov theory can be used to
design stabilizing power allocation and routing algorithms that
do not require knowledge of arrival rates or channel statistics
in cases where there are only peak power constraints on the
wireless devices [14]. Historically, Lyapunov theory has been
extremely useful in the development of stable queue control
policies for radio networks and switching systems [12] [20]
[15] [25] [13]. However, there was previously no Lyapunov
method for performing system optimization (such as stabiliz-
ing a system with minimum energy). In this paper, we develop
a novel Lyapunov drift technique that enables system stability
and performance optimization to be achieved simultaneously.
The technique bridges the gap between convex optimization
theory and stochastic control problems, and establishes a new
framework fordynamic network optimization.

For simplicity of exposition and to highlight the issues of
power allocation, in the first half of this paper we consider only
single-hop networks with no routing. The paper is organized as
follows: In the next section we consider a motivating example
of a 2-user wireless downlink. In Section III we develop
an energy-minimizing control policy for one-hop networks.
In Section IV we treat a related problem of maximizing
throughput subject to peak and average power constraints
(for cases when traffic is either supportable or insupportable).
Extensions to multi-hop networks are treated in Section V,
and simulations are presented in Section VI.
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II. A S IMPLE EXAMPLE

To illustrate the decisions involved in energy-optimal
scheduling, we consider the following example of a two-queue
wireless downlink, where a single node (labeled ‘node0’)
transmits data to two different stations over downlink channels
1 and2 (as in Fig. 1 in the case when only node0 is active).
The system operates in slotted time, and every slot the channel
states are measured, power allocation decisions are made, and
new arrivals are queued according to their destinations.

Let U1(t) and U2(t) represent the current backlog queued
for transmission to destinations1 and 2, respectively, and
consider the decision of whether or not to allocate power to
channel1. Clearly no power should be allocated ifU1(t) = 0.
When U1(t) > 0, we must decide whether to allocate power
on the current slot or wait for a more energy-efficient future
channel state. In this example, we consider only ON/OFF
power constraints and assume that either no power is allocated
to any channel, or full power of1 Watt is allocated to either
channel1 or channel2. Link conditions for each channel1
and2 vary between ‘Good,’ ‘ Medium,’ and ‘Bad’ states:

~P (t) = (P1(t), P2(t)) ∈ Π = {(0, 0), (1, 0), (0, 1)}

S1(t), S2(t) ∈ {G, M, B}

Assume identical rate functions fori = 1, 2, given by:

µi(0, Si) = 0 units/slot for allSi ∈ {G, M, B}
µi(1, G) = 3, µi(1,M) = 2, µi(1, B) = 1 (units/slot)

Let A1(t) and A2(t) represent the number of new data
units arriving during slott and destined for nodes1 and
2, respectively. Queueing dynamics proceed according to the
equation:

Ui(t + 1) = max[Ui(t)− µi(Pi(t), Si(t)), 0] + Ai(t)

Suppose arrivalsAi(t) and channel statesSi(t) for the first
9 timeslotst ∈ {0, . . . , 8} are as given in Fig. 2, and consider
the policy of allocating power to the channel with the largest
rate-backlog productUi(t)µi(t). This policy can be shown to
stabilize the system whenever possible [20] [15] [13], although
it is not necessarily energy-efficient. According to the figure,
both queues are empty at timet = 0 when arrivals enter the
system according to vector(A1(0), A2(0)) = (3, 2), resulting
in a backlog vector(U1(1), U2(1)) = (3, 2) at the beginning
of slot 1. Because the channel states at slot1 are given
by (S1(1), S2(1)) = (G, M), the rate-backlog indices for
channels1 and2 at slot1 are given byU1(t)µ1(1, S1(t)) = 9,
U2(t)µ2(1, S2(t)) = 4, so that the MaxUiµi policy places full
power to channel1 (as indicated by the boxed values in the
figure).

Because there were no new arrivals during slot1, the result-
ing backlog vector at timet = 2 is given by(U1(t), U2(t)) =
(0, 2), as shown in the figure. The policy proceeds by ex-
pending1 Watt of power for timet ∈ {1, . . . , 8}, and the
scheduling decision at slott = 8 will leave the system
again empty at timet = 9. If the same arrival and channel
patterns were extended periodically every9 timeslots, the Max
Ui(t)µi(t) policy would allocate1 Watt of power8 timeslots

t 0 1 2 3 4 5 6 7 8
Arrivals A1(t) 3 0 3 0 0 1 0 1 0

A2(t) 2 0 1 0 1 1 0 0 0
Channels S1(t) G G M M G G M M G

S2(t) M M B M B M B G B

Max Uiµi U1(t) 0 3 0 3 1 0 1 1 2
Policy U2(t) 0 2 2 2 2 3 2 1 0

Better U1(t) 0 3 3 6 6 3 1 1 2
Choices U2(t) 0 2 2 3 1 2 3 3 0

Fig. 2. An example set of arrivals, channel conditions, and queue backlogs
for a two queue wireless downlink under two different scheduling algorithms,
illustrating the power efficiency gains enabled by having full knowledge of
future arrivals and channel states.

out of every 9, yielding an average power consumption of
Pav = 8/9 Watt. Similar power consumption levels are
observed when the policy is simulated for random arrivals and
channel states with the same steady state distributions as this
example (see Section VI).

Now consider the alternate policy of waiting until slot3 to
allocate power, and then making decisions as shown in the
figure. These decisions also leave the system empty at slot9,
but yield an average power expenditure ofPav = 5/9 Watt
over the9 slot interval.

The above example illustrates the energy gains available
by more intelligent scheduling. In cases where power can
be allocated as a continuous variable, more complex deci-
sions are involved: Should we exploit better channel states
by transmitting at higher data rates with the same power
level, or by transmitting at the same data rate with reduced
power? Optimizing over all of these decisions is a daunting
task, and is conjectured to be impossible in [26] due to the
uncertainties of future events. Remarkably, in the next section
we develop a simple decision making strategy that does not
require knowledge of future events, traffic rates, or channel
statistics, yet yields an average power expenditure that is
arbitrarily close to optimal.

III. S INGLE HOP NETWORKS

Consider the wireless network of Fig. 1 withN nodes andL
links, where each link corresponds to a directed transmission
from one node to another. Packets randomly arrive to the
system and are queued according to their destinations. This is
a single-hop network, and hence incoming data is associated
with a particular transmission linkl ∈ {1, . . . , L} and is
assumed to leave the network once it is transmitted. LetAl(t)
represent the amount of bits arriving for transmission over
link l during slott, and letUl(t) represent the current queue
backlog (or ‘unfinished work’) in queuel. Let ~S(t) and ~P (t)
represent theL-dimensional vectors of channel states and
power allocations. In vector notation, the queueing dynamics
are:

~U(t + 1) = max[~U(t)− ~µ(~P (t), ~S(t)), 0] + ~A(t) (1)

where~µ(~P , ~S) is the rate function associated with the given
physical layer modulation and coding strategies used for
wireless communication.
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We assume that there are a finite number of channel state
vectors ~S, and that~µ(~P , ~S) is a continuous function of the
power vector ~P for each channel state~S. Every timeslot a
power vector ~P (t) is chosen in reaction to queue backlog
and current channel conditions, subject to the constraint that
~P (t) ∈ Π for all t, whereΠ is a compact set of acceptable
power vectors. Throughout this paper, we use these general
rate functions and set constraints to present our main results.
However, in all examples of distributed implementation, we
assume the rate function has the structure that~µ(~P , ~S) =
(µ1(P1, S1), . . . , µL(PL, SL)). Further, we assume thatΠ
consists of all vectors~P satisfying the cell-partition constraint
(i.e., that ifPl > 0 for some linkl, thenPl̃ = 0 for all l̃ such
that cell(tran(l̃)) = cell(tran(l))) and such that each entry
Pl is limited by a peak valuePpeak according to either the
continuous power constraint0 ≤ Pl ≤ Ppeak or the discrete
ON/OFF power constraintPl ∈ {0, Ppeak}.

A. Minimum Power For Stability

Here we characterize the minimum average power required
to stabilize the system. We begin with a precise definition of
stability in terms of theoverflow functiong(M) associated
with a queue with unfinished work processU(t):

g(M)M= lim sup
t→∞

1
t

t∑
τ=0

Pr[U(τ) > M ]

The functiong(M) represents the largest limiting fraction of
time the unfinished work is above the valueM .2

Definition 1: A queue with unfinished work processU(t)
is stable if g(M) → 0 as M → ∞. A network of queues is
stable if all individual queues are stable.

Assume that inputs and channel processes are ergodic with
arrival rates~λ = (λl) and channel probabilitiesπ~S . In [1],
the network capacity regionΛ is defined as the closure of
the set of all rate vectors stabilizable under some power
allocation algorithm that conforms to the power constraint
~P (t) ∈ Π. The following theorem specifies the minimum
average power required for network stability, among the class
of all algorithms with complete knowledge of future events.

Theorem 1:(Minimum Power for Stability) If the network
is stabilizable (so that~λ ∈ Λ), the minimum power required
for stability is given byP ∗

av, whereP ∗
av is the solution to the

following nonlinear optimization problem (defined in terms of
auxiliary probability variablesα~S

k and power vectors~P ~S
k for

all ~S and fork ∈ {1, . . . , L + 2}):

Minimize: Pav =
∑

~S π~S

∑L+2
k=1 α

~S
k
~1′ ~P ~S

k

Subject to: ~µav
M=

∑
~S π~S

∑L+2
k=1 α

~S
k ~µ(~P

~S
k , ~S) ≥ ~λ

~P
~S
k ∈ Π , α

~S
k ≥ 0 for all k, ~S∑L+2

k=1 α
~S
k = 1 for all ~S

That is, minimum power for stability is achieved among the
class of stationary policies that measure the current channel

2The notion oflim sup is used because the limit always exists, even for
non-ergodic sequences. Thelim sup is equal to the regular limit when queues
are Markovian [1], as is the case in this paper, and throughout we simplify
exposition by considering only regular limits.

state~S(t) and then randomly allocate a power vector~P
~S
k with

probabilityα
~S
k . The value ofP ∗

av is the resulting average power
of this stationary policy, and~µav is the resulting time average
transmission rate vector. This is expressed in the following
corollary to Theorem 1.

Corollary 1: Minimum power for stability is given by the
valueP ∗

av, minimized over the class of all stationary random-
ized algorithms yielding:∑

l

E {Pl(t)} = P ∗
av

~µav
M=E

{
~µ

(
~P (t), ~S(t)

)}
≥ ~λ (2)

Theorem 1 is proven via the following two claims: (Claim
1) No algorithm can achieve stability with a smaller average
powerP ∗

av, and (Claim 2) any rate vector~λ strictly interior to
Λ can be stabilized with an average power that is arbitrarily
close toP ∗

av. Claim 1 is proven in Appendix A by extending
the dimensionality of the system fromL to L+1 and applying
Caratheodory’s Theorem [22]. Below we prove Claim2:

Proof: (Claim 2) The network capacity regionΛ is proven
in [1] to consist of all rate vectors~λ such that a stationary
power allocation rule exists satisfying (2). The value ofP ∗

av is
by definition the average power consumption, minimized over
all such stationary rules. If~λ is strictly interior to Λ, there
exists a positive valueε such that~λ + ~ε ∈ Λ (where~ε is the
L-dimensional vector with all entries equal toε). It follows
that there exists a stationary power allocation rule satisfying:

E
{

~µ
(

~P (t), ~S(t)
)}

≥ ~λ + ~ε > ~λ

and we defineP ∗
av(ε) as the minimum average power con-

sumed by any such stationary policy. The time average trans-
mission rate of each queue is strictly larger than the arrival
rate, and hence the network is stable [1]. This holds for
arbitrarily small values ofε, and by continuity it follows that
P ∗

av(ε) → P ∗
av as ε → 0.

We note that the concept of randomization used in Theorem
1 is vitally important to treat the general case where the
set {~µ(~P , ~S) | ~P ∈ Π} is not necessarily convex. Otherwise,
optimality can be achieved by a strategy that allocates a fixed
power vector ~P

~S whenever the channel is in state~S. Note
that even if there are only two possible channel states for
every link, the total number of channel state vectors is2L.
Thus, while the above static optimization defines the minimum
power levelP ∗

av, it is not practical to envision solving the
optimization via standard techniques, even if the channel
state probabilitiesπ~S are fully known. In the next section
we overcome this problem by developing a novelstochastic
optimizationtechnique.

B. An Energy-Optimal Control Algorithm

Here we develop a practical control algorithm that stabilizes
the system and expends an average power that is arbitrarily
close to the minimum power solutionP ∗

av. For simplicity of
exposition, we assume the arrival vector~A(t) is i.i.d. over
timeslots with arrival rateE{ ~A} = ~λ, and that the channel
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state vectors~S(t) are i.i.d. over timeslots with channel prob-
abilities π~S .3 The algorithm below uses an arbitrary control
parameterV > 0 that affects a tradeoff in average queueing
delay.

Energy-Efficient Control Algorithm (EECA): Every times-
lot, observe the current levels of queue backlog~U(t) and
channel states~S(t) and allocate a power vector~P (t) =
(P1, . . . , PL) according to the following optimization:

Maximize:
∑L

l=1

[
2Ul(t)µl(~P , ~S(t))− V Pl

]
(3)

Subject to: ~P = (P1, . . . , PL) ∈ Π

Distributed Implementation: For cell-partitioned networks, we
have~µ(~P , ~S) = (µ1(P1, S1), . . . , µL(PL, SL)). In this case,
the above optimization is implemented according to the fol-
lowing simple algorithm: Each node measures the channel
stateSl(t) for each of its own outgoing linksl and computes
a quality value Ql, where Ql is the maximum value of
2Ul(t)µl(Pl, Sl(t))− V Pl over either the continuous interval
0 ≤ Pl ≤ Ppeak or the 2-valued setPl ∈ {0, Ppeak}. Define
P̃l as thequality maximizing power levelfor link l. DefineΩn

as the set of linksl ∈ {1, . . . , L} such thattran(l) = n. Each
noden then computesl∗n andQ∗

n, defined as follows:

l∗n
M=arg max

l∈Ωn

Ql , Q∗
n

M=Ql∗n

The value ofQ∗
n is the contribution that noden brings to the

summation in (3) if it is chosen for transmission. Each node
then broadcasts its value ofQ∗

n to all other nodes in its cell,
and the noden with the largestQ∗

n is selected to transmit in
that cell (ties are broken arbitrarily). Transmission takes place
over link l = l∗n, with power levelP̃l.

Example 1: Under the ON/OFF constraintPl ∈ {0, Ppeak},
the powerP̃l for each linkl is given by:

P̃l =
{

Ppeak if 2Ul(t)µl(Ppeak, Sl(t)) > V Ppeak

0 else

In this case, we see that power is allocated only when the
backlog exceeds a channel state dependent threshold.

Example 2: Suppose we have a continuous constraint0 ≤
Pl ≤ Ppeak and that rate functions have a logarithmic profile:
µl(P, S) = log(1 + γSP ), whereγS is an attenuation/noise
coefficient associated with channel stateS. In this case, the
optimal power level is a continuous function of the queue
backlog. Indeed, for any linkl with channel stateSl(t) = S
and queue backlogUl(t) = U , the quality maximizerP̃l is a
critical point of 2Uµl(P, S)− V P over the interval0 ≤ P ≤
Ppeak. Differentiating with respect to power, we have:

d

dP
[2Uµl(P, S)− V P ] =

2UγS

1 + γSP
− V

and it easily follows that:

P̃l = min
[
max

[
2Ul(t)

V
− 1

γSl(t)
, 0

]
, Ppeak

]
�

3We note that the i.i.d. assumptions are not necessary, and the same
algorithms can be used for general ergodic arrivals and channels, resulting
in modified but more involved delay expressions [1].

To evaluate the above algorithm, defineA2
max, µout

max, and
B as follows:

A2
max

M= max
n

∑
l∈Ωn

E
{
A2

l

}
µout

max
M= max

{n,~S, ~P∈Π}

∑
l∈Ωn

µl(~P , ~S)

B M= A2
max + (µout

max)2 (4)

Now assume that~λ is strictly interior to the network capacity
regionΛ, and define the scalar valueεmax as the largest value
that can be added to each component of~λ so that the resulting
vector is still within the capacity region, i.e.,(λl +εmax) ∈ Λ.

Theorem 2:If ~λ is strictly interior to Λ, then the EECA
algorithm with any V > 0 stabilizes the system, with a
resulting average congestion

∑
l U l given by:

∑
l

U l
M= lim

t→∞

1
t

t−1∑
τ=0

[∑
l

E {Ul(τ)}

]
≤ BN + V NPpeak

2εmax

Furthermore, average powerPav is given by:

Pav
M= lim

t→∞

1
t

t−1∑
τ=0

[∑
l

E {Pl(τ)}

]
≤ P ∗

av + BN/V

whereP ∗
av is the minimum power solution of the optimization

in Theorem 1.
Thus, theV parameter can be chosen so thatBN/V is

arbitrarily small, yielding average power that is arbitrarily
close to the optimum. However, the congestion bound grows
linearly with V . By Little’s Theorem, average backlog is
proportional to average bit delay. Hence, power can be pushed
arbitrarily close to the minimum value, with a corresponding
linear increase in average delay. This holds because theV
parameter effectively determines the amount by which the time
average transmission rate vector~µav is larger than the input
rate ~λ. Pushing~µav downward towards~λ decreases average
power consumption while increasing queueing delay. Theorem
2 is proved in the next subsection using a novel drift argument.

C. Performance Analysis

To prove the performance results of the previous subsection,
we first establish a novel Lyapunov drift technique enabling
stability and performance optimization to be achieved si-
multaneously. Let~U(t) be a vector of queue backlogs as a
function of time. To measure aggregate network congestion,
define aLyapunov functionL(~U) as the sum of squares of
the individual queue backlogs:L(~U)M=

∑
l U

2
l . Let ~P (t) =

(P1(t), . . . , PL(t)) represent a process of non-negative aux-
iliary control variables. Letg(~P ) be any non-negative cost
function of the vector~P , and letg∗ represent a target cost
value. The goal is to stabilize the~U(t) process while keeping
the time average cost ofg(~P (t)) near or below the value ofg∗.
(Note that ifg(~P ) =

∑
l Pl, then minimizing cost corresponds

to minimizing time average power).
Lemma 1: (Lyapunov Drift with Performance Optimiza-

tion) If there are positive constantsV,B, ε such that for all
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timeslotst the one-step Lyapunov drift satisfies:

E
{

L(~U(t + 1))− L(~U(t))
}
≤ B − ε

∑
l E {Ul(t)}+

V g∗ − V E
{

g(~P (t))
}

(5)

then the system is stable and time average backlog satisfies:

∑
l

Ul
M= lim sup

M→∞

1
M

M−1∑
τ=0

∑
l

E {Ul(τ)} ≤ B + V g∗

ε

while time average cost satisfies:

g M= lim sup
M→∞

1
M

M−1∑
τ=0

E
{

g(~P (τ))
}
≤ g∗ + B/V

From the above statement, it is clear that if theV parameter
can be increased while holding all other constants fixed, then
the time average cost can be pushed arbitrarily near or below
the target cost levelg∗, with a corresponding tradeoff in
average queue backlog.

Proof: The drift condition is satisfied for all timeslotst.
Summing (5) over timeslotst ∈ {0, . . . ,M − 1} and dividing
by M yields:

E{L(~U(M))−L(~U(0))}
M ≤ B − ε

M

∑M−1
τ=0

∑
l E {Ul(τ)}

+V g∗ − V
M

∑M−1
τ=0 E

{
g(~P (τ))

}
(6)

By non-negativity of the Lyapunov function and of theg(~P )
function, a simple manipulation of (6) yields:

1
M

∑M−1
τ=0

∑
l E {Ul(τ)} ≤ B+V g∗+E{L(~U(0))}/M

ε

Taking limits of the above inequality asM → ∞ yields the
time average backlog bound. In [1], it is shown that this time
average backlog bound implies system stability.

Similarly, by again manipulating (6) we obtain:

1
M

M−1∑
τ=0

E
{

g(~P (τ))
}
≤ g∗ +

B

V
+

E
{

L(~U(0))
}

V M
(7)

Taking limits asM →∞ yields the result.
The art of stochastic optimal networking is designing a

strategy to ensure the drift condition of Lemma 1 is satisfied.
In the remainder of this section, we illustrate the technique
with a constructive proof of Theorem 2. The first step is to
establish a general expression for Lyapunov drift under any
power allocation policy.

Lemma 2: If arrivals ~A(t) are i.i.d. every slot with rates
E{ ~A(t)} = ~λ = (λ1, . . . , λL), then the conditional Lyapunov
drift under any power allocation policy satisfies:

∆(~U(t))M=E
{

L(~U(t + 1)− L(~U(t)) | ~U(t)
}
≤

BN − 2
∑

l Ul(t)
[
E

{
µl(~P (t), ~S(t)) | ~U(t)

}
− λl

]
(8)

whereB is defined in (4).�
The lemma follows simply by squaring the dynamical

queueing equation (1) and taking expectations, and is proved
in Appendix B. We now massage the right hand side of (8)

into a form suitable for application of Lemma 1 by adding
and subtracting the same value. We have:

∆(~U(t)) ≤
BN − 2

∑
l Ul(t)

[
E

{
µl(~P (t), ~S(t)) | ~U(t)

}
− λl

]
+V

∑
l E

{
Pl(t) | ~U(t)

}
− V

∑
l E

{
Pl(t) | ~U(t)

}
Rearranging terms on the right hand side yields:

∆ ≤ BN − V
∑

l E
{

Pl(t) | ~U(t)
}

+ 2
∑

l Ul(t)λl

−E
{∑

l

[
2Ul(t)µl(~P (t), ~S(t))− V Pl(t)

]
| ~U(t)

}
(9)

The design principle behind the EECA algorithm of section
III-B is now apparent:The EECA algorithm (3) was designed
to minimize the value of the final term in the above expression
(9) over all possible power allocation strategies.

Suppose now that~λ is strictly interior to the capacity region
Λ, and letε be a positive value such that~λ + ~ε ∈ Λ. From
Corollary 1, it follows that there exists a stationary randomized
power allocation strategy that chooses power independent of
queue backlog, and such that:∑

l

E {Pl(t)} = Pav(ε) (10)

E
{

µl

(
~P (t), ~S(t)

)}
≥ λl + ε (for all l) (11)

wherePav(ε) is the minimum power required to stabilize the
data rates~λ + ~ε. Note thatPav(ε) → P ∗

av as ε → 0. Because
this stationary rule is simply a particular power allocation
strategy, the final term in(9) under the EECA algorithm is
less than or equal to the resulting value under the stationary
rule. However, this value in (9) under the stationary rule can
be explicitly calculated using (10) and (11), and we have:

∆(~U(t)) ≤ BN − V
∑

l

E
{

Pl(t) | ~U(t)
}

+ 2
∑

l

Ul(t)λl

−

[
2

∑
l

Ul(t)(λl + ε)− V Pav(ε)

]
Canceling theUl(t)λl terms in the above expression and taking
expectations over the distribution of~U(t) yields:

E
{

L(~U(t + 1))− L(~U(t))
}
≤ BN − 2ε

∑
l

E {Ul(t)}+

V Pav(ε)− V
∑

l

E {Pl(t)}

The above expression is in the exact form specified in Lemma
1 in the caseg(~P ) =

∑
l Pl. It follows that time average

unfinished work satisfies:∑
l

Ul ≤
BN + V Pav(ε)

2ε
≤ BN + V NPpeak

2ε
(12)

and time average power satisfies:

Pav =
∑

l

P l ≤ Pav(ε) + BN/V (13)

The performance bounds in (12) and (13) hold for any value
ε > 0 such that~λ + ~ε ∈ Λ. However, the particular choice
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of ε only affects the bound calculation and does not affect
the EECA allocation policy or change any sample path of
system dynamics. We can thus optimize the bounds in (12)
and (13) separately over all possibleε values. The bound
in (13) is clearly minimized by taking a limit asε → 0,
yielding:

∑
l P l ≤ P ∗

av + BN/V . Conversely, the bound
in (12) is minimized by considering the largest feasibleε
such that~λ + ~ε ∈ Λ (defined asεmax), yielding:

∑
l Ul ≤

(BN + V NPpeak)/(2εmax). This proves Theorem 2.

IV. AVERAGE POWER CONSTRAINTS

In this section we consider a related problem of maxi-
mizing network throughput subject to both peak and average
power constraints. Specifically, we consider the same one-hop
network of the previous section, but assume that each node
n ∈ {1, . . . , N} must satisfy the average power constraint:

lim
t→∞

1
t

t−1∑
τ=0

[ ∑
l∈Ωn

Pl(τ)

]
≤ Pn

av (14)

Using a proof similar to that given in Theorem 1, it can be
shown that the new capacity regionΛ reduces to the set of all
rates~λ for which there exists a stationary randomized power
allocation scheme such that (2) is satisfied, and such that the
additional constraintsE

{∑
l∈Ωn

Pl(t)
}
≤ Pn

av are satisfied
for all n ∈ {1, . . . , N}. Here we consider cases where the
arrival rate vector~λ is either inside the capacity region or
outside of the capacity region. This requires an additional set
of admission control decisions to be made on top of the power
allocation decisions, as only a fraction of the arriving traffic
can be successfully delivered if inputs exceed capacity (see
Fig. 3).

Let Rl(t) represent the packets accepted into the net-
work at queuel on timslot t (where Rl(t) ≤ Al(t), that
is, Rl(t) is the fraction of new arrivals that are accepted
on slot t, where the remaining data is dropped). Define
Rl

M= limt→∞
1
t

∑t−1
τ=0 E {Rl(τ)} as the long term expected

admission rate into queuel, and let ~Rav = (R1, . . . , RL).
The goal is to design a joint strategy for power allocation
and admission control that satisfies all power constraints while
maximizing the weighted throughput metric

∑
l θlRl (where

θl values are arbitrary positive weights) subject to the demand
requirement~Rav ≤ ~λ and the stability requirement~Rav ∈
Λ. Define ~R∗ as the optimal admission rate vector for this

λ(2)

λi

λ(1) Λ

λj

Fig. 3. A capacity regionΛ (illustrated in2 dimensions) with a rate vector
~λ(1) strictly in the interior. The rate vector~λ(2) is outside of the capacity
region.

problem. This optimum could in principle be computed if
the arrival rates~λ and the capacity regionΛ were known in
advance. Below we design a practical algorithm that performs
arbitrarily close to the utility of~R∗.

A. The Virtual Power Queue

We first establish a novel mechanism for ensuring the
average power constraints are met at every node. To this end,
each noden maintains avirtual power queuewith occupancy
Xn(t) equal to the maximum excess power expended beyond
the average power constraint over any interval ending at slot
t. Indeed, definingXn(0) = 0, we propagate theXn(t) values
as follows:

Xn(t + 1) = max[Xn(t)− Pn
av, 0] +

∑
l∈Ωn

Pl(t) (15)

Thus, theXn(t) process acts as a single server queue with
constant server rate given by the average power constraint
Pn

av, with ‘arrivals’ given by the total power allocated for
outgoing transmissions of noden on the current timeslot. The
intuition behind this construction is given by the following
observation:If a power allocation algorithm conforms to the
power constraint ~P (t) ∈ Π for all t while stabilizing all
actual queuesUl(t) and all virtual queuesXn(t) (for l ∈
{1, . . . , L}, n ∈ {1, . . . , N}), then the strategy also satisfies
the average power constraints for each node.This observation
holds because if the excess backlogXn(t) in virtual power
queuen is stabilized, it must be the case that the time average
‘power arrivals’

∑
l∈Ωn

P l (corresponding to time average
power expenditure in noden) is less than or equal to the
‘service rate’Pn

av.

B. An Energy Constrained Control Algorithm (ECCA)

We use the virtual power queues in the following energy
constrained control algorithm. Assume the weightsθl are
known to the controllers, and letV > 0 represent an arbitrary
control parameter.

Admission Control: Every timeslot and for each queuel,
we allow the full set of new arrivalsAl(t) into the queue
wheneverUl(t) ≤ V θl/2. Else, we drop all new arrivals for
queuel entering on that timeslot.

Power Allocation: Allocate power ~P (t) = ~P according to
the following optimization:

Max:
∑N

n=1

∑
l∈Ωn

[
Ul(t)µl(~P , ~S(t))−Xn(t)Pl

]
(16)

Subject to: ~P ∈ Π

The virtual power queuesXn(t) are then updated via (15).
Note that distributed implementation of this algorithm for

the case~µ(~P , ~S) = (µ1(P1, S1), . . . , µL(PL, SL)) is similar
to the implementation of EECA given in Section III-B. The
only difference here is that the quality maximizing valuesP̃l

are computed by using the value2Xn(t) instead of the scalar
V [compare (16) and (3)]. To simplify the analysis of the above
algorithm, we additionally assume that the total arrivals to any
node are bounded by a constant valueAmax every timeslot,
that is,

∑
l∈Ωn

Al(t) ≤ Amax for all nodesn. Further, assume
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that the rate functions are differentiable with respect to power,
and defineβ as the maximum value of the partial derivative
over all links, power levels, and channel states:

β = max
l,~S, ~P∈Π

[
∂

∂Pl
µl(~P , ~S)

]
Theorem 3:For any input rate vector~λ, the above ECCA

algorithm conforms to both peak and average power con-
straints and yields a performance bound of:∑

l

θlRl ≥
∑

l

θlR
∗
l −

(B + C)N
V

(17)

where:C M=P 2
peak + 1

n

∑N
n=1(P

n
av)2

Further, for each queuel and slott, backlog satsifies:

Ul(t) ≤ Umax
l

M=
V θl

2
+ Amax

and for each noden and for all t, excess energy satisfies:

Xn(t) ≤ Xmax
n

M=
βV

2

(
max
l∈Ωn

{θl}
)

+ βAmax + Ppeak

Note that the queue backlog is bounded for every instant
of time. Hence, the algorithm yields the same performance
if all buffers are finite with buffer sizeBuffer = V θmax/2 +
Amax. In systems with finite buffers, the parameterV could be
defined according to this equation, resulting in performance:∑

l

θlRl ≥
∑

l

θlR
∗
l −

(B + C)Nθmax

2(Buffer−Amax)

and hence performance can be pushed arbitrarily close to
optimality by increasing the buffer size. The excess energy
bound is also very strong, and implies that the total energy
expended by noden over any interval of sizeM is less
than or equal toMPav + Xmax

n . It is remarkable that these
performance guarantees do not depend on the channel statistics
or arrival rates.

C. Performance Analysis

We analyze the above strategy in a manner similar to the
EECA algorithm of the previous section. In particular, the
Rl(t) variables play the role of packet arrivalsAl(t):

Ul(t + 1) = max[Ul(t)− µl(~P (t), ~S(t)), 0] + Rl(t)

The virtual queue backlogs~X(t) evolve according to (15).
Define the Lyapunov functionL(~U, ~X) =

∑
l U

2
l +

∑
n X2

n,
and define the one-step drift:

∆(~U(t), ~X(t))M=

E
{

L(~U(t + 1), ~X(t + 1))− L(~U(t), ~X(t)) | ~U(t), ~X(t)
}

To simplify formulas, below we use the shortened notation
∆, µl, ~U , and ~X to represent∆(~U(t)), µl(~P (t), ~S(t)), ~U(t),
and ~X(t).

Lemma 3:The one-step drift satisfies:

∆ ≤ N(B + C)− 2
∑

l

UlE
{

µl −Rl | ~U, ~X
}

−2
∑

n

Xn

[
Pn

av − E

{ ∑
l∈Ωn

Pl | ~U, ~X

}]

The lemma follows by summing the corresponding drift of
the actual queues and virtual queues (compare with Lemma
2), and the derivation is omitted for brevity. Adding and
subtracting the optimization metricV

∑
l θlE

{
Rl | ~U, ~X

}
to

the right hand side of the drift expression and rearranging
terms yields:

∆ ≤ N(B + C) + V
∑

l

θlE
{

Rl | ~U, ~X
}
− 2

∑
n

XnPn
av

+
∑

l

(2Ul − V θl)E
{

Rl | ~U, ~X
}

−2
N∑

n=1

∑
l∈Ωn

E
{

Ulµl −XnPl | ~U, ~X
}

The design methodology of the ECCA algorithm is now ap-
parent:The admission control algorithm minimizes the second
to last term of the above expression over all possible admission
decisions, and the power allocation algorithm minimizes the
last term of the above expression over all possible power
decisions.

In particular, the optimal input rate vector~R∗ =
(R∗

1, . . . , R
∗
L) could in principle be achieved by the simple

backlog-independent admission control algorithm of including
all new arrivalsAl(t) for a given linkl and slott independently
with probability αl = R∗

l /λl, yielding:

E
{

Rl | ~U, ~X
}

= E {Rl} = αlE {Al} = R∗
l (18)

Likewise, because~R∗ ∈ Λ, there must exist a stationary power
allocation policy that chooses power independent of backlog
and yields:

E
{

µl | ~U, ~X
}

= E {µl} = R∗
l (19)

E

{ ∑
l∈Ωn

Pl | ~U, ~X

}
= E

{ ∑
l∈Ωn

Pl

}
≤ Pn

av (20)

Plugging in the expectations (18)-(20) of the particular
backlog-independent policies into the last two terms of the
above drift expression for the ECCA algorithm thus preserves
the bound, and yields:

∆(~U(t), ~X(t)) ≤ N(B + C)

+V
∑

l θlE
{

Rl(t) | ~U, ~X
}
− V

∑
l θlR

∗
l (21)

where we have canceled the common terms
∑

l 2UlR
∗
l and∑

n XnPn
av. Taking expectations of (21) with respect to~U, ~X

and summing fromt = 0 to t = M − 1 yields:

1
M

M−1∑
τ=0

∑
l

θlE {Rl(τ)} ≥
∑

l

θlR
∗
l −

N(B + C)
V

−E
{

L(~U(0), ~X(0))
}

/(MV )

which yields (17) asM →∞.
Furthermore, the backlog boundUl(t) ≤ Umax

l follows
immediately from the definition of the ECCA admission
control policy: No new arrivals are admitted ifUl(t) > V θl/2,
so thatUl(t) ≤ V θl/2 + Amax for all t (where in the worst
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case we add an amountAmax when backlog is exactly at the
V θl/2 threshold).

Likewise, by definition of the ECCA power allocation
algorithm, we clearly setPl = 0 if the partial derivative of
Ul(t)µl(~P , ~S(t)) with respect toPl is smaller thanXn(t) for
all ~P ∈ Π. The largest possible value for this derivative is
β maxl∈Ωn

{Umax
l }, and hence no power is allocated to any

outgoing link of noden if Xn(t) > β maxl∈Ωn
{Umax

l }. It
follows that Xn(t) ≤ β maxl∈Ωn{Umax

l } + Ppeak always,
proving Theorem 3.

V. M ULTI -HOP NETWORKS

Here we consider the same network as before but assume
that data can be routed over multi-hop paths to reach its
destination (we assume the network isconnected, so this is
always possible, see Fig. 1). We optimize over all possible
power allocation and routing algorithms. Thus, incoming data
is not necessarily associated with any particular link, and so
we redefine the arrival processes in terms of the origin and
destination of the data:Ac

n(t)M= amount of data exogenously
arriving to noden at slot t that is destined for nodec. All
data (from any source node) that is destined for a particular
nodec ∈ {1, . . . , N} is defined ascommodityc data. Data is
stored in each node according to its destination, and we let
U c

n(t) represent the current backlog of commodityc data in
noden.

Suppose power vector~P (t) is allocated in slott, so that the
transmission rate over a linkl is µl(~P (t), ~S(t)). A routing
decision must be made to establish which commodity to
transfer over linkl. In general, multiple commodities could be
transfered over the same link simultaneously,4 and we define
routing variablesµc

l (t) as the rate allocated to commodityc
data over linkl during slott. The problem is to allocate power
every timeslot according to the power constraint~P (t) ∈ Π and
then to route data according to thelink rate constraint:

N∑
c=1

µc
l (t) ≤ µl(~P (t), ~S(t)) (22)

Recall thatΩn is the set of all linksl such thattran(l) = n.
Further defineΘn as the set of all linksl such thatrec(l) = n.
The resulting 1-step queueing equation for backlogU c

n(t) thus
satisfies (forc 6= n):

U c
n(t + 1) ≤ max[U c

n(t)−
∑
l∈Ωn

µc
l (t), 0]

+Ac
n(t) +

∑
l∈Θn

µc
l (t) (23)

The above expression is an inequality rather than an equality
because the incoming commodityc data to noden may
be less than

∑
l∈Θn

µc
l (t) if the corresponding transmitting

nodes have little or no data of this commodity waiting to be
transfered.

In [14], the network layer capacity regionΛ is defined
as the closure of the set of rate matrices(λnc) that can be

4We find that the capacity achieving solution needs only route a single
commodity over any link during a timeslot.

stably supported, considering all possible power allocation
and routing strategies. There, it was shown that any rate
matrix (λnc) ∈ Λ is supportable via a randomized algorithm
for choosing power allocations~P (t) and routing variables
µc

l (t). Here, we assume the rate matrix is inside the capacity
region, and develop an energy efficient stabilizing algorithm.
However, note that the objective of minimizing average power
expenditure in a multihop network may place an unfair power
burden on centrally located nodes that are used by many
others. Thus, to balance power more evenly, we consider the
more general objective of minimizing the time average of∑

n gn(
∑

l∈Ωn
Pl(t)), wheregn(p) is any convex increasing

cost function of the power expended by noden.
DefineUn

n (t) = 0 for all t, and define:

A2
max

M= max
n

∑
c

E
{
(Ac

n)2
}

µin
max

M= max
{n,~S, ~P∈Π}

∑
l∈Θn

µl(~P , ~S)

D M= (Amax + µin
max)2 + (µout

max)2

Let L(U) =
∑

n,c(U
c
n)2. The one-step drift∆(U) for any

policy is found by squaring the dynamical equation (23) as
in Lemma 2, and is given in [14] as follows: If arrivals and
channel states are i.i.d. over timeslots, then

Lemma 4:∆(U(t)) ≤ DN + 2
∑

n,c U c
n(t)λnc

−V
∑

n E
{
gn(

∑
l∈Ωn

Pl(t)) | U(t)
}

−
∑

n E
{∑

l∈Ωn

∑
c 2µc

l (t)(U
c
tran(l)(t)− U c

rec(l)(t))

−V gn(
∑

l∈Ωn
Pl(t))

∣∣ U(t)
}

The above drift expression for multi-hop networks is the
same as that given in [14], with the exception that
we have added and subtracted the optimization metric
V

∑
n E

{
gn(

∑
l∈Ωn

Pl(t)) | U(t)
}

. Minimizing the last term
in the above drift expression over all power allocations satis-
fying ~P ∈ Π and all routing strategies satisfying (22) leads to
the following multi-hop EECA algorithm:

1) For all links l, find the commodityc∗l (t) such that:

c∗l (t) = arg max
c

{
U c

tran(l)(t)− U c
rec(l)(t)

}
and define:

W ∗
l (t) = max[U c∗l

tran(l)(t)− U
c∗l
rec(l)(t), 0]

2) Power Allocation:Choose a power vector~P (t) ∈ Π that
maximizes:∑

n

[ ∑
l∈Ωn

2µl(~P , ~S(t))W ∗
l − V gn(

∑
l∈Ωn

Pl)

]
(24)

3) Routing: Over link l, transmit commodityc∗l in the
amount ofmin[U c

l (t), µl(~P (t), ~S(t))].
Distributed Implementation: Given a cell partitioned net-

work with backlog valuesU c
a(t) for all neighbor nodesa,

the distributed method for allocating power and choosing
which node transmits in every cell is similar to the im-
plementation of EECA in Section III-B, with the excep-
tion that the quality maximizer values̃Pl now maximize
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[
2µl(Pl, Sl(t))W ∗

l − V gtran(l)(Pl)
]
, representing the contri-

bution to (24) if link l is chosen for transmission (recall that
a given noden may activate only one outgoing linkl ∈ Ωn

during a timeslot).
To find the backlog values of neighbors, note that for

rectilinear networks there are at most10 queues that change
their backlog values during a timeslot in any given cell. This
is because the transmitting node may transmit to another
node in the same cell (increasing the queue level of the
transmitted commodity in the receiving node, and decreasing
it in the transmitting node), and there are at most8 other
data receptions in the same cell (due to potential tranmissions
from the 8 adjacent cells). Knowledge of backlog levels in
neighboring nodes can thus be maintained by broadcasting the
backlog changes to all nodes in the same cell and in adjacent
cells. Each update requires a triplet of information:(n, c, δ),
wheren is the node,c is the commodity that was changed,
and δ is the amount of the change. Thus, the bandwidth of
the broadcast control channel must be sufficient to support the
transmission of up to10 update triplets per cell per timeslot.

Theorem 4:If the rate matrix(λnc) is interior to the ca-
pacity regionΛ, then the above multihop EECA algorithm for
routing and power allocation stabilizes the network and yields
a time average congestion bound of:∑

nc

U
c

n ≤
DN + V

∑
n gn(Ppeak)

2εmax

(whereεmax is the largestε such that(λnc + ε) ∈ Λ).
Further, the time average cost satisfies:∑

n

gn
M= lim

t→∞

1
t

t−1∑
τ=0

[∑
n

gn(
∑
l∈Ωn

Pl(τ))

]
≤ g∗ +

DN

V

where g∗ represents the minimum time average cost of any
stabilizing policy.
The proof is similar to the proof of Theorem 2, and so we
present only an outline: The dynamic algorithm minimizes
the final term of Lemma 4 over all policies. In [14] it is
shown that if there is anε such that(λnc + ε) ∈ Λ, then
a single stationary power allocation and routing strategy can
be developed to satisfy:∑

l

∑
c

E {µc
l (t)} (U c

tran(l) − U c
rec(l)) =

∑
n,c

U c
n(λnc + ε)

for all non-negativeU c
n values. Further, the stationary policy

also satisfies
∑

n V E
{
g(

∑
l∈Ωn

Pl(t))
}

= g∗(ε), whereg∗(ε)
is the minimum cost for stabilizing rates(λnc+ε) and satisfies
g∗(ε) → g∗ as ε → 0. Plugging these particular policies into
the last term of the drift expression in Lemma 4 thus preserves
the bound and yields:

∆(U(t)) ≤ DN − 2
∑

n,c U c
n(t)ε

−V
∑

n E
{
gn(

∑
l∈Ωn

Pl(t)) | U(t)
}

+ V g∗

which yields the result upon application of Lemma 1.�
We note that the multi-hop EECA algorithm delivers all data

to its destinationwithout knowing the network topology. The
algorithm effectively accomplishes this by expending initial
energy transmitting data to neighbors in order to learn efficient
routes, which emerge from backlog information.

VI. SIMULATIONS

For brevity, we present simulation results only for the simple
two-queue downlink example of Section II. Packets arrive to
the system according to Poisson processes with ratesλ1 =
8/9, λ2 = 5/9, which are the same as the empirical rates
obtained by averaging over the first9 timeslots of the example
in Fig. 2. Channel states arise as i.i.d. vectors(S1(t), S2(t))
every slot. The probability of each vector state is matched to
the empirical occurrence frequency in the example, so that
Pr[(G, M)] = 3/9, P r[(M,B)] = 2/9, P r[(M,M)] = 1/9,
etc. We first simulate the policy of serving the queue with the
largest rate-backlog indexUi(t)µi(t), a strategy that stabilizes
the system whenever possible but does not necessarily make
energy efficient decisions [20] [15] [13]. The simulation was
run for 10 million timeslots. The resulting average power is
Pav = 0.898 Watts, and the resulting time average backlog is
2.50 packets.

Next, we consider the EECA algorithm, where power
allocation decisions are determined by the solution of the
optimization problem (3). First note thatA2

max =
∑2

i=1 λ2
i +

λi = 2.54, µout
max = 3, and hence from (4) we haveB = 11.54.

It follows from Theorem 2 that the resulting average power
differs from optimality by no more than11.54/V , whereV is
the control parameter of the algorithm (note thatN = 1 in this
example). Furthermore, it can be shown thatεmax = 0.489 for
this example, and hence by Theorem 2 we know the average
backlog in the system satisfies the following inequality:

U1 + U2 ≤
11.54 + V

0.978
By Little’s Theorem, dividing both sides of the above inequal-
ity by (λ1 + λ2) yields an upper bound on average delay.

We simulated the EECA algorithm for20 different values
of the control parameterV , ranging from 1 to 104. Each
simulation was run for10 million timeslots. In Fig. 4 the
resulting average power is plotted against the time average
backlog. The corresponding upper bound is also shown in the
figure. We find that average power decreases to its minimum
value of0.518 Watts as the control parameterV is increased,
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of the EECA algorithm for a two queue downlink. The analytical upper bound
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with a corresponding tradeoff in average delay. In Fig. 5 we
plot average backlog versus theV parameter together with the
backlog bound, illustrating that average delay grows linearly
in V , as suggested by the performance bound. As a point of
reference, we note that atV = 50, the average power is0.53
Watts and the average sum backlog is21.0 packets.

VII. C ONCLUSIONS

We have developed energy-efficient control strategies with
performance that can be pushed arbitrarily close to optimal,
with a corresponding tradeoff in average network delay. Our
algorithms adapt to local link conditions without requiring
knowledge of traffic rates, channel statistics, or global network
topology. For simplicity of exposition, channels were modeled
as being independent from slot to slot. However, the algorithms
can be shown to yield similar results for more general channel
processes, and are robust to situations when channel statistics
or traffic loadings change over time [1]. The analysis presented
here uses a new Lyapunov drift technique enabling stability
and performance optimization to be achieved simultaneously.
This research creates a general framework for designing prac-
tical control algorithms that are provably optimal.

APPENDIX A — M INIMUM POWER FORSTABILITY

Here we prove Claim 1 of Theorem 1:Consider any
allocation rule for choosing~P (t) subject to~P (t) ∈ Π, perhaps
one that uses full knowledge of future arrivals and channel
states. If the rule stabilizes the system, then:

P av
M= lim inf

t→∞

1
t

t−1∑
τ=0

[∑
l

Pl(τ)

]
≥ P ∗

av (25)

whereP ∗
av is the minimum power obtained from the optimiza-

tion in Theorem 1.

To prove (25), we first establish some convenient notation.
For each ~S, define T~S(M) as the set of timeslotst ∈
{0, . . . ,M} during which the channel state vector is equal to
~S, and let||T~S(M)|| represent the total number of such slots.
Define the conditional empirical average of transmission rate
and power consumption as follows:(

~µ
~S
av(M);P ~S

av(M)
)

M=
∑

τ∈T~S(M)
(~µ(~P (τ),~S);~1′ ~P (τ))

||T~S(M)||

Lemma 5:For every M , there exist probabilitiesα~S
k [M ]

and power vectors~P ~S
k [M ] ∈ Π such that:

~µ
~S
av(M) =

L+2∑
k=1

α
~S
k (M)~µ

(
~P

~S
k (M), ~S

)
(26)

P
~S
av(M) =

L+2∑
k=1

α
~S
k (M)~1′ ~P ~S

k (M) (27)

Proof: Define~Φ~S(~P )M=
(
~µ(~P , ~S);~1′ ~P

)
as a function map-

ping theL dimensional power vector intoL + 1 dimensional
space. Then 1

||T~S(M)||
∑

τ∈T~S(M)
~Φ(~P (τ)) is a convex combi-

nation of points in the image of theL+1 dimensional function
~Φ~S(~P ) (for ~P ∈ Π), and is therefore (by Caratheodory’s
theorem [22]) expressible by a convex combination of at most
L + 2 elements of the image.

Now define:

(~µav(M);Pav(M)) M=
∑

~S

||T~S(M)||
M

(
~µ

~S
av(M);P ~S

av(M)
)

For brevity, we outline the rest of the proof: For eachM ,
the number ofα~S

k (M) and ~P
~S
k (M) values is at most(L +

2)Card({~S}) (where Card({~S}) represents the number of
possible channel state vectors). By compactness, we can thus
find an appropriate subsequence of integersMk such that
Mk → ∞ and such that there exist limiting probabilitiesα

~S
k

and power levels~P ~S
k ∈ Π satisfying:

P
~S
k (Mk) → P

~S
k , α

~S
k (Mk) → α

~S
k , Pav(Mk) → P av

Because channel states are ergodic, we have||T~S(Mk)||
Mk

→
π~S . Using these limits with Lemma 5 shows that~µav(Mk)
converges to a vector~µav satisfying the same inequalities as
those in the optimization problem of Theorem 1. Furthermore,
because the system is stable we must have~µav ≥ ~λ (a
necessary condition for stability, see [1]). It follows thatP av

satisfies the feasibility constraints for the optimization problem
of Theorem 1, and thereforeP av ≥ P ∗

av.

APPENDIX B — THE DRIFT EXPRESSION

Here we prove the drift expression of Lemma 2: Suppose
arrivals Al(t) are i.i.d. every slot with rateE {Al(t)} = λl.
For each queuel, consider the evolution equationUl(t+1) =
max[Ul(t)− µl(~P (t), ~S(t)), 0] + Al(t) from (1). By squaring
this equation and noting that(max[x, 0])2 ≤ x2, we obtain:

(Ul(t + 1))2 ≤ (Ul(t))2 + µ2
l − 2Ul(t)(µl −Al) + A2

l

where we have simplified the notation by writingµl and
Al in place ofµl(~P (t), ~S(t)) and Al(t). Taking conditional
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expectations and summing over alll yields:

∆(~U(t)) ≤
∑

l E
{

µ2
l + A2

l | ~U(t)
}

−2
∑

l Ul(t)
(
E

{
µl | ~U(t)

}
− λl

)
Noting that the first term on the right hand side of the above
expression is bounded byN(µout

max)2 + NA2
max proves the

result.�
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