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Abstract—We consider the delay properties of one-hop net-
works with general interference constraints and multiple traffic
streams with time-correlated arrivals. We first treat the case when
arrivals are modulated by independent finite state Markov chains.
We show that the well known maximal scheduling algorithm
achieves average delay that grows at most logarithmically in
the largest number of interferers at any link. Further, in the
important special case when each Markov process has at most two
states (such as bursty ON/OFF sources), we prove that average
delay is independent of the number of nodes and links in the
network, and hence is order-optimal. We provide tight delay
bounds in terms of the individual auto-correlation parameters
of the traffic sources. These are perhaps the first order-optimal
delay results for controlled queueing networks that explicitly
account for such statistical information.

Index Terms—queueing analysis, Markov chains

I. INTRODUCTION

This paper derives average delay bounds for one-hop
wireless networks that use maximal scheduling subject to
a general set of interference constraints. It is known that
maximal scheduling algorithms are simple to implement and
can support throughput within a constant factor of optimality.
Our analysis shows that this type of scheduling also yields
tight delay guarantees. In particular, when arrival processes
are modulated by independent Markov processes, we show that
average delay grows at most logarithmically in the number of
nodes in the network. We then obtain an improved delay bound
in the important special case when the individual Markov
chains have at most two states (such as bursty ON/OFF
sources). Average delay in this case is shown to be independent
of the network size, and hence is order-optimal.

Specifially, we consider a network with N nodes and L
links. Let A/ and £ denote the node and link sets:

N 2 {1,2,...,N}
£ £ {1,2,....L}

Each link [ € £ represents a directed communication channel
from one node to another, and we define tran(l) and rec(l) to
be the corresponding transmitter and receiver nodes for link [
(where tran(l) € N and rec(l) € N). The network operates
in slotted time with unit timeslots ¢ € {0,1,2,...}. Every
timeslot a decision is made about which links to activate for
transmission. If a link [ is activated during a particular slot,
it sends exactly one packet from tran(l) to rec(l). However,
due to scheduling and/or interference constraints, not all links
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can be simultaneously active during the same slot. These
constraints are defined according to the general interference
model of [1][2]: Each link [ € L is allowed to be active if
and only if no other links within an interference set S; are
simultaneously active. For convenience, it is useful to define
the set S; to additionally include link [ itself. That is, each
set S; consists of link [ together with all possible interferers
of link /. Note that these interference sets have the following
pairwise symmetry property: For any two links w,l € L, we
have that w € §; if and only if [ € S,,.

The link sets S; can be chosen to impose a variety of
constraint models. For example, setting S; to include all
links adjacent to either the transmitter or receiver of link
l imposes matching constraints. Matching constraint models
arise naturally in scheduling problems for packet switches.
They are also important for wireless networks where individual
nodes can transmit or receive over at most one adjacent link,
and cannot simultaneously transmit and receive (called the
node exclusive spectrum sharing model in [3]). More general
sets S; can be used to model topology-dependent interference
constraints for wireless networks, such as the constraint that
no additional transmitting nodes can be activated within a
specified distance of a node that is actively receiving.

Every timeslot, new data randomly arrives to the network.
Let A;(t) represent the (integer) number of packets that arrive
during slot t that are intended for transmission over link
l. Packets are stored in separate queues according to their
corresponding link. This is a one-hop network, so that packets
exit the network once they are transmitted over their intended
link. A network controller observes the current queue backlog
and makes link activation decisions every slot subject to the
transmission constraints.

It is well known that generalized max-weight scheduling can
be used to achieve maximum throughput in such networks [4]
[5]. However, this type of scheduling is difficult to implement
in wireless networks with general interference constraints. In
this paper we consider a simpler class of maximal scheduling
algorithms. Maximal scheduling is of recent interest due to
its low complexity and ease of distributed implementation.
For N x N packet switches, maximal scheduling is known to
support throughput that is within a factor of 2 of optimality,
and to also have nice delay properties for i.i.d. inputs [6]
[7]. Related constant factor throughput results have also been
shown for wireless networks, including factor of 2 results for
networks under matching constraints [3] and constant factor
results for more general interference models [1] [2]. However,
the work on wireless scheduling in [3][1][2] considers only
throughput results and does not provide a delay analysis.
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Further, while the work in [7] considers delay analysis for i.i.d.
arrivals and a N x N packet switch, no existing work provides
explicitly computable and order-optimal delay bounds for
time-correlated arrivals.

Our work addresses the issues of general interference con-
straints and time-correlated “bursty” traffic simultaneously.
We treat the general interference model of [1][2], but use
the concept of queue grouping to derive the order-optimal
delay results. Queue grouping techniques have been used
in [8][9][6][2] to reduce scheduling complexity in switches
and wireless networks. Queue groupings are also used in
[10] to provide order-optimal delay results for opportunis-
tic scheduling in a wireless downlink with a single server.
The analysis in this paper particularly treats delay analysis
in wireless networks with general constraint sets and time-
correlated arrivals. Previous work in [11][5] also considers
time-correlated arrivals for general multi-hop networks, but
does not obtain order optimal delay results. Delay results
within a logarithmic factor of optimality are developed in
[12] for a N x N packet switch with i.i.d. inputs. Asymptotic
delay optimality is studied in [13] for a heavy traffic regime
where input rates are scaled so that they are very close to
the capacity region boundary. Here, we focus on the case
when input rates are a fixed fraction away from the boundary.
We obtain tight delay bounds in terms of the individual auto-
correlation parameters of the traffic sources. These are perhaps
the first delay bounds for controlled queueing networks that
explicitly incorporate such statistical information. This allows
delay to be understood in terms of general models for network
traffic. Our analysis includes the important special case of
Markov modulated ON/OFF traffic sources. Specifically, we
consider the case where all arrival streams are independent
and modulated by a two-state Markov chain with ON and
OFF states, and provide a closed form delay bound in terms
of the rate and burst parameters of each source.

We first treat the case of general Markovian arrivals and
prove a structural result about average delay, showing that
average delay grows at most logarithmically in the worst case
number of interferers of a given link, and hence is at most
O(log(N)). We then provide an explicit and tighter delay
analysis for the special case when all Markov chains have
at most two states. In this case, we prove average delay is
independent of N. The time-correlated scenarios treated here
are quite challenging to analyze, and we introduce a simple
technique of delayed Lyapunov analysis to ensure the arrival
processes couple sufficiently fast to a stationary distribution.

In the next section we present the network model. In
Section III we provide the drift analysis, and in Section IV we
present the logarithmic delay result for general time-correlated
arrivals. The order-optimal delay analysis for 2-state chains is
provided in Section V.

II. NETWORK MODEL

Recall that £ denotes the set of network links, and that
transmission over each link is constrained by the general
interference sets defined in the previous section.

A. Traffic Model

Suppose the arrival process A;(t) is modulated by a dis-
crete time, stationary, ergodic Markov chain Z;(t) for each
link [ € L. Specifically, Z;(t) has finite state space Z; =
{1,2,..., M;}. For each link [ € £ and state m € Z;, arrivals
A;(t) are conditionally independent and identically distributed
according to mass function p; ,,,(a), where:

pim(a) = Prl4;(¢t) = a| Z/(t) =m] fora € {0,1,2,...}
Define the conditional arrival rates /\l(m) as follows:
N =E{A(t)| Zi(t) = m}

We assume conditional second moments of arrivals are finite,
so that E {(A;(t))*| Zi(t) =m} < oo for all I € £ and all

m € Zj. Let wl(m) represent the steady state probability that
Z,(t) = m. Define \; as the average arrival rate to link [:

A = Z 7_‘_l(m))\l(m) (1)

mezZ;

We assume that all Markov chains are in their steady state
distribution at time 0, so that each A;(¢) process is stationary
and for all slots ¢ > 0 and all links [ € £ we have:

E{A(t)} =N

The Markov chains Z;(t) themselves may be correlated
over different links [ € £, although we mainly focus on the
case when chains are independent. More detailed statistical
information, such as the auto-correlation for individual inputs
(and the spatial correlation between multiple inputs if they are
not independent), is also important for delay analysis and shall
be defined when needed. Note that this traffic model is quite
general and includes the following important special cases:

o Case 1: Z;(t) has only one state and so arrivals A;(t)

are i.i.d. over slots with some given distribution.

o Case2: Z)(t) is a 2-state ON/OFF process where A, (t) =
1 whenever Z;(t) = ON and A;(t) = 0 whenever
Z(t) = OFF.

B. Queueing

Define Q;(t) as the number of queued packets waiting for
transmission over link [ during slot ¢. Let Q(t) = (Q;(¢))iec
be the vector of queue backlogs. Define y;(t) € {0,1} as the
transmission rate offered to the link during slot ¢ (in units
of packets/slot). That is, p;(t) = 1 if link [ is scheduled for
transmission on slot ¢, and ;(t) = 0 otherwise. We assume
the scheduler only schedules a link [ that does not violate
the interference constraints and that has a packet ready for
transmission (so that Q;(t) > 0). Let pu(t) = (w(t))iec
represent the transmission rate vector for slot ¢. Define X' (t) as
the set of feasible transmission vectors for slot t, representing
all pu(t) rate vectors that conform to the constraints defined
by the interference sets S; and the additional constraint that
wi(t) = 1 only if Q;(t) > 0 (for each [ € £). The queueing
dynamics thus proceed as follows:

Qut+1) = Qu(t) — w(t) + Ai(t) 2
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The goal is to observe the queue backlogs every slot and
make scheduling decisions p(t) € X(¢) so as to support all
incoming traffic with average delay as small as possible.

C. Maximal Scheduling

Define the network capacity region A as the closure of
the set of all arrival rate vectors (\;);c. that can be stably
supported, considering all possible scheduling algorithms that
conform to the above constraints (see [5] for a discussion of
capacity regions and stability). It is well known that scheduling
according to a generalized max-weight rule every timeslot
ensures stability and maximum throughput whenever arrival
rates are interior to the capacity region [4] [5].! However,
the max-weight rule involves an integer optimization that
may be difficult to implement, and has delay properties that
are difficult to analyze. Here, we assume scheduling is done
according to a simpler maximal scheduling algorithm.? Specifi-
cally, given a queue backlog vector Q(¢), a transmission vector
w(t) is maximal if it satisfies the interference constraints and
is such that for all links I € £, if Q;(t) > 0 then p,(t) =1
for at least one link w € S;. In words, this means that if link
[ has a packet, then either link [ is selected for transmission,
or some other link within the interference set S; is selected.
There is much recent interest in maximal scheduling because
of its implementation simplicity (described briefly below) and
its ability to support input rates within a constant factor of
the capacity region for wireless networks [3] [1] [2] and for
N x N packet switches [6].

One way to achieve a maximal scheduling is as follows:
First select any non-empty link [ € £ and label it “active.”
Then select any other non-empty link that does not conflict
with the active link [ (i.e., that is not within &;). Label this
second link “active.” Continue in the same way, selecting
new non-empty links that do not conflict with any previously
selected links, until no more links can be added. It is not
difficult to see that this final set of links labeled “active” has
the desired maximal property. Maximal link selections are not
unique, and can alternatively be found in a distributed manner,
where multiple nodes attempt to activate their non-conflicting,
non-empty links simultaneously, and contentions are resolved
locally. This distributed implementation also requires multiple
iterations before the set of selected links becomes maximal.

All maximal link selections have the following important
mathematical property.

Lemma 1: Under any maximal link scheduling for p(t), for
all links [ € £ we have:

Qut) Y pu(t) > Qult) 3)
w€eS)

Proof: Consider any link [ € L. If Q;(t) = 0, then (3)
reduces to 0 > 0 and is trivially true. Else, if Q;(¢) > 0 then
1w (t) = 1 for at least one link w within S; (by definition of
a maximal link selection), and so >_ s pe(t) > 1, which
proves (3). |

I'Specifically, the generalized max-weight rule schedules to maximize
e Qu(t)pi(t) subject to pu(t) € X(2).

2Max-weight scheduling has the maximal property, and so our delay results
also apply to max-weight when inputs rates are in A* (of Section II-D).

In this paper, we assume transmission decisions are made
every slot according to any maximal scheduling. For conve-
nience, we further assume that the maximal scheduling has a
well defined probabilistic structure given the queue backlog
matrix, so that the entire queueing system can be viewed as
an ergodic Markov chain with a countably infinite state space.
The inequality (3) is the only additional property of maximal
scheduling required in our analysis.

D. The Reduced Throughput Region

Define A* as the set of all rate vectors (A\;);c that satisfy
the following:

> A<l forallle

w€eS)
The set A* is overly restrictive, as it is possible to have more
than one simultaneously active link within a given set S
(provided that link [ is idle). However, A* is typically within
a constant factor of the capacity region A. For example, in
networks with matching constraints only, it is not difficult to
show that %A C A*, so that the throughput region A* is within
a factor of 2 of optimality. Further, in networks with general
inteference sets S; where each set S; contains at most K links,
it can be shown that %A c A*[1].

Throughout this paper, we assume input rates (\;);c. are

interior to the set A*. Specifically, we assume there exists a
value p* such that 0 < p* < 1, where:

Y A <p forallle L (4)
wEeS;
The value p* represents the relative network loading, as it
can be viewed as a loading factor relative to the reduced
throughput region A*.

III. DRIFT ANALYSIS

Recall that Q(t) = (Q;;(t)). Our technique relies on the
concept of queue grouping. For each link [ € L, define:

Qs (D2 Qu(t) )

weS;

Thus, Qs, (¢) is the sum of all queue backlogs of links within
the interference set S; of link /. Define the Lyapunov function:

1 A
LQW)LS Y QuH)s (1)
lec
The queue-grouped structure of this Lyapunov function is
similar the functions used in [2][8] to prove queue stability
when input rates are a fixed fraction away from the capacity
boundary. An alternate proof of rate-stability is given in [1].
However, the prior work in this area does not directly consider
delay performance. Below we provide a more detailed drift
analysis that yields explicit and tight delay bounds.
For each link | € £, define the group departures fis, (t) and
group arrivals Ag, (t) as follows:

s 23 )
weS)

Asz(t) = ZAw(t)
weS;
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Thus: . . A
QSl (t + 1) = Qsz (t) - IaSz (t) + ASZ (t) (6)
Define the 1-step unconditional Lyapunov drift as follows:3
A=E{L(Q(t +1)) — L(Q(1)} )

where the expectation is over the randomness of Q(t) and the
randomness of the system dynamics given the value of Q(t).

Lemma 2: (Drift Under Maximal Scheduling) If maximal
scheduling is implemented every timeslot (using any maximal
scheduling algorithm), the resulting unconditional Lyapunov
drift A(t) satisfies the following for all slots ¢:

AW <BBO}-Y E{Qm1-4s@)}  ®

leL
where
1 . .
B(H)23 2; [A0)As, (1) = 245, Om(t) + m®)]  ©
Proof: See Appendix A. [ |

A. Lyapunov Drift Theorem

The drift expression (8) can be used to prove stability
and delay properties of maximal matching via the following
theorem:

Theorem 1: (Lyapunov drift [5]) Let Q(t) be a vector
process of queue backlogs that evolve according to some
probability law, and let L(Q(t)) be a non-negative function
of Q(t). If there exist processes f(t) and g(t) such that the
following is satisfied for all time ¢:

A(t) <E{g(t)} —E{f(t)}
then:

t—1 t—1

. 1 . 1

hmsupgg E{f(T)}ShlfrnscngE E{g(t)} O
=0 = =0

t—oo

A proof of this theorem is provided in Lemma 5.3 of [5].

B. Analysis for i.i.d. Arrivals

Define A(t)2(A;(t))icc as the vector of new arrivals.
Consider first the case when all arrival vectors A(t) are i.i.d.
over timeslots, with rate vector A = (\;);c (the arrivals over
different links in the same slot may be correlated). For each
link {, define 5\31 as the sum of arrival rates over all input
streams corresponding to links within the set S;. That is:

As 2 A
wES;

Note by the loading assumption (4) that 5\3, < p*, where p*
is a value such that 0 < p* < 1. By independence of arrivals
every slot, we have for all ¢:

E{Qi)1-As ()} = E{Q®}(1-As)
> E{Qi(®)} (1 - p")

3The randomness is taken with respect to some given initial queue distri-
bution at time O and the random system events that happen thereafter.

Using this inequality directly in the Lyapunov drift expression
(8) yields (for all slots t):

A(t) SE{B(t)} — (1-p") Y E{Qu(t)}
lel

Plugging the above drift inequality into the Lyapunov
drift theorem (Theorem 1) (using g(t)2B(t) and f(t)2(1 —
P*) D1 Qu(t)) yields:

t—1
. 1 B
hgligp;E Y E{Qu(1)} < s

T=01eLl

(10)

where:
t—1

— 1
BAlimsup ~ E{B
mowp ;3 E(B(7)

t—oo

Note from (9) that B < oo, and hence the queueing network
is strongly stable with finite time average queue backlogs.
Because it evolves according to an ergodic Markov chain with
a countably infinite state space, it can be shown that limiting
time averages exist and are equal to the steady state averages.
Thus, the left hand side of (10) represents the time average
total queue backlog in the system (summed over all queues).
Let Q, be the average queue backlog in link [ (for each [ € £).
We thus have:

Theorem 2: (Time-Independent Arrivals) If the arrival vec-
tor process A(t) is i.i.d. over slots with a relative network
loading p* < 1 (defined in (4)), then:

(a) The average total network congestion satisfies:

_ Der [E {Al(t)f‘isz (t)} —2\As, + N
2= 21— )

(b) If arrival streams A;(t) are i.i.d. over slots and are also
independent of each other, then total average network delay
W satisfies:

W < 1+ ﬁ ZZEL [0'12 - /\l;\Sl}

- 2(1 = p*)

where Aot 2 >, Ai, and where 07 2E {(A;(t))?} — A7 and
represents the variance of A;(t).

The average average congestion bound in part (a) of the
above theorem is found by computing B using (9). Part (b)
is proven via the fact that total average congestion is equal
to Aot W (by Little’s Theorem). This analysis is provided in
Appendix B.

(1)

C. Delay under Poisson and Bernoulli Inputs
Note that if all arrival processes A;(t) are independent and

Poisson with rate \;, we have that 07 = );. The average delay
bound (11) in this case reduces to:

— N
2 B leL MNAS
WPoisson S 2>\f(1t — pf) :
This demonstrates that average delay is O(1), that is, it is in-

dependent of the network size N. Hence, maximal scheduling
achieves order optimal delay with respect to IV, provided that

(12)
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the arrival rates are interior to the reduced throughput region
A*, as described by the constraints (4). This is in contrast to
the O(N) average delay bounds derived for the throughput-
optimal max-weight scheduling for N x N packet switches in
[14] and for wireless networks in [11] [15]. The expression in
the right hand side of (12) also provides an upper bound on
delay in the case of independent Bernoulli arrivals, because o7
for a Bernoulli variable is less than that of a Poisson variable.
Finally, we note that the term ﬁ Dier o? in (11) is typically
O(1) for any inputs with a finite variance. For example, it
is upper bounded by A,,,, whenever there exists a constant

Apnaz such that A;(t) < Ayueq forall [ € £ and all ¢.

IV. LOGARITHMIC DELAY FOR TIME-CORRELATED
ARRIVALS

Consider the case of finite-state ergodic Markov modulated
arrivals, as described in Section II-A. Assume that all traffic
rates satisfy the loading constraints (4) with relative network
loading p*. Let H (t) represent the past history of all actual
arrivals (of all processes) up to but not including time ¢. For a
given link [ € L, suppose there exists a non-negative function
e(T) (for T € {0,1,2,...}) such that, regardless of past
history H (t), we have:

E{A(t)| H(t—T)} < X + ()

and such that: limp_, o, €,(T") = 0. That is, ¢;(T") characterizes
the time required for the process A;(t) to converge to its
stationary mean, regardless of the initial condition. It can be
shown that all finite state ergodic Markov processes converge
exponentially fast to their steady state (see, for example, [16]).
Hence for each [ € £ we can define ¢,(T) as follows:

a(T)=vy *! (13)

for some constant v; and some decay factor ~; such that 0 <
v; < 1. The v; and ~; constants can in principle be determined
as parameters from the Markov chain Z;(t). Here, we prove
a structural result concerning logarithmic delay in terms of
these parameters. Define p;(T") as follows:

A A
p(T)= max

Xsl + Z e(T)

weS;

Note that 5\3, < p" < 1foralll € L, and so there exist
integers T' such that p(T) < 1.

Theorem 3: (General Time-Correlated Arrivals) If arrival
processes have rates (Ar);c. in the interior of A*, then for
any integer T > 0 such that p(T") < 1, we have:

(a) The average total network congestion satisfies:

— BJrFT
2= )
where:
B - %Z{)\Z+E{Al(t)ﬁsl(1ﬁ)” (14)
leL
T
Fro 2 33 E{As(k)40)} (s)
leL k=1

(b) If arrival processes A;(t) for different links [ are
additionally independent of each other, then the constants B
and Frp satisfy:

. 1 R
B = 52[)\[—1—)\;)\31—&—012} (16)
lel
~ T ~
Fro= Y% DsAh+6i(k) a7
leL k=1

where 072K {(A4;(t))?} — A} is the variance of A;(t), and
0;(k) is the auto-correlation in A;(t) and is defined:

01(k)AE {A)(t + k) A (1)} — N}
Proof: The proof is given in Appendix C. [ ]

A. Discussion of the Delay Result

By Little’s Theorem, if the conditions of Theorem 3 are
satisfied, then average network delay W satisfies:
W < /\tlot (B + FT)

=T 1=

The parameter T only affects the delay bound and does not
affect the maximal scheduling algorithm. Thus, the bound can
be optimized over all integers T such that p(7') < 1. Here
we show how the resulting bound grows as a function of the
network size. First note that in the case when arrival processes
are independent of each other, the constant Bin (16) satisfies:

1
20t Z ot

where ;o1 2 Zle/; ;. This is because 5\51 <l1forallle L.
Likewise, the constant Fp in (17) satisfies:

T
Fr < MoT + Z Z 0.(k)

lel k=1

B < Aot |1+

Therefore, when arrival processes A;(t) are independent of
each other, average network delay satisfies:

T
T+ 14 53— 31 07 + 5 Zier Sope O1(K)
= (1)
The values of 2A1ﬁ > e 0f and % > e 0i(k) are typi-

cally independent of N, and so the numerator is roughly linear

in the T" value. Because we have finite state ergodic Markov
chains, from (13) we see the function 5(7") has the form:

p(T) < p* + Sy

W<

where |S| the cardinality of the largest interference set S;, and
v and v are the largest values of v; and ~;, respectively, over
all links [ € L. In this case, we have p(T) < (1 + p*)/2
whenever:

Sl < (1= p")/2

which holds when T is chosen as the smallest integer that
satisfies:

log (2v|S] /(1 = p*))
log(1/7)

log (28| /(1 = p*))
log(1/7)

—1<T<
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Thus, the above delay bound grows at most logarithmically
in |S]. A more explicit and order-optimal delay analysis is
provided in the next section, where the special case of 2-state
Markov chains is considered and average delay is shown to
be independent of the network size.

V. ANALYSIS FOR TIME-CORRELATED ARRIVALS WITH
TwO STATES

Consider the case of Markov modulated arrivals, as de-
scribed in Section II-A, where all Markov chains Z;(t) have
at most two states (labeled “1” and “2”). Let L be the set
of all links [ € L that have exactly two states with different
conditional rates /\l(l) and )\1(2). The transition probabilities are
given by [3; and 0; for each two-state chain Z;(t), as shown
in Fig. 1. Note that this model includes the important special
case of ON/OFF inputs, where A;(¢) has a single packet arrival
when in the ON state and has no arrivals when in the OFF
state.* Assume that 0 < §; < 1land 0 < 3; < 1 forall [ € L,
and define 7rl(1) and 7rl(2) as the steady state probabilities for
each two-state chain Z;(¢):

0 _ ] @) Bi
! B+é& B+ 6

Arrival processes A;(t) for the remaining links [ ¢ L are
either i.i.d. over slots (effectively “one-state” chains), or have
two states but with /\l(l) = )\1(2) (in the latter case, the
different states may correspond to different conditional second
moments).

The Markov chains Z;(t) are possibly correlated over dif-
ferent links | € L, although we focus primarily on the case
when all chains are independent. The chains are assumed to be
stationary, so that for each link [ € £ we have E {A;(¢)} = N,
for all time ¢. The time average rates \; for all 2-state arrival
processes are given by:

no=m A + oA
The traffic rates (\;);c. are assumed to satisfy the loading
constraints (4) with relative network loading p* < 1. In the
previous section we showed that the system is strongly stable
and ergodic with finite steady state queue backlogs. Here we
provide a tighter delay analysis using a combination of Markov
chain theory and Lyapunov drift theory.

4The conditional rates for such an ON/OFF example are given by )\1(1) =1,

Al(2> = 0, where states 1 and 2 are associated with the ON and OFF states,

respectively, as shown in Fig. 1.

Fig. 1. The 2-state Markov chain Z;(¢) for link [.

A. 2-State Drift Analysis

Recall the definition Ag, (t)2 > wes, Aw(t). Thus, from the
drift inequality (8) we have that the unconditional Lyapunov
drift A(t) satisfies the following every slot ¢:

At) < E{B@®)} > E{Q)}

el

+Z Z E{Qi(t)A

leL weS;

®)} (18)

Now assume that the system is in steady state at time ¢, and
is also in steady state at time ¢t — 1. Fix a link [ € £ and an
arrival process A, (t). We shall derive a relationship between
E{Qi(t)A,(t)} and E{Q;(t)}. To this end, first note that for
any link [ € £ we have:

E{Qi(t)Au(t)} =E{Qi(t)} N if w ¢ L

That is, the expectation has a simple product form in the
special case when w ¢ L, because A, (t) is either i.i.d. over
slots or has the same conditional rate AS}) = Aff) = Ao

For the rest of this subsection we consider the opposite and
more challenging case when w € L. In this case, we have:

(19)

E{Qu(t }_ZW

m=1

EA{Qu()| Zu(t) = m} (20)

However, we also have:

E{Qi(1)Au(t)}

2

S wUVE{Qut)Au ()| Zo(t) = m)

N

= D0 AUAVE{Qu() | Zu(t) = m) @)
m=1

This final equality holds because the expectation of @Q;(t)

is conditionally independent of A, (t) given Z,(t). Be-

cause the system is in steady state, the quantities E {Q;(t)},

E{Qi(t)A,(t)}, and E{Q;(t)| Z,(t) =m} do not depend
on t, and we define:
E{Q:} £ E{Qt)}
E{QA.} & E{Qi(t)Au(t)}
o L aIVE{QU(E) | Zo(t) = m)

The equalities (20) and (21) can be re-written:

E{Q} = of)+afl) 22)
E{QA.} = AQai) + A0l 23)

Equations (22) and (23) are two linear equations that express
a relationship between 4 unknowns (where the unknowns are
E{Q:},E{Q/A.}, xl o ) and sc ) To express a direct linear
relationship between I {Q;} and E{QA,}, we require an
additional equation. To this end, note that:

Qit) =t —1) =t —1)+ At - 1)

Therefore:

E{Qi(0)Au(t)} = E{Qi(t —1)Au(t)} = Diw + Crw (24)
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where Cj,, and D, are defined as (for [ € £, w € L):

Cro 2 E{A(t—1)A(0)} (25)
Dl,w é E{ul(t — 1)Aw(t)} (26)
Now:
E{Qi(t - 1)A.()}
2
= Y alME{Qut — D AL(1) | Zo(t — 1) = m}
m=1
2
S almIIE{QuE 1) | Zut— 1) =m}  @7)
m=1
where 2™ is defined:
hSM AR { Ay (1) | Zo(t — 1) = m} (28)

The last equality follows again because @;(t—1) is condition-
ally independent of A,,(t) given Z,(t —1). However, because
the system is in steady state at time ¢ and also at time ¢ — 1,
it follows that:

rME{Qi(t —1)| Zu(t —1)

Therefore, using (29) and (27), equation (24) becomes the
following:

E{QAu} = Cro — Do+ hDaft) + hPaf?)
The constants h((dm), defined in (28), can be computed directly
from the transition probabilities for chain Z,,(t):

=m} =z (29

(30)

A = (1= BAD + 8P
(2 S AL + (1 —6,)A2

The linear equations (22), (23), and (30) involve three
equations and four unknowns, and can be shown to be linearly
independent whenever )\5,1) #+ /\5,2) (which holds for all
w € L). This directly leads to the following lemma that relates

E{Q;} and E{Q, A, }.
Lemma 3: For all links [ € £, we have:

Cl w Dl w . ~
E{Q/A.} =E Ao+ ——F ifwel 31
{QiAL} = E{Qu} o0 @31
Proof: The result follows by eliminating the x( ) and x(2)

variables from (22), (23), and (30), and the computatlon is
omitted for brevity. ]
Note from the definitions (25) and (26) that C;, > 0,
Dy, > 0foralll € £ and all w € L. Define Cy,, =
for w ¢ L. Using (31) and (19) we find that for all link pairs
l,w € L, we have:
Cl,w

E{Qudu} < E{Qu A + 555

where the inequality comes because we have neglected the
D ., constant. Using this expression directly in the Lyapunov
drift inequality (18) yields the following drift expression that
holds at any time ¢ at which the system is in steady state:

AW < E{BO} - Y E{Q)} (1 - p)
leL
2

Ol,w
leL yesnL

Buw + 6 (32)

where we have used the fact that Zw s, Ao < p*. In the next
subsection, this drift expression is used with the Lyapunov
drift Theorem (Theorem 1) to prove a tight delay bound.

B. The Delay Bound for 2-State Markov Modulated Arrivals

Theorem 4: If the input rates (X\;);c. satisfy the loading
constraints (4) for a given relative network loading p* < 1,
then:

(a) The system is stable with steady state average congestion
that satisfies:

_  _B+C
ZQZ < 1 +p*
lec
where:
- 1 .
B oL g > []E {Al(t)Asl (t)} + Al}
~ E{A;(t—1)A,(t)
1o é ZZ Z { lﬂer(); }
€L wesSNL

(b) If all Markov chains Z;(t) are additionally independent
of each other, then:

.1 .
B:§Z {)\l)\sl+(7l2+)\l
lel
E{Ay(t — 1)AL(6)} = Mo if L # w

Hence, average delay W satisfies:

1

1+ 55,0 iec 07
[ 1

+ max

> 1_p
| (oSt
weL 6w+5w ]-_p*

where \ior 2 Yo Ais and G [1]2E {A; (¢ — 1) Ay(£)} — (\)?
is the 1-slot auto-correlation for process A;(t).

Proof: The result follows directly from (32) via the
Lyapunov drift theorem (Theorem 1), and is omitted for
brevity. [ ]

Note that 6;[1] < MA(me®) where )\l(mm) is the largest
conditional rate over all links and states. Thus, the numerator
in the final term in the above delay bound satisfies:

1
0 1 < )\mam
Atot Zﬁ 1 <

Therefore, the above bound is O(1) (independent of the
network size N). In the special case of ON/OFF sources,

where a single packet arrives from stream [ when Z;(t) = ON
and no packet arrives when Z;(t) = OF F, we have )\1(1) =1
and )\l(z) =0, and \; = 7rl(1). Further:
of = N(I1-X)<N
O[] = NA=-XA)A—=(B+ad)) <N

Thus, average delay in this ON/OFF example satisfies:
3/2 + max, .z [2/ (B + 6.)
1—p*
Note that 1/, is the average burst size (i.e., the average

time spent in the ON state), and so the numerator roughly
grows linearly in the largest average burst size over any input.

WON/OFF <
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APPENDIX A — PROOF OF LEMMA 2
To compute A(t), note that using (6) and (2) yields:

Ql(t + 1)@51 (t + 1) = Ql(t)QSl (t)
+(A(t) - m(t))({lsl (t) — fis,(t))
—Qi(t) (s, (t) — As, (1)
—Qs, () (pu(t) — Au(1))
Thus, the 1-step unconditional Lyapunov drift is given by:
Alt) = E {B @)}
-5 Z]E {Ql (fis, (1) = As, (t))}
lEE
—5 Y E{Qa @m0 - 4} @
leL
where
BO2S Y (i) — ) (As,(0) - s @)] 34

lel

We now use the following important structural property of
the interference sets.

Lemma 4: (Sum Switching) For any function f(l,w)
(where [ € L, w € L), we have:

Z Z f(lvw): Z Zf(l’w) U
leL weS; weLIES,

The above lemma follows directly from the pairwise symmetry
property of the interference sets: For any two links [,w €
L, we have that w € §; if and only if [ € S, and hence

{leLlwe &} = {leL]|leS,}. Using this lemma we
can re-write the final term in (33):
S Qs () (1) — Au(t))
lel
= > ) Qult A(t)) (35)
leL weS;
= > > Qut) A(t)) (36)
weLleES,
= D Qu(®) — As. (1) (37)
weLl
= Z Ql MSL ASZ (t)) (38)
lel

where (35) follows by the definition of Qs, () given in (5),
(36) follows by the Sum Switching Lemma (Lemma 4), and
(38) follows by re-labeling the indices. Plugging the equality
(38) directly into the drift expression (33) yields:

AW =E{BO} - > E{Qu)(s, (1) - As ()} (39
lec

Further, we note that the expression for B(t) in (34) is
equivalent to that given in (9). This can be seen by using a
sum-switching argument similar to (35)-(38) on the summation
> tec s (H)Ai(t), and by noting that 4u(t)is,(t) = pu(t).
The latter equality holds because if p;(¢t) = 0 we have 0 =0
which is trivially true, while if x;(¢) = 1 then no other links
within S; can be active, and so fis, (t) = 1.

We now use the fact that maximal scheduling is per-
formed every timeslot. Specifically, we recall that any maximal
scheduling algorithm satisfies (3) every timeslot. Using the
definition of fis, (£), we note that (3) is equivalent to:

Ql(t)ﬂsl (t) > Ql(t) for all [ € £ and all ¢

Plugging the above inequality directly into (39) yields the
expression (8) for A(t) under maximal scheduling.

APPENDIX B — PROOF OF THEOREM 2
Recall from (10) that:

ZQl_l

leL

where B(t) is defined in (9). Note that we are using the fact
that time averages exist. Using the fact that arrivals are i.i.d.
over slots yields:

1 A <
E{B(®)} = 5 > E{A)As (1) - 2m®As, + u(t)}
lec
Because p;(t) < 1, it follows that E{B(¢t)} < L/2 +
55 E {Al(t)/lgl (t)}, and hence from (40) we know that
the network is strongly stable with a finite time average back-
log (recall that second moments of arrivals are assumed to be
finite). It follows that the time average input rate )\; is equal to

oE{u(n)}

the time average transmission rate lim;_, % Zi
for all links [ € £ [17]. Therefore, we have:

B= % 3 [E {Al(t)flgl (t)} — 2\ hs, + A

lel

(40)

This proves Theorem 2 part (a).
To prove part (b), note that if arrival processes are indepen-
dent over different streams, then:

E {Al(t)zx& (t)} DI

weS;

where 072K {( } A7 is the variance of the random
variable A;(t). The result then follows by plugging into part
(a) and using Little’s Theorem.

APPENDIX C — PROOF OF THEOREM 3

To prove Theorem 3, we introduce an artificial delay in the
final term of the drift expression (8) to decouple correlations
between queue state and arrivals. This is similar to the T-slot
technique of [11] [5], although, unlike [11][5], it allows a tight
logarithmic delay result. To begin, fix an integer 7" > 0, and

note that for t € {0,1,2,...,} we have:
T-1
Qut) <Qut=T)+ > At —T +w)
v=0

Using the above inequality in (8) yields
A(t) < E{B()+Fr()} = Y E{Qi(t)}

el

+ Y E{Qut - T)ds ()}

lel

(41)
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where Fp(t) is defined:

T-1
Pr)2) ES As,(t) Y At — T+ )
lel v=0

We now use the p(7") function to modify the final term on

the right hand side of (41):
E {Qz(t ~T)As, (t)}

= e{Qu-TE{As(0)| Q¢ -T)}}

IN

EQut—T) | As, + Y eu(T)

weS)

IN

E{Qi(t = T)} p(T)

Using (42) in (41), it follows that unconditional Lyapunov drift

satisfies:

A(t) < E{B()+Fr()} = > E{Qu(t)}

lel

+A(T) Y EA{Qu(t - T)}

lel

Fixing the integer T and using the Lyapunov drift theorem

(Theorem 1) in the drift expression (43) yields:

liirisogp % z_:ZE{Ql(T)} < (B+Fr)

=01l
1 t—1
+p(T) lim sup > OS E{Qu(r - T)}
t=oo ¥ T 0ler
where
t—1 t—1

(42)

(43)

(44)

1 — 1
AT A 1s
B:hmsup; E E{B(7)} , FT:II?LSCEPE E E{Fr(r)}

t—o0

7=0 7=0
However, it is not difficult to see that:

t—1
lim sup % > S E{Qu(r - 1)}

r=01leL
1 t—1
= limsup - > S E{Qu(n)}
> T=01€eL

(45)

Indeed, the equality (45) follows by noting the time-delayed
version of the limit on the left hand side does not affect the
overall time average, as any contribution to the sum over the
extra T' slots is finite and becomes negligible as ¢ — oo.
Therefore, because it is assumed that p(7") < 1, the inequality

(44) simplifies to:
t—1 =, =
. 1 B+ Fr
1 - E < -
imsup - ;)lz: {Qi()} < = 5(T)
T=01€L
It is easy to show that:

B< Y v+ E{anis )]

el

T-1
Fr=>Y E{As(t) > Ai(t—T+v)
leL v=0

(46)

It follows that B < B and Fr < Fr, where B and Fr are
defined in (14) and (15). Finally, we note that because the
queueing dynamics are described by a countable state space,
irreducible Markov chain, the lim sup in the left hand side of
(46) can be replaced by a regular limit, which proves part (a) of
Theorem 3. Part (b) of Theorem 3 follows by computing B and
Fp for the case when arrival processes A; (t) are independent
of each other.
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