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Cross Layer Adaptive Control for
Wireless Mesh Networks

Michael J. Neely , Rahul Urgaonkar

Abstract— This paper investigates optimal routing and adap-
tive scheduling in a wireless mesh network composed of mesh
clients and mesh routers. The mesh clients are power constrained
mobile nodes with relatively little knowledge of the overall
network topology. The mesh routers are stationary wireless
nodes with higher transmission rates and more capabilities. We
develop a notion of instantaneous capacity regions, and construct
algorithms for multi-hop routing and transmission scheduling
that achieve network stability and fairness with respect to these
regions. The algorithms are shown to operate under arbitrary
client mobility models (including non-ergodic models with non-
repeatable events), and provide analytical delay guarantees that
are independent of the timescales of the mobility process. Our
control strategies apply techniques of backpressure, shortest path
routing, and Lyapunov optimization.

Index Terms— Stochastic Optimization, Queueing Analysis,
Mobility, Routing, Dynamic Control, Scheduling, Diversity

I. INTRODUCTION

This paper develops optimal algorithms for transmission
scheduling, routing, and flow control in an ad-hoc wireless
mesh network. Mesh networks can be viewed as special cases
of ad-hoc networks where the architecture is augmented with a
collection of special high capacity nodes, called mesh routers,
that facilitate communication (see [1] for a general survey on
mesh networking). All other nodes are mesh clients, as they
are expected to use the network of mesh routers to deliver
their data to the proper destinations. We assume that mesh
clients have peak and average power constraints, have general
mobility patterns, and have little knowledge of the network
topology beyond their immediate set of current neighbors.
The mesh routers are stationary wireless nodes distributed
throughout the network area. These nodes are typically more
powerful than the mesh clients, and are responsible for keeping
track of mobile client locations and for performing operations
of routing and packet delivery.

We assume the system operates in slotted time. Every
timeslot, data exogenously arrives to the clients in packetized
form, and all packets are assumed to have the same bit
length. Each packet must be delivered to its own desired
destination client. In the most basic model, the source clients
transmit their data to the nearest mesh router, and the mesh
routers send the data over multi-hop paths to reach a mesh
router node that is currently in range of the destination
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client. We assume that each mesh router has two radios
that operate simultaneously over independent channels. The
first radio is used for uplink (client-to-router) and downlink
(router-to-client) communication, while the second is used for
router-to-router communication. Thus, the system of router-to-
router communication links can be viewed as an independent
backbone network that supports multi-hop data transfer, but
where the destination of each packet in this backbone is
potentially changing over time. We develop a simple dynamic
routing algorithm that combines backpressure and differential
backlog concepts of [2] [3] together with shortest path routing.
The algorithm works in conjunction with flow control and
scheduling algorithms implemented at the client nodes, and
maintains low network delay while ensuring network stability
and fairness under general client mobility models. In particu-
lar, we develop a notion of instantaneous capacity regions and
show that throughput and fairness guarantees can be achieved
with respect to these regions while maintaining end-to-end
average delay that is independent of the timescales of the client
mobility process.

To model the uplink and downlink transmissions, we con-
sider the situation where each mesh router covers a designated
(and non-overlapping) “cell region” of the network area. Each
mesh client is assumed to be within exactly one of these cell
regions at any given timeslot, and can only transmit to (or
receive from) the corresponding mesh router for that cell.
Each transmitting node chooses its transmission rate (i.e.,
the number of packets to be transmitted), and each packet
transmission is received correctly with some success probabil-
ity. We consider both channel-aware and channel-blind modes
of operation. For channel-aware scheduling, current channel
states are measured and the success probability for each
transmission rate is assumed to be known. These probabilities
are unknown in channel-blind scheduling mode. The router
nodes coordinate the scheduling decisions in their respective
cells. To simplify implementation, we further assume that
inter-cell interference is negligible. This assumption is valid,
for example, when transmissions are designed so that signals
in neighboring cells are orthogonal.

We also briefly discuss extensions of this model, such as
when the cell structure is removed and packets transmitted
by clients can be overheard by potentially more than one
mesh router. In this case, it is useful to exploit the concept
of multi-receiver diversity, where the probability of successful
reception in at least one node within a set of potential receivers
can be significantly larger than the success probability of a
particular receiver that is specified in advance. This feature is
especially useful for maintaining high throughput in channel-
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blind scheduling mode. Finally, we briefly consider hybrid
mesh network models that support client-to-client communi-
cation in cases where some clients are not within range of
any mesh router. In this case, the clients must relay their data
through other clients in order to reach the mesh routers.

The analysis and design methodology of this paper is based
on adaptive queueing and Lyapunov optimization techniques.
Such techniques were perhaps first applied to wireless net-
works in the landmark paper [2] by Tassiulas and Ephremides,
where Lyapunov drift is used to develop a joint optimal
routing and scheduling algorithm. The Tassiulas-Ephremides
algorithm introduced techniques of backpressure routing and
maximum weight link scheduling, and was shown to yield
network stability whenever input rates are within the net-
work capacity region. Lyapunov drift has since become a
powerful technique for the development of stable scheduling
strategies for satellite and wireless systems [4] [5] [6] [7],
computer networks and switches [8] [9] [10], and ad-hoc
mobile networks [3]. Methods for joint stability and utility
optimization via Lyapunov drift are developed for stochastic
networks in [11] [12] [13] [14] for application to flow control
and energy minimization. Recent alternative approaches are
developed in [15] [16] [17] using stochastic gradient theory
and fluid model transformations. Lyapunov drift is applied
to wireless networks with multi-receiver diversity in [18],
where an optimal diversity backpressure routing algorithm
(DIVBAR) is developed and shown to improve performance
beyond that of related diversity algorithms that do not use
backpresure, such as those in [19] [20] [21]. Alternative
approaches to scheduling, routing, and flow control in wireline
networks are developed in [22] [23] [24] [25] using linear and
convex optimization theory. Related work for static wireless
networks is developed in [26] [27] [28] [29] [30] [31] [32].

This paper applies the backpressure, Lyapunov networking,
and multi-receiver diversity techniques described in the work
above to the special case problem of a mesh network with
mesh clients and routers. While these techniques were de-
veloped for more general scenarios, this paper is likely the
first to use them directly within the mesh network paradigm.
Further, there are several new aspects of this work that are
not considered elsewhere, including the introduction of a time
varying capacity region and the development of analytical
stability and delay guarantees for mesh clients with arbitrary
(possibly non-ergodic) mobility patterns.

A. Summary of Results

In the next two sections, we present the basic mesh
network model and define the ergodic capacity region, the
instantaneous capacity region, and the notion of throughput-
utility. The flow control, routing, and scheduling algorithms
are developed in Section IV and analyzed in Section V. We
show that the algorithm always provides bounded congestion,
and enables a tradeoff between congestion and throughput-
utility that is affected by a control parameter V . The time
average throughput-utility can be made arbitrarily close to
(or larger than) the time average of the optimal throughput-
utilities over the instantaneous capacity regions, with delay

that is independent of the user mobility process. This holds for
any mobility model, and implies that throughput approaches
100% in the special case when input rates are within the
instantaneous capacity region on every timeslot. Further, when
mobility is ergodic with a well defined steady state, the same
algorithm can approach the optimal throughput-utility defined
over the ergodic capacity region (which is a larger utility than
that defined over the time average of instantaneous capacities).
However, the penalty for approaching optimality in this case is
a delay that depends on the mobility timescales. Extensions to
channel-blind scheduling, multi-receiver diversity, and hybrid
algorithms are briefly considered in Section VI. Example
simulations are provided in Section VII.

II. NETWORK MODEL AND CAPACITY REGION

Consider a network with N nodes, labeled {1, . . . , N}. Let
C represent the subset of client nodes (or “mesh clients”), and
R represent the subset of router nodes (or “mesh routers”). For
simplicity, we assume all nodes are either clients or routers,
and cannot be both (so that C ∪ R = {1, . . . , N}, and C ∩ R
is the empty set).

We assume that each router node r ∈ R has a fixed location
within the network. Further, we assume that the network area
is divided into disjoint cell regions, each containing a unique
router node. The cell region of a given router node represents
the area that this router is responsible for covering. Time is
slotted with integral units t ∈ {0, 1, 2, . . .}, and each client
node c ∈ C is assumed to be located within a distinct cell for
the duration of each timeslot. Let r(c, t) represent the router
node associated with the cell of client c during slot t (where
r(c, t) ∈ R). At the beginning of each timeslot, the router
node of each cell makes a client-router scheduling decision
according to the physical scheduling constraints in the cell.
An example constraint is one where at most one transmission
can take place in the cell per timeslot. In this case, the router
node must select a single client within its cell and decide to
either transmit data to this client (a downlink operation) or
receive data from this client (an uplink operation). The router
might also decide to remain idle in cases when no data is
available or when it is desired to postpone transmissions to
future slots.

At the end of the slot, clients either remain in their same
cell or move to a new cell. The mobility process is arbitrary.
For example, some nodes may be stationary, some nodes may
take a simple random walk among one or more cells, other
nodes might move according to a random waypoint model that
is influenced by the locations of other nodes, etc. For each
timeslot t, define T (t) as the current client topology, which
represents the current cell locations of the clients.

Every timeslot the router nodes must also make router-
router transmission decisions. For simplicity, we assume these
operations can be performed simultaneously and indepen-
dently of the uplink/downlink operations. This assumption is
valid, for example, when routers are equipped with two radios
that use independent channels. Each router node r ∈ R is
assumed to have a subset Θr consisting of neighboring router
nodes m ∈ R to which r can transmit. Because the router
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nodes have fixed locations, the resulting mesh router topology
can be described by a directed graph G with nodes in the set
R and where a directed edge (r, m) exists if and only if r ∈ R
and m ∈ Θr. The resulting graph is assumed to be connected,
so that it is possible to send data from any router node to any
other (possibly using a multi-hop path).

A. Time Varying Channel States

For each node pair (i, j) ∈ {1, . . . , N}×{1, . . . , N}, define
the channel state Sij(t). The Sij(t) value characterizes the
current quality of link (i, j), and might represent ambient noise
levels, current fading states, attenuation coefficients, or a sim-
ple quality label such as {“0,” “Bad,” “Medium,” “Good”}. A
link quality of Sij(t) = “0” indicates that link (i, j) either does
not exist or is so poor that data transmission on the current
timeslot is impossible. Note that a link (i, j) is part of the
mesh router network if i ∈ R, j ∈ R, is a client-router uplink
if i ∈ C, j ∈ R, and is a downlink if i ∈ R, j ∈ C.

Define S(t) = (Sij(t)) as the network-wide link state
matrix, composed of the current state of all links. We assume
that there are a finite number of matrices S(t), and that
these matrices are conditionally independent and identically
distributed given the current client topology state T (t). Define
the conditional link state probability distribution πS(T ) as
follows:

πS(T ) = Pr[S(t) = S | T (t) = T ] (1)

Channel state matrices S(t) are thus chosen independently
with distribution πS(T ) for every timeslot in which T (t) = T .
These probabilities are not necessarily known to the network
controllers. However, for the first half of this paper, we assume
a channel aware scheduling model, where each mesh router
node r is aware of the current channel states Scr(t) and Src(t)
of each of its possible uplinks and downlinks. The alternate
case of channel-blind scheduling, where current link state
information is unknown, is considered in Section VI.

For simplicity, we assume that only uplinks and downlinks
have time varying channel states. Thus, Sij(t) is a constant
for all time if (i, j) is a mesh router link. In particular, we
define Sij(t) = 1 for all time t if (i, j) is a valid mesh router
link (so that i ∈ R, j ∈ R, and j ∈ Θi), and define Sij(t) = 0
for all time if router link (i, j) does not exist.

B. The Uplink and Downlink Channel Model

Each mesh client c ∈ C uses a fixed power P tran
c for trans-

mission purposes, and expends a fixed power P rec
c whenever

receiving. The power required for other functions, such as
passing control information, is not considered here. Let Pc(t)
denote the power that client c expends during slot t (so that
Pc(t) ∈ {0, P rec

c , P tran
c } for each c ∈ C). Each mesh client

c has an average power constraint P av
c , so that the following

time average inequality is required:

lim sup
t→∞

1
t

t−1∑
τ=0

Pc(τ) ≤ P av
c for all c ∈ C (2)

Each client has a set of variable rate codes that can be
used to select the desired number of packets to transmit in a

single slot. Specifically, for each client c ∈ C and each router
r ∈ R, define µcr(t) as the transmission rate allocated for
link (c, r) during slot t (taking units of packets/slot). Because
clients can only transmit to the single router whose cell they
are currently in, we have µcr(t) = 0 whenever r 6= r(c, t).
Further, the value µcr(t) must be an integer between 0 and
µmax

c , where µmax
c represents the maximum rate of client c.

Hence, the µcr(t) decision variables must satisfy:

µcr(t) ∈ {0, 1, . . . , µmax
c } , µcr(t) = 0 if r 6= r(c, t) (3)

The simplest case is when µmax
c = 1 for all c ∈ C, so that each

client can either transmit a single packet, or remains idle. Note
that client c expends power Pc(t) = P tran

c on any timeslot in
which µcr(t) > 0.

Likewise define µrc(t) as the number of packets router node
r ∈ R transmits to client c ∈ C. These decision variables must
satisfy µrc(t) = 0 if r 6= r(c, t), and µrc(t) ∈ {0, . . . , µmax

r },
where µmax

r is the maximum number of downlink packets the
router node r can transmit. We assume that a client cannot
transmit and receive on the same timeslot. Note that each client
c expends power Pc(t) = P rec

c on any timeslot in which it
receives data from its current router node. Transmissions in
the cell of each router node r ∈ R are further restricted by the
scheduling constraint set Γr, specifying the collection of all
µcr(t) and µrb(t) rates that can be scheduled simultaneously
(where c, b ∈ C). This scheduling constraint Γr is defined to
limit interference within each cell. We assume it is such that
setting any component rates of a feasible rate allocation to zero
yields another feasible rate allocation. A typical constraint set
is one that allows only one uplink or downlink transmission
per cell per timeslot. More general constraints can be defined
if multi-user detection is possible and/or if there are multiple
frequencies over which to schedule transmissions.

Let φij(µij(t), Sij(t)) represent the success probability
associated with each packet transmitted over link (i, j) when
the transmission rate is µij(t) and the current channel state
is Sij(t). For simplicity, we assume this probability depends
only on the transmission rate and channel state over link
(i, j), so that there are no interference effects associated with
transmissions over other links.1 This assumption is valid,
for example, when the constraint sets Γr allow at most one
transmission per cell per slot, and when transmissions in
neighboring cells use orthogonal signals. Thus, when µij(t)
packets are transmitted over link (i, j), the expected number
of successful receptions is equal to µij(t)φij(µij(t), Sij(t)).
For simplicity, we assume that ACK/NACK feedback about
each transmitted packet is received by the transmitter at the
end of the slot. Note that a simple special case is when
all transmissions are successfully received with probability
1 whenever transmission rates are less than or equal to a
threshold µth

ij (t) that depends on the link state Sij(t), in which
case the ACK/NACK feedback is not required.

C. Flow Control and the Transport Layer
Data exogenously arrives to the clients in packetized form,

and we let A
(d)
c (t) represent the number of exogenous packets

1More general probability functions can be defined as in [18] to include
possible channel interference.
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that arrive to client c during slot t that have destination client
d (destinations are assumed be be within the client set C).
All packets associated with a given destination d are defined
as commodity d packets. To reduce congestion, it may be
necessary to restrict the number of new packets admitted
into the network. Define the flow control decision variable
α

(d)
c (t) as the (integer) number of commodity d packets client

c allows into its network layer during slot t. Any packet that
is not admitted is either placed into a transport layer storage
reservoir [12], or dropped if there is no room for storage.
Transport layer reservoirs can have finite buffers (possibly of
size zero). In the special case of a size zero transport buffer,
all packets that are not immediately admitted to the network
are necessarily dropped.

Let L
(d)
c (t) represent the number of commodity d packets

in the transport layer of client c at time t. The flow control
decisions α

(d)
c (t) are chosen by each client c ∈ C according

to the constraints:

0 ≤ α
(d)
c (t) ≤ A

(d)
c (t) + L

(d)
c (t)∑

d α
(d)
c (t) ≤ αmax

where αmax is a parameter that bounds the number of new
packets that can enter the network layer of each client during
one timeslot (specified in Section IV). We say that the flow
controllers are “turned off” if we set αmax

M=∞ and choose
α

(d)
c (t) = A

(d)
c (t) for all clients, destinations, and time.

D. Network Layer Scheduling and Queueing Dynamics
Data that is admitted into the network is queued at each

client according to its destination. Define U
(d)
c (t) as the num-

ber of commodity d packets currently stored in the network
layer of client c. Typically, each client would be the source
of only one or two active sessions, so that the number of
distinct active queues in each client would be only one or two.
For simplicity, all of these queues are assumed to have large
enough buffers so that no data is ever dropped at the network
layer (it is shown in Theorem 1 that this can be accomplished
using a suitably large but finite buffer size).

Let µ
(d)
cr (t) represent the number of commodity d packets

that client c attempts to transmit to its router node r during
slot t. These transmission decision variables must be integers
that satisfy the following constraints:

0 ≤ µ(d)
cr (t) ≤ U (d)

c (t) ,
∑

d

µ(d)
cr (t) ≤ µcr(t) (4)

where the transmission rate µcr(t) must satisfy the constraints
(3). The first inequality above states that µ

(d)
cr (t) cannot be

more than the number of commodity d packets available for
transmission at client c, and the second inequality ensures
that the total number of packets transmitted by the client
does not exceed the transmission rate. Each of the µ

(d)
cr (t)

packets will be independently and probabilistically received
with probability φcr(µcr(t), Scr(t)). Define µ̃

(d)
cr (t) to be the

number of such commodity c packets that are successfully
received. The one-step queueing dynamics for each of the
client queues thus proceeds as follows:

U (d)
c (t + 1) = U (d)

c (t)− µ̃
(d)
c,r(c,t)(t) + α(d)

c (t) (5)

where we recall that r(c, t) is the router node whose cell
contains client c during slot t.

Similarly, each router node also maintains separate queues
for each commodity, and we define U

(d)
r (t) as the number of

commodity d packets currently in router r ∈ R. Define µrb(t)
as the transmission rate over link (r, b) during slot t (choice
of these rates is discussed in Subsection II-E below). Define
µ

(d)
rb (t) as the number of commodity d packets transmitted

over link (r, b) during slot t. If b ∈ R, then link (r, b) is a
mesh router link. If b ∈ C, then link (r, b) is a router-client
downlink. The transmission decision variables must be non-
negative integers that satisfy:∑

b

µ
(d)
rb (t) ≤ U (d)

r (t) ,
∑

d

µ
(d)
rb (t) ≤ µrb(t) (6)

Define µ̃
(d)
rb (t) as the number of commodity d packets

successfully received over link (r, b) during slot t. The queue
dynamics at each router node r ∈ R satisfy:

U (d)
r (t + 1) = U (d)

r (t)−
∑

b

µ̃
(d)
rb (t) +

∑
a

µ̃(d)
ar (t) (7)

E. The Mesh Router Model

The sub-network consisting only of mesh router nodes
r ∈ R and links (n, m) (where n ∈ R,m ∈ R) shall
be referred to as the mesh router network. This network is
responsible for delivering the client data over potentially multi-
hop paths to reach a mesh router node that can transmit the
data to the destination client. However, the locations of the
clients may change over time, and hence the mesh routers
must “chase a moving target.” Therefore, one responsibility
of the mesh router network is to maintain and disseminate
location information for each of the mobile clients. Another
responsibility is to make intelligent transmission decisions
between router nodes.

The mesh router topology is fixed, and hence we assume
a pre-computation has been performed to construct a control
tree: a tree containing all router nodes over which control
information and client location updates can be passed. The
root node of the tree is chosen to minimize the maximum
distance between itself and any other node of the tree. For
each router node r ∈ R and each client node c ∈ C, define
n̂r(c, t) as router node r’s current location estimate for the
client c (where n̂r(c, t) ∈ R). That is, if n̂r(c, t) = n, then
router r currently thinks client c is located in the cell of router
node n. We assume that each router node knows exactly which
clients are in its own cell, and hence n̂r(c, t) = r whenever
r(c, t) = r. That is, the estimated location of client c is exact
for the router r whose cell it is currently located.

Location updates are broadcast to all other router nodes
when necessary. Specifically, whenever a client moves to a
cell of a new router and/or its whereabouts are queried, the
updated information is sent to the root of the control tree,
and the root passes it to all other router nodes. We assume
such location updates are received within a maximum of D
slots. The location estimates are initialized arbitrarily. The
channels of the control tree are assumed to be independent
of the data channels, and might operate over faster timescales
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than one timeslot. Hence, it is possible to have a D value that
is less than the depth of the tree (indeed, in some networks
it may be meaningful to assume D = 0, so that all routers
have “immediate” knowledge of current client locations). The
effects of the control tree are thus modeled by the location
update parameter D, and we do not further discuss operation
of the control tree in this paper.

To model packet delivery over the mesh router network,
recall that µrb(t) represents the current transmission rate over
link (r, b) in the mesh network (where r and b are both in the
set R). Rather than viewing these rates as decision variables,
we view them as being determined by a pre-computed periodic
or psuedo-random transmission schedule. As an example, if
the router network is arranged as a two dimensional grid,
then the transmissions might be scheduled according to the
4-periodic cycle that allows transmissions in the North, South,
East, and West directions. We assume that µrb(t) = 0 for all
t whenever mesh router link (r, b) does not exist (i.e., when
b /∈ Θr). For simplicity, we assume the mesh router links
are fully reliable (so that all transmitted packets are received
with probability 1). The resulting process of mesh router
transmissions is assumed to enable multi-hop communication
between any two router nodes.

While the computation of the transmission rate schedule
for the mesh links is not the focus of this paper, it is an
important consideration as it affects the throughput region
the network can support. The schedule must generally enable
high throughput, without knowing in advance how much traffic
there is for each commodity type (and without knowing the
client locations in advance). A simple and highly effective
approach is to schedule so as to maximize the all-to-all
communication rate λ supportable by the mesh routers. Specif-
ically, we say that the router network supports an all-to-all
rate λ if multi-commodity flows can be formed over the mesh
router graph that deliver a total flow rate of λ for each of
the |R|(|R| − 1) router node pairs (where |R| is the number
of router nodes). The multi-commodity flow must satisfy the
link rate constraints, so that the sum flow rate over any link is
less than or equal to the time average transmission rate of that
link. Periodic or randomized schedules with this property can
be computed for wireless networks with interference using
techniques in [12] [28] [3]. The transmissions in the mesh
router network are then used to support the actual traffic that
arises from the clients. Using simple load balancing and traffic
uniformization principles [33] [34] [35], is not difficult to show
that the resulting throughput region of the mesh router network
under this transmission scheduling policy is within a factor of
2 of the optimal symmetric capacity region for the mesh router
sub-network (defined as the region of throughputs such that
the sum throughput being sourced or sinked at any router node
is less than or equal to λmax, where λmax is the maximum
scalar with this property).

F. Discussion of Model Assumptions

The above network model assumes that client-to-client
communication is impossible. Network capacity might be
improved by allowing this feature (discussed further in Section

VI), although this would require clients to cooperate and
expend energy receiving and transmitting another client’s data,
possibly involving pricing [36] [37] [38]. The mesh router
network is assumed to have node location updates based on
a control tree. Strictly speaking, such location information
is not necessary to achieve network capacity [2] [3] [11],
but shall be useful in reducing network delay. Finally, we
have assumed transmissions in the mesh router links are pre-
computed. A dynamic link scheduling algorithm could enable
higher network throughput, but might involve complex and
time expensive computations to maximize a weighted sum of
transmission rates over the network, where the transmission
rates on each link may be coupled through interference [2]
[3] [11]. The pre-computed link schedule is assumed for
simplicity, as is the assumption of fully reliable mesh router
links.

III. NETWORK CAPACITY

Here we specify two types of capacity regions, the ergodic
capacity region and the instantaneous capacity region. Both
regions assume the network structure as specified in the
previous section. Specifically, clients move according to a
client topology process T (t), channel states are i.i.d. given
the topology state T , with conditional distributions πS(T )
(defined in (1)), transmission rates are restricted as described
in the previous section, and the transmission rate process for
the mesh router links is pre-defined.

We further assume that exogenous arrivals at each client are
bounded by a value Amax, so that:∑

d

A(d)
c (t) ≤ Amax for all c ∈ C (8)

Finally, in describing the capacity region, we assume the flow
controllers are turned off (so that α

(d)
c (t) = A

(d)
c (t) for all

t), and consider all possible routing and scheduling strategies
with the structure described in the previous section. Let λ

(d)
c

be the input rate of commodity d data at source client c (where
c ∈ C, d ∈ C). Let λ = (λ(d)

c ) be the resulting matrix of input
rates. We assume throughout that λ

(c)
c = 0 for all c (so that

no client desires to send data to itself).

A. Queue Stability

Let U(t) represent the number of packets in a discrete time
queue with a general input and service rate process.

Definition 1: A queue is strongly stable if:

lim sup
t→∞

1
t

t−1∑
τ=0

E {U(τ)} < ∞

A network of queues is defined to be strongly stable if all
individual queues are strongly stable. Throughout this paper,
we use “stability” to refer to strong stability.

B. Ergodic Capacity

Assume the client topology state process T (t) evolves
according to an ergodic process with well defined steady state
probabilities. Further assume the transmission rates for links
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in the mesh router network are ergodic with a well defined
steady state distribution.

Definition 2: The ergodic network capacity region Λ is the
closure of the set of all rate matrices λ = (λ(d)

c ) (c ∈ C,
d ∈ C) that can be stably supported by some network control
algorithm for routing and transmission rate scheduling that
conforms to the constraints of Section II.

The ergodic capacity region is a function of the steady state
client topology distribution, channel probabilities, and time
average mesh router transmission rates. A characterization
of this region for general stochastic networks is provided
in [3] [11]. We note that supporting throughput within this
region may require delay to be on the order of the timescales
associated with the node mobility process.

C. Instantaneous Capacity

Consider an arbitrary (perhaps non-ergodic) user mobility
process T (t). Suppose that T (t) = T at a particular timeslot
t, and recall that channel probabilities have conditional distri-
bution πS(T ).

Definition 3: Fix a timeslot t, and define T ∗ M=T (t),
π∗S

M=πS(T ). The instantaneous capacity region Λ∗(t) at a
given time t is the ergodic capacity region associated with
a network where the client locations are fixed at T ∗ for all
time, with i.i.d. channel states with distribution π∗S for all time.

Therefore, the instantaneous capacity region is defined as
the throughput region that would be supportable if the current
node locations never changed. In the next section, we show
that if the instantaneous capacity region is sufficiently large
for all timeslots t, then a stable scheduling algorithm can be
developed with a guaranteed end-to-end average delay that is
independent of the timescales of the user mobility process.
The algorithm will also stabilize the system whenever the
throughput matrix is inside the ergodic capacity region. How-
ever, delay in this case may depend on the mobility process
if the throughput matrix exceeds some of the instantaneous
capacity regions at various timeslots.

IV. THE BASIC BACKPRESSURE ALGORITHM

Assume arrivals are i.i.d. over timeslots with rate matrix
λ = (λ(d)

c ) (where E
{

A
(d)
c (t)

}
= λ

(d)
c ). Let α

(d)
c (t) be the

time average expected rate of commodity d data admitted by
client c during the first t timeslots:

α(d)
c (t)M=

1
t

t−1∑
τ=0

E
{

α(d)
c (τ)

}
As a measure of network fairness, for each commodity pair
(c, d) (where c, d ∈ C, c 6= d), define a utility function
g
(d)
c (α) representing the satisfaction client c receives by send-

ing commodity d data at a long term throughput α. Each
utility function is assumed to be concave, continuous, non-
decreasing, and to satisfy g

(r)
c (0) = 0. A typical example is

the logarithmic utility function:

g(d)
c (α) = log(1 + α) (9)

where log(·) denotes the natural logarithm.

If the network has an ergodic capacity region Λ, define
the ergodic optimal utility g∗ as the solution to the following
problem:

Maximize: g M=
∑

c,d g
(d)
c (α(d)

c ) (10)

Subject to: (α(d)
c ) ∈ Λ

α
(d)
c ≤ λ

(d)
c

That is, g∗ represents the optimal utility achievable by a
stabilizing control algorithm with an ergodic capacity region
Λ. Similarly, for each instantaneous capacity region Λ∗(t),
define the optimal utility g∗(t) as the solution to the following
maximization problem:

Maximize: g M=
∑

c,d g
(d)
c (α(d)

c ) (11)

Subject to: (α(d)
c ) ∈ Λ∗(t)

α
(d)
c ≤ λ

(d)
c

A. The Cross-Layer Mesh Network Algorithm (CLC-Mesh)

The following cross-layer control algorithm is decoupled
into separate algorithms for flow control at the clients, power-
aware uplink/downlink transmission scheduling, and routing
in the mesh router nodes. It uses a non-negative parameter V
that can be chosen as desired to affect a utility-delay tradeoff.
The resulting algorithm applies techniques from [11] [12] [13]
to this mesh network setting, with the exception that we use
a modified differential backlog weight to ensure worst case
backlog guarantees.

Flow Control: For each client c ∈ C, define Ωc as the set of
all commodities d such that λ

(d)
c > 0 (typically each client has

at most one or two active sessions). For each d ∈ Ωc, define
a flow state queue Y

(d)
c (t) with an initial value Y

(d)
c (0) = 0,

and with an update equation:

Y (d)
c (t + 1) = max[Y (d)

c (t)− α(d)
c (t), 0] + γ(d)

c (t) (12)

where α
(d)
c (t) is the flow control decision at slot t, and

γ
(d)
c (t) is a useful auxiliary variable (both chosen according

to the computation below). These flow state queues are purely
implemented in software at their respective clients.

Define αmax
M=Amax, where Amax is the maximum number

of packets that can arrive to a client in a single timeslot
(satisfying (8)). For each timeslot t, each client c ∈ C
chooses flow control variables α

(d)
c (t) as non-negative integers

(represented as N+) that solve the following problem:

Maximize:
∑

d∈Ωc
[Y (d)

c (t)− U
(d)
c (t)]α(d)

c (t) (13)

Subject to:
∑

d∈Ωc
α

(d)
c (t) ≤ αmax

α
(d)
c (t) ≤ A

(d)
c (t) + L

(d)
c (t) ∀d ∈ Ωc

α
(d)
c (t) ∈ N+ ∀d ∈ Ωc

Furthermore, the client chooses auxiliary variables γ
(d)
c (t) for

timeslot t as the solution to the following optimization:

Maximize: V g
(d)
c (γ(d)

c )− γ
(d)
c Y

(d)
c (t) (14)

Subject to: 0 ≤ γ
(d)
c ≤ αmax

The flow state queues Y
(d)
c (t) are then updated via (12).
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Flow control algorithms that use flow state queues in this
manner were introduced in [12] and [11]. Note that this flow
control algorithm can be implemented separately at each client,
and uses only the Y

(d)
c (t) values local to each client. The

admission decisions (13) admit commodity d data into the
transport layer at client c only if U

(d)
c (t) ≤ Y

(d)
c (t). The

optimization in (13) is trivially solved by admitting as many
packets as possible from the commodities d that maximize
Y

(d)
c (t)−U

(d)
c (t). In the case when there is only a single active

session at each client, or when there are no transport layer
storage reservoirs (so that L

(d)
c (t) = 0 for all t), the solution

to (13) is given by: α
(d)
c (t) = min[A(d)

c (t) + L
(d)
c (t), αmax]

if U
(d)
c (t) ≤ Y

(d)
c (t), and α

(d)
c (t) = 0 otherwise. The

optimization of the auxiliary variables γ
(d)
c (t) in (14) is a

simple maximization of a concave function of a single real
variable, and the solution can also be computed easily in real
time. In the special case when utilities g

(d)
c (α) have the form

in (9), we have the closed form solution:

γ(d)
c (t) = min[max[V/Y (d)

c (t)− 1, 0], αmax]

Transmission Rate Variables: It is useful to modify the
constraints of the transmission rate variables (µ(d)

ab (t)) as
follows:

µ
(d)
ab (t) ≥ 0 for all (a, b, d) (15)∑

d

µ
(d)
ab (t) ≤ µab(t) for all (a, b) (16)

These new constraints are less restrictive than the constraints
(4) and (6) as they do not involve queue backlog. Our
algorithm shall compute transmission rates according to the
above constraints. In cases where a certain node a does not
have enough data of a particular commodity d to fill the
transmission rates µ

(d)
ab (t) over all outgoing links (a, b) for

which µ
(d)
ab (t) > 0, then idle fill packets are used. The actual

packets are distributed over the links arbitrarily, with the only
assumptions being that: (i) If U

(d)
a (t) ≥

∑
b µ

(d)
ab (t), then no

idle fill packets are used. (ii) If U
(d)
a (t) <

∑
b µ

(d)
ab (t), then

all U
(d)
a (t) packets must be used on outgoing links (a, b) with

positive rates µ
(d)
ab (t) (placing them on each link arbitrarily)

before idle fill packets are used. All of our analysis and
optimality results hold regardless of the decisions made in
cases when there is a choice of this nature, provided the above
two conditions are maintained. For implementation purposes,
we use the particular strategy of filling all downlinks (to
destinations) before filling router-router links.

Power-Aware Uplink/Downlink Scheduling: To ensure the
average power constraints are met, we use the virtual power
queue technique developed in [13]. Specifically, for each client
c ∈ C, define a virtual power queue Xc(t) as a measure of the
excess power expenditure over and above the average power
constraint. The initial value is set to zero (so that Xc(0) = 0),
and the virtual power queue is updated in software according
to the update rule:

Xc(t + 1) = max[Xc(t)− P av
c , 0] + Pc(t) (17)

where P av
c is the average power constraint of client c, and

Pc(t) is the power expenditure of the client during slot t,

where:

Pc(t) =

 Ptran if µc,r(c,t)(t) > 0
Prec if µc,r(c,t)(t) = 0 and µr(c,t),c(t) > 0
0 otherwise

The intuition is that stabilizing each virtual power queue
ensures the time average input rate is less than or equal to
the time average transmission rate, so that (2) is satisfied.

The transmission rates µcr(t) and µrc(t) within each cell
are computed as follows. On each timeslot t, each client c ∈
C informs its current router node r = r(c, t) of its backlog
values U

(d)
c (t) and its virtual power queue level Xc(t). (If

each source client has only one active session and hence only
one non-zero queue U

(d)
c (t), then this involves the exchange of

only 2 scalar values U
(d)
c (t) and Xc(t)). Define the differential

backlog W
(d)
cr (t) between a client c and its router node r as

follows:
W (d)

cr (t)M=U (d)
c (t)− U (d)

r (t) (18)

Define η as the largest right derivative of any utility function
g
(d)
c (α) at the point α = 0 (assumed finite). In the case of

logarithmic utilities as in (9), we have η = 1. Define Ŵ
(d)
cr (t)

as follows:

Ŵ (d)
cr (t)M=

{
max[W (d)

cr (t), 0] if U
(d)
r (t) < ηV

0 otherwise
(19)

Define Cr(t) as the set of clients currently contained in the
cell of router node r. Each router node r then observes the
uplink and downlink channel states for its client nodes, and
chooses transmission rates {µrc(t)}, {µcr(t)}, {µ(d)

cr (t)}, and
{µ(d)

rc (t)} that maximize:∑
d∈Cr(t)

U (d)
r (t)µ(d)

rd φrd(µrd, Srd(t))+

∑
c∈Cr(t)

[
−Xc(t)Pc(t) +

∑
d∈C

Ŵ (d)
cr (t)µ(d)

cr φcr(µcr, Scr(t))

]
(20)

subject to the constraint set Γr and the feasibility constraints
(15) and (16). The virtual power queues are then updated
according to (17).

In the special case where Γr is the constraint set that
restricts only one uplink or downlink transmission per cell
per slot, and when each client c ∈ C is the source of only one
commodity dc, then the above maximization is accomplished
in each cell by comparing the value of (20) for each single
uplink and downlink possibility, as follows:

Downlink optimization: For a given router r, consider the
control option of choosing a downlink transmission over
link (r, d) at a non-zero rate µrd (for a particular client
d ∈ Cr(t)). Note that we must transmit commodity d over
this link (as a downlink transmission must send data to its
destination), and hence µ

(d)
rd = µrd. Further, this downlink

transmission precludes uplink transmissions or other downlink
transmissions in this cell, and hence (20) reduces to:

U (d)
r (t)µrdφrd(µrd, Srd(t))−Xd(t)Prec (21)

where Pd(t) = Prec because client d receives a downlink
transmission. Define µ∗rd as the optimal feasible transmission
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rate for this downlink (i.e., µ∗rd maximizes (21)). Define d∗down

as the client that maximizes U
(d)
r (t)µ∗rdφrd(µ∗rd, Srd(t)) −

Xd(t)Prec over all d ∈ Cr(t). If the corresponding maximum
value is non-negative, define Q∗down as this maximum, else
define Q∗down = 0. Thus, Q∗down represents the maximum
value of the expression (20) over all downlink transmission
options, including the option to remain idle. If Q∗down > 0,
then the optimal downlink is (r, d∗down).

Uplink optimization: For a given router r, consider a trans-
mission over uplink (c, r) at a non-zero rate µcr (for a given
client c ∈ Cr(t)). Thus, µ

(dc)
cr = µcr (because each client

c is the source of only one commodity dc). The resulting
expression (20) becomes:

Ŵ (dc)
cr (t)µcrφcr(µcr, Scr(t))−Xc(t)Ptran (22)

Define µ∗cr as the feasible transmission rate that maxi-
mizes (22). Define c∗up as the commodity that maximizes
Ŵ

(dc)
cr (t)µ∗crφcr(µ∗cr, Scr(t))−Xc(t)Ptran over all c ∈ Cr(t),

and let Q∗up represent the corresponding maximum value (if
the maximum is non-negative), and else let Q∗up = 0. Thus,
Q∗up represents the maximum value of the expression (20) if
the controller at router node r decides to either transmit over
an uplink channel or remain idle. If Q∗up > 0, then the optimal
uplink is (c∗up, r).

If Q∗down = Q∗up = 0, no transmissions take place during
slot t in the cell of node r. Otherwise, if Q∗down > 0 and
Q∗down ≥ Q∗up, then choose a downlink transmission for the
cell of router node r, using link (r, d∗down) with transmission
rate µ∗rd∗down

. Finally, if Q∗up > 0 and Q∗up > Q∗down,
then choose an uplink transmission, using link (c∗up, r) and
transmission rate µ∗c∗upr.

Note that this scheduling algorithm is decoupled cell-by-
cell, and only uses knowledge of the channel states, client
backlogs, and virtual power queues local to each cell.

Mesh Network Routing: Before network operation, the
mesh router sub-network computes a shortest path routing
table for each pair of routing nodes. Specifically, for each
node pair (n, b) such that n ∈ R, b ∈ R, we define Hnb as
the distance required to travel from node n to node b over its
shortest path. Distributed algorithms for computing such Hnb

values are well known (see, for example, [39]), and a variety
of link weight metrics might be used in the computation. For
example, the link weight of each router link can be set to 1,
in which case the value Hnb represents the shortest number
of hops from router node n to router node b. The value of
Hnn is defined to be 0 for all router nodes n. Define Hmax

as the largest value of |Hrn − Hbn| over all router nodes r
and n and all neighbors b ∈ Θr. This is the largest change in
the distance to a destination node n if a packet is sent from a
node r to a neighbor node b.

For each timeslot t, every router node r computes its mixed
differential backlog weight W

(d)
rb (t) for each neighboring

router node b ∈ Θr and each commodity d ∈ C as follows:

W
(d)
rb (t)M=U (d)

r (t)−U
(d)
b (t)+ω(Hr,n̂r(d,t)−Hb,n̂r(d,t)) (23)

where ω ≥ 0 is a pre-specified constant. This is a variation of
the Enhanced Dynamic Routing and Power Control (EDRPC)

algorithm of [3]. Note that (Hr,n̂r(d,t) − Hb,n̂r(d,t)) is an
estimate of the amount the distance would decrease between
a commodity d packet and its destination if it is transmitted
from node r to node b. This is an estimate because it assumes
the true location of the client d is in the cell of router n̂r(d, t).
In the case when network backlog is large and U

(d)
r (t) −

U
(d)
b (t) is much larger than ωHmax, the weight W

(d)
rb (t) is

dominated by the differential backlog term. Conversely, in
lightly loaded situations the differential backlog term may be
small, so that the W

(d)
rb (t) weight indicates the next hop for

commodity d if it were to follow its estimated shortest path.
Note that the W

(d)
rb (t) weights can be computed at each node r

using only the current queue backlogs U
(d)
b (t) in neighboring

nodes. Such backlogs can be determined by passing backlog
updates to neighboring nodes at the end of each timeslot. Note
also that in the case when the parameter ω is set to zero,
the shortest path weights and the location estimates are not
needed. This significantly reduces implementation complexity
while possibly increasing delay. Define Ŵ

(d)
rb (t) as follows:

Ŵ
(d)
rb (t)M=

{
max[W (d)

rb (t), 0] if U
(d)
b (t) < ηV

0 otherwise
(24)

At each timeslot t, each router node r computes the weights
Ŵ

(d)
rb (t) as in (24) for each neighbor node b. It then observes

the current transmission rate µrb(t) for each of its possible
outgoing links (r, b). For each such link (r, b), the optimal
weight Ŵ ∗

rb(t) and optimal commodity d∗rb(t) are determined
as follows:

Ŵ ∗
rb(t)

M= max
d∈C

Ŵ
(d)
rb (t)

d∗rb(t)
M= arg max

d∈C
Ŵ

(d)
rb (t)

If Ŵ ∗
rb(t) > 0, node r transmits µrb(t) packets of commodity

d∗rb(t) over link (r, b) (not including the packets it first decided
to send over a downlink channel at node r). If there are
not enough packets of a particular commodity to fill the
transmission rates µrb(t) over each outgoing link of node r,
the links are filled with packets of the optimal commodities
arbitrarily, and any residual transmission rate is filled either
with null packets (i.e., dummy fill data) or with actual packets
of different commodities d for which Ŵ

(d)
rb (t) > 0.

The following important fact follows from the above
scheduling algorithm:

Fact 1: If commodity d data is transmitted over a link (i, r)
during slot t, where i ∈ C∪R and r ∈ R, then the differential
backlog between nodes i and r must satisfy:

Ŵ
(d)
ir (t) > 0 (25)

B. Algorithm Performance

Suppose arrivals are i.i.d. over timeslots with any arbi-
trary heterogeneous traffic matrix λ = (λ(d)

c ). Suppose the
above Cross-Layer Mesh Network Algorithm (CLC-Mesh) is
implemented, using parameters V ≥ 0, ω ≥ 0, and using
arbitrary shortest path values Hnb with corresponding max
differential value Hmax. Recall from (1) that channel state
matrices are conditionally i.i.d. over all timeslots with identical
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client topology states T (t). Assume T (t) is determined by any
arbitrary client mobility process. Specifically, we assume there
exists some probability law that describes the T (t) evolution,
but this law is arbitrary and potentially non-ergodic. Let
Λ∗(t) be the resulting instantaneous capacity region for each
timeslot. Assume all virtual and actual queues of the network
are empty at time 0. Finally, for simplicity of exposition, we
assume here that the mesh router link scheduling is done every
timeslot according to a random or pseudo-random decision
rule, so that the link rate matrix (µrb(t)) (for r ∈ R, b ∈ R)
is i.i.d. over timeslots.2

Define µout
max as the maximum number of packets that can

be transmitted out of any node during a timeslot (considering
both clients and routers, and summing over all outgoing links).
Likewise, define µin

max as the maximum number of endogenous
packets that can enter a node during a single slot.

Theorem 1: (Algorithm Performance) For arbitrary (possi-
bly non-ergodic) client mobility processes, the mesh network
algorithm stabilizes all queues in the network and meets all
average power constraints. Specifically, we have:

(a) U
(d)
n (t) ≤ Umax

M=ηV + max[2αmax, µin
max] for all time

t and all client or router queues (n, d).
(b) If Prec > 0, then Xc(t) ≤ Xmax

M=
Umaxµout

max

min[Ptran,Prec]
+

max[Ptran, Prec] for all t and for all virtual power queues
Xc(t). In particular, the total power expended by a client c ∈ C
over any interval of size T slots is no more than P av

c T +
Xmax (for any non-negative interval size T ). If Prec = 0,
then Xc(t) ≤ Umaxµout

max/Ptran + Ptran.
(c) The achieved throughput-utility satisfies:

lim inf
t→∞

∑
c,d

g(d)
c (α(d)

c (t)) ≥ lim inf
t→∞

1
t

t−1∑
τ=0

E {g∗(τ)} − B

V

where α
(d)
c (t) is defined:

α(d)
c (t)M=

1
t

t−1∑
τ=0

E
{

α(d)
c (τ)

}
and where B is a constant that depends on ωHmax and
the number of network nodes, but is independent of V and
independent of the user mobility process (the constant B is
computed explicitly in the proof in Section V-A).

(d) If dg
(d)
c (α)/dα > 0 for 0 ≤ α ≤ αmax (for all client

utilities (c, d)), and if λ ∈ Λ∗(t) for all timeslots t, then
the component-wise lim inf of the time average admitted rate
matrix is within O(1/V ) of the input rate matrix λ.

(e) Suppose the condition of part (d) holds, and define Λ̃∗(t)
as an extended instantaneous capacity region associated with
the topology state T (t), but with |R||C| new dimensions for
all entries (r, d) with r ∈ R, d ∈ C, representing possible
exogenous arrival processes of commodity d sourced at each
router node. If there exists an ε > 0 such that λ+ ε ∈ Λ̃∗(t)
for all t (where ε = (ε(d)

i ) is a matrix with entries ε
(i)
i = 0,

ε
(d)
i = ε, for all i 6= d such that i ∈ C∪R and d ∈ C), then the

lim sup average queue backlog can be bounded by a constant

2The algorithm achieves similar performance for periodic link scheduling,
provided that the V parameter is increased by a factor equal to the scheduling
period.

with a size of O(1/ε), i.e., a size that does not depend on V
or on the timescales associated with the user mobility process.

(f) If the topology state process T (t) is ergodic with a well
defined steady state, and if Λ represents the ergodic network
capacity region, then the throughput-utility satisfies:

lim inf
t→∞

∑
c,d

g(d)
c (α(d)

c (t)) ≥ g∗ −Bmobile/V

where g∗ is the optimal solution of (10), and Bmobile is a
constant that is independent of V but that possibly depends
on the timescales associated with the client mobility process,
as in [3].

Note that the queueing bounds are quite strong and specify
bounded worst case queue backlog. In particular, all network
queues are bounded by a value Umax that depends linearly on
the V parameter. By Little’s Theorem, this implies an end-to-
end average delay bound that is also linear in V . Likewise,
the virtual power queues are bounded by Xmax, ensuring not
only that the time average power constraint (2) is satisfied, but
that the excess power expenditure beyond the average power
constraint P av

c over any interval is no more than Xmax (where
Xmax is also linear in V ). Part (c) of the theorem indicates that
the time average throughput utility is within B/V of the target
time average utility lim inft→∞

1
t

∑t−1
τ=0 g∗(τ). This difference

B/V can be made arbitrarily small, with a corresponding
(linear) tradeoff in Xmax and Umax.

Parts (d) and (e) of the theorem indicate that, in the case
when the traffic rates are strictly interior to the instantaneous
capacity region for all slots t, then flow control is not
necessary, so that choosing a very large value of V (which
corresponds to accepting almost everything into the network)
yields a packet drop rate of O(1/V ) and an average congestion
and delay that depends only on the smallest distance ε between
the traffic matrix and each instantaneous capacity region (and
does not depend on V ). This proves that, in such cases, almost
100% throughput can be achieved in situations of arbitrary
(possibly non-ergodic) client mobility, with delay that is inde-
pendent of the timescales associated with the mobility process.
Part (f) specifies that if the mobility process is ergodic, then
the algorithm can also come arbitrarily close to achieving the
optimal utility g∗ associated with the ergodic capacity region
(regardless of the input rate matrix λ), provided that the V
parameter is sufficiently larger than a constant Bmobile that
depends on the timescales of the client mobility process. Note
that Theorem 1 holds for any buffer size at the transport layer
storage reservoirs (possibly size 0).

Proof: (Theorem 1 part (a)) Consider any client node c ∈ C
with queue backlog U

(d)
c (t) and flow state queue Y

(d)
c (t).

Claim 1: Y
(d)
c (t) ≤ ηV + αmax for all t.

To prove the claim, consider the optimization (14) that
determines the γ

(d)
c (t) variable. Because g

(d)
c (0) = 0 and η

is the largest right derivative of any utility function, we have:

V g(d)
c (γ(d)

c )− γ(d)
c Y (d)

c (t) ≤ V ηγ(d)
c − γ(d)

c Y (d)
c (t)

= (V η − Y (d)
c (t))γ(d)

c

From the above inequality, it follows that if Y
(d)
c (t) > ηV ,

then the maximum of V g
(d)
c (γ(d)

c ) − γ
(d)
c Y

(d)
c (t) is equal to
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zero, and is achieved only when γ
(d)
c = 0. Thus, γ

(d)
c (t) = 0

whenever Y
(d)
c (t) > ηV . It follows from (12) that Y

(d)
c (t)

cannot further increase when it exceeds ηV , so that Y
(d)
c (t) ≤

ηV + αmax for all t.
Claim 2: U

(d)
c (t) ≤ ηV + 2αmax for all c ∈ C and all t.

To prove Claim 2, note by (5) that at any timeslot t, U
(d)
c (t)

can only increase if its arrivals α
(d)
c (t) during slot t are non-

zero. However by (13) we have that α
(d)
c (t) = 0 whenever

U
(d)
c (t) > Y

(d)
c (t). By Claim 1, it follows that α

(d)
c (t) =

0 whenever U
(d)
c (t) > ηV + αmax. Thus, U

(d)
c (t) can only

increase if it is less than or equal to ηV + αmax. Because
queues are initially empty and the largest possible increase at
any time is αmax, it follows that U

(d)
c (t) ≤ ηV + 2αmax ≤

Umax for all t. This holds for all client queues c ∈ C.
To prove the result for the router queues r ∈ R, suppose

that at a particular time t we have that U
(d)
r (t) ≤ Umax for

all (r, d) (this certainly holds at time t = 0 when all queues
are initially empty). We prove the same holds for time t + 1,
which by induction proves the result for all time. Consider any
queue U

(d)
r (t) at time t. If this queue does not receive any new

arrivals during slot t, then U
(d)
r (t+1) ≤ U

(d)
r (t) ≤ Umax and

we are done. If this queue receives new data from a client c

during slot t, then the differential backlog metric Ŵ
(d)
cr (t) must

be positive (by (25) of Fact 1), which (by the definition (19))
implies U

(d)
r (t) < ηV . The most this queue can increase in any

timeslot is given by µin
max, and so U

(d)
r (t+1) ≤ ηV +µin

max ≤
Umax.

Finally, if the queue U
(d)
r (t) does not receive data from a

client during slot t, but does receive data from other router
nodes, then the differential backlog Ŵ

(d)
ar (t) must be positive

for some other router node a ∈ R. By (24), it must be that
U

(d)
r (t) < ηV . It thus again follows that U

(d)
r (t + 1) ≤ ηV +

µin
max, proving the result.
Proof: (Theorem 1 part (b)) Consider a virtual power queue

Xc(t) for any particular client c ∈ C. Suppose that Xc(t) ≤
Xmax at a particular time t (this clearly holds at t = 0). We
show the same holds for time t + 1. If this queue does not
increase during slot t, then clearly Xc(t+1) ≤ Xmax. Other-
wise, this queue can only increase if Pc(t) > 0, that is, if client
c is scheduled either to receive or transmit during slot t (see
the virtual queue dynamic equation (17)). If it is scheduled to
transmit (so that Pc(t) = Ptran), then by the uplink/downlink
scheduling algorithm specified in (20), it must be the case
that Ŵ

(d)
c,r (t)µ(d)

cr (t)φcr(µcr(t), Scr(t)) −Xc(t)Ptran ≥ 0 for
a particular commodity d (where r = r(c, t)). In particular,
because probabilities are upper bounded by 1:

Ŵ (d)
c,r (t)µout

max ≥ Xc(t)Ptran

But Ŵ
(d)
cr (t) ≤ U

(d)
c (t) ≤ Umax for all t. Therefore, the virtual

power queue cannot increase if Xc(t) > Umaxµout
max/Ptran. It

follows that Xc(t+1) ≤ Umaxµout
max/Ptran +Ptran ≤ Xmax.

Finally, if this client is scheduled to receive (so that
Pc(t) = Prec), and if Prec > 0, then it must
be that U

(c)
r(c,t)(t)µ

(c)
r(c,t),c(t)φr(c,t),c(µr(c,t),c(t), Sr(c,t),c(t))−

Xc(t)Prec ≥ 0. In particular:

Xc(t) ≤ U
(c)
r(c,t)(t)µ

out
max/Prec

≤ Umaxµout
max/Prec

where the last inequality holds because queue backlogs are
bounded by Umax for all t (from part (a)). Therefore, we again
have Xc(t + 1) ≤ Xc(t) + Prec ≤ Xmax, proving the result.

Parts (c)-(f) of the theorem are proven in the next section
using Lyapunov optimization techniques.

V. STOCHASTIC LYAPUNOV OPTIMIZATION

Let Q(t) = (Q1(t), . . . , QK(t)) be a vector process of
queue lengths for a discrete time stochastic queueing network
with K queues (possibly including some virtual queues like
the flow state and power queues defined in the previous
subsections). Let L(Q) be any non-negative scalar valued
function of the queue lengths, called a Lyapunov function.
Throughout this paper, we shall use the particular Lyapunov
function L(Q) = 1

2

∑K
i=1 U2

i , so that a large value of L(Q(t))
represents a large network congestion during slot t. However,
the following theorem uses any L(Q) that is non-negative.
Define the conditional Lyapunov drift ∆(Q(t)) as follows:3

∆(Q(t))M=E {L(Q(t + 1))− L(Q(t)) | Q(t)} (26)

Suppose that the network accumulates “rewards” every
timeslot (where rewards might correspond to utility measures
of control actions). Assume rewards are real valued, and let
the stochastic process f(t) represent the reward earned during
slot t. Let f∗(t) represent some target reward process. The
following result from [12][11] specifies a drift condition that
ensures the time average of the reward process f(t) is close
to meeting or exceeding the time average of f∗(t):

Theorem 2: (Lyapunov Optimization [12][11]) Suppose
there exist constants V > 0, B > 0, ε > 0, and a non-negative
function L(Q) such that for every timeslot t and every possible
value of Q(t), the conditional Lyapunov drift satisfies:

∆(Q(t))− V E {f(t) | Q(t)} ≤
B − εE {h(t) | Q(t)} − V E {f∗(t) | Q(t)}

where h(t) is some non-negative stochastic process that may
depend on the queue state, then we have:

lim inf
t→∞

1
t

t−1∑
τ=0

E {f(τ)} ≥ lim inf
t→∞

1
t

t−1∑
τ=0

E {f∗(τ)} − B

V

lim sup
t→∞

1
t

t−1∑
τ=0

E {h(τ)} ≤ B + V (f − f∗)
ε

where (f − f∗) is defined:

(f − f∗)M= lim sup
t→∞

1
t

t−1∑
τ=0

E {f(τ)− f∗(τ)} �

3Strictly speaking, we should represent this conditional Lyapunov drift with
the notation ∆(Q(t), t), as the stochastics might also depend on the timeslot
t. However, we use the simpler notation ∆(Q(t)) as a formal representation
of the right hand side of (26).
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From the theorem, it is clear that if the parameter V can be
chosen arbitrarily large while still ensuring the drift condition
of Theorem 2 is satisfied, then the time average of f(t) can be
pushed arbitrarily close to (or above) the time average of the
target reward process f∗(t), with a corresponding tradeoff in
the time average of the process h(t) that is linear in V . Using
quadratic Lyapunov functions tends to yield h(t) processes of
the form h(t) =

∑K
i=1 Qi(t), in which case the V parameter

directly affects an upper bound on time average congestion
(and hence, by Little’s Theorem, average delay). This can
be seen more explicitly in cases when reward functions are
bounded by constants fmax, fmin, so that f(t) ≤ fmax and
f∗(t) ≥ fmin for all t. In this case the upper bound on the
time average of h(t) is given by (B + V (fmax − fmin))/ε.

In the next subsections, we use the Lyapunov Optimization
Theorem (Theorem 2) to prove the remaining portions of
Theorem 1. We do so by comparing the Lyapunov drift of
the CLC-Mesh algorithm described in Section IV-A to the
drift of a stationary randomized control algorithm that makes
decisions independent of queue backlog.

A. Computing the Drift for CLC-Mesh

Let Q(t) represent the collection of virtual and actual queue
states [U(t),X(t),Y (t)] for the CLC-Mesh algorithm. Define
the Lyapunov function:

L(Q) =
1
2

∑
n,d

(U (d)
n )2 +

∑
c

(Xc)2 +
∑
c,d

(Y (d)
c )2


Define ∆(Q(t)) as the conditional Lyapunov drift, and define
∆U (Q(t)), ∆X(Q(t)), ∆Y (Q(t)) respectively as the drift
components associated with the actual queues, virtual power
queues, and flow state queues, respectively, so that:

∆(Q(t)) = ∆U (Q(t)) + ∆X(Q(t)) + ∆Y (Q(t))

To compute the drifts, the following inequality shall be useful.
For any non-negative values u, µ, a, we have:

1
2

(max[u− µ, 0] + a)2 ≤ u2 + µ2 + a2

2
− u(µ− a)

Using the above inequality with the dynamics (17) for the
virtual power queues Xc(t) and the dynamics (12) for the
flow state queues Y

(d)
c (t), it is not difficult to show:

∆X(Q(t)) ≤ BX −
∑

c

Xc(t)E {P av
c − Pc(t) | Q(t)}(27)

∆Y (Q(t)) ≤ BY −
∑
c,d

Y (d)
c (t)×

E
{

α(d)
c (t)− γ(d)

c (t) | Q(t)
}

(28)

where

BX
M=

1
2

[
|C|max[P 2

tran, P 2
rec] +

∑
c∈C

(P av
c )2

]

BY
M=

α2
max [|C|+ |A|]

2
where |C| is the number of clients, and |A| is the number
of active sessions A

(d)
c (t) in the network. Similarly, the drift

∆U (Q(t)) can be derived as the sum of drift terms ∆Uc
(Q(t))

and ∆Ur (Q(t)) corresponding to client and router nodes
(using queueing dynamics (5) and (7)):

∆Uc
(Q(t)) ≤ B1 −

∑
c∈C,d

U (d)
c (t)×

E
{

µ̃
(d)
c,r(c,t)(t)− α(d)

c (t) | Q(t)
}

∆Ur (Q(t)) ≤ B2 −
∑

r∈R,d

U (d)
r (t)×

E

{∑
b

µ̃
(d)
rb (t)−

∑
a

µ̃(d)
ar (t) | Q(t)

}
where

B1
M= |C|

[
(µout

max)2 + α2
max

]
/2

B2
M= |R|

[
(µout

max)2 + (µin
max)2

]
/2

Recall that µ
(d)
ab (t) is a transmission rate that may include

both actual and idle fill packets of commodity d transmitted
over link (a, b), while µ̃

(d)
ab (t) represents the number of actual

packets sucessfully received from this transmission. It is useful
to define µ̂

(d)
ab (t) to be the number of actual or idle fill packets

successfully received (where an idle fill packet is viewed as
being “successful” with the same probability as the actual
packets for that transmission). It follows that:

µ̃
(d)
ab (t) ≤ µ̂

(d)
ab (t) (29)

Further, because idle packets will not be sent if there are
enough actual packets available:

µ̃
(d)
ab (t) = µ̂

(d)
ab (t) if U

(d)
a (t) ≥ µout

max (30)

Using (29) and (30) in the ∆Uc
(Q(t)) and ∆Ur

(Q(t)) expres-
sions yields:

∆Uc
(Q(t)) ≤ B1 + |C| (µout

max)2 −
∑

c∈C,d

U (d)
c (t)×

E
{

µ̂
(d)
c,r(c,t)(t)− α(d)

c (t) | Q(t)
}

(31)

∆Ur
(Q(t)) ≤ B2 + |R| (µout

max)2 −
∑

r∈R,d

U (d)
r (t)×

E

{∑
b

µ̂
(d)
rb (t)−

∑
a

µ̂(d)
ar (t) | Q(t)

}
(32)

Therefore, summing the right hand sides of (27), (28), (31),
and (32), we have the following Lyapunov drift bound:

∆(Q(t))− V E
{∑

c,d g
(d)
c (γ(d)

c (t)) | Q(t)
}
≤ B̃

−
∑

c Xc(t)E {P av
c − Pc(t) | Q(t)}

−
∑

c,d Y
(d)
c (t)E

{
α

(d)
c (t)− γ

(d)
c (t) | Q(t)

}
−

∑
c∈C,d U

(d)
c (t)E

{
µ̂

(d)
c,r(c,t)(t)− α

(d)
c (t) | Q(t)

}
−

∑
r∈R,d U

(d)
r (t)E

{∑
b µ̂

(d)
rb (t)−

∑
a µ̂

(d)
ar (t) | Q(t)

}
−V E

{∑
c,d g

(d)
c (γ(d)

c (t)) | Q(t)
}

(33)
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where we have subtracted the utility metric from both sides,
and where:

B̃ M=BX + BY + B1 + B2 + |C|(µout
max)2 + |R|(µout

max)2

It turns out that the cross layer control algorithm is designed
to come within an additive constant C of minimizing the right
hand side of (33) over all alternative control actions, where
C is a constant that does not depend on V . To see this, note
that the α

(d)
c (t) and γ

(d)
c (t) variables affect the right hand side

of (33) only through terms of the form:∑
c,d

[U (d)
c (t)− Y (d)

c (t)]E
{

α(d)
c (t) | Q(t)

}
and ∑

c,d

E
{

Y (d)
c (t)γ(d)

c (t)− V g(d)
c (γ(d)

c (t)) | Q(t)
}

and hence the flow control algorithm in (13) and (14) chooses
decision variables that minimize these terms over all alterna-
tive flow control actions that satisfy 0 ≤ γ

(d)
c (t) ≤ αmax as

well as the general flow control constraints of problem (13).
That the remaining control variables come within an additive
constant C of minimizing the right hand side is proven in
Appendix A, where the value C is also computed.

It follows that the drift expression on the left hand side of
(33) is less than or equal to the resulting expression when the
right hand side of (33) is modified by replacing B̃ with B̃+C,
and by replacing variables

{Pc(t)}, {α(d)
c (t)}, {µ̂(d)

ab (t)}, {γ(d)
c (t)}

with variables corresponding to any other feasible control
actions:

{P ∗c (t)}, {α∗(d)
c (t)}, {µ̂∗(d)

ab (t)}, {γ∗(d)
c (t)}

B. Replacing the Decision Variables

In [3], the capacity region for a general network is character-
ized. Specifically, it is shown that for any rate matrix within the
capacity region, there exists a stationary randomized schedul-
ing policy that chooses transmission rates independently of
queue backlog, together with multi-commodity flows that
support the traffic rates, such that the sum flow over any
link is less than or equal to the expected link transmission
rate with respect to the stationary randomized algorithm. This
result can be extended to the scenario of this paper (which
additionally considers average power constraints at each client
and probabilistic reception) to yield the following lemma
(proof omitted for brevity, see [3] [13] [18] for related proofs):

Lemma 1: (Existence of a Stationary Randomized Policy)
Consider any given slot t with client topology state T (t) and
instantaneous capacity region Λ∗(t). For any input rate matrix
(x(d)

c ) ∈ Λ∗(t), there must exist a stationary and randomized
control algorithm that chooses decision variables P ∗c (t) and
µ̂
∗(d)
ab (t) independently of queue backlog, and that yields (for

all d ∈ C, all t, and all Q(t)):

E {P ∗c (t) | Q(t), T (t)} ≤ P av
c ∀c ∈ C (34)

E
{

µ̂
∗(d)
c,r(c,t)(t) | Q(t), T (t)

}
= x(d)

c ∀c ∈ C (35)

E

{∑
b

µ̂
∗(d)
rb (t)−

∑
a

µ̂∗(d)
ar (t) | Q(t), T (t)

}
= 0 ∀r ∈ R (36)

Note that, because these stationary randomized decisions
are independent of queue backlog, the conditional expectation
with respect to Q(t) could be replaced by an unconditional
expectation. The inequalities and equalities in the theorem can
be intuitively understood as follows: Inequality (34) implies
that the stationary randomized power allocations P ∗c (t) yield
expected power expenditures that satisfy the power constraints
for all clients c. Next, we can define f

∗(d)
ab

M=E
{

µ̂
∗(d)
ab (t)

}
,

so that these expected transmission rates can be intuitively
interpreted as multi-commodity flows f

∗(d)
ab . With this inter-

pretation, the equality (35) states that the flow of commodity
d out of any client is equal to the input rate x

(d)
c . Likewise, the

inequality (36) can be interpreted as a conservation equality
stating that the sum flow of commodity d data into any router
node r is equal to the sum outflow of that commodity. It is
important here to recall that the instantaneous capacity region
Λ∗(t) is defined in terms of a virtual network with a constant
topology state for all time (given by T (t)). Hence, although
the above expectations are conditioned on T (t), by the law
of large numbers they would represent the true time average
powers and transmission rates if this stationary randomized
policy were implemented every slot on such a virtual network.

Now consider a particular timeslot t, with client topol-
ogy state T (t) and instantaneous capacity region Λ∗(t). Let
(x∗(d)

c (t)) represent the optimal variables that solve (11), so
that g∗(t) =

∑
c,d g

(d)
c (x∗(d)

c (t)). It follows that (x∗(d)
c (t)) ∈

Λ∗(t) and x
∗(d)
c (t) ≤ λ

(d)
c for all (c, d). Consider the simple

(and feasible) strategy that chooses the stationary randomized
decisions P ∗c (t) and µ̂

∗(d)
ab (t) to yield (34)-(36) with respect

to the rate matrix (x∗(d)
c (t)), and additionally chooses flow

control decision variables:

γ∗(d)
c (t) = x∗(d)

c (t)

α∗(d)
c (t) =

{
A

(d)
c (t) with probability x

∗(d)
c (t)/λ

(d)
c

0 otherwise

It follows that:

γ∗(d)
c (t) = x∗(d)

c (t)

E
{

α∗(d)
c (t) | Q(t), T (t)

}
= x∗(d)

c (t)

E {P ∗c (t) | Q(t), T (t)} ≤ P av
c

E
{

µ̂
∗(d)
c,r(c,t)(t) | Q(t), T (t)

}
= x∗(d)

c (t)

E

{∑
b

µ̂
∗(d)
rb (t)−

∑
a

µ̂∗(d)
ar (t) | Q(t), T (t)

}
= 0

Taking expectations of both sides of the above equalities and
inequalities with respect to the conditional distribution of T (t)
given Q(t) and using the law of iterated expectations removes
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the conditioning on T (t). Plugging the resulting expectations
of this alternative strategy into the right hand side of the
drift expression (33) thus creates many terms that can be
cancelled, and yields the following drift bound for the CLC-
Mesh algorithm:

∆(Q(t))− V E

∑
c,d

g(d)
c (γ(d)

c (t)) | Q(t)

 ≤ B̃ + C

−V E {g∗(t) | Q(t)} (37)

where we have used the fact that g∗(t)M=
∑

c,d g
(d)
c (x∗(d)

c (t)).
The above expression is in the exact form for application of
the Lyapunov Optimization Theorem (Theorem 2), and hence
we have:

lim inf
t→∞

1
t

t−1∑
τ=0

∑
c,d

E
{

g(d)
c (γ(d)

c (τ))
}
≥ lim inf

t→∞

1
t

t−1∑
τ=0

E {g∗(τ)}

− B̃ + C

V

Using concavity of the utility functions g
(d)
c (·) together with

Jensen’s inequality yields:

lim inf
t→∞

∑
c,d

g(d)
c (γ(d)

c (t)) ≥ lim inf
t→∞

1
t

t−1∑
τ=0

E {g∗(τ)} − B̃ + C

V

where

γ(d)
c (t)M=

1
t

t−1∑
τ=0

E
{

γ(d)
c (τ)

}
However, note that the γ

(d)
c (t) variables are inputs to the flow

state queues Y
(d)
c (t), and the α

(d)
c (t) variables represent the

time varying service rate of these queues. Because Y
(d)
c (t) ≤

Ymax
M=ηV +αmax for all t (see Claim 1 in proof of Theorem

1 part (a)), we have for all t:
t−1∑
τ=0

γ(d)
c (t) ≤

t−1∑
τ=0

α(d)
c (t) + Ymax

Indeed, the above inequality follows because α
(d)
c (t) can be

viewed as the server rate process of the virtual queue Y
(d)
c (t)

defined in (12), and thus the total sum of all service rates plus
the worst case backlog Ymax must be larger than or equal to
the total sum of all arrivals. Taking expectations, dividing by
t, and using the fact that α

(d)
c (t) ≥ 0 yields:

α(d)
c (t) ≥ max[γ(d)

c (t)− Ymax/t, 0]

Because utilities are non-decreasing, with largest right deriva-
tive η, we have for all g

(d)
c (·):

g(d)
c (α(d)

c (t)) ≥ g(d)
c (max[γ(d)

c (t)− Ymax/t, 0])
≥ g(d)

c (γ(d)
c (t))− ηYmax/t

Therefore

lim inf
t→∞

∑
c,d

g(d)
c (α(d)

c (t)) ≥ lim inf
t→∞

∑
c,d

g(d)
c (γ(d)

c (t))

≥ lim inf
t→∞

1
t

t−1∑
τ=0

E {g∗(τ)}

−(B̃ + C)/V

proving the result of part (c) of Theorem 1.

C. Proof of Part (d) of Theorem 1

Define the lim inf admission rate into queue (c, d) as
follows:

α(d)
c

M= lim inf
t→∞

1
t

t−1∑
τ=0

E
{

α(d)
c (τ)

}
Here we show that if the conditions of part (d) of Theorem 1
hold, then α

(d)
c ≥ λ

(d)
c −O(1/V ) for all (c, d). First note that

if λ ∈ Λ∗(t) for all t, then from (11) it is clear that:

g∗(t) = g∗ M=
∑
c,d

g(d)
c (λ(d)

c ) for all t

Part (c) of Theorem 1 thus implies the lim inf of time average
utility is within B/V of g∗:

g∗ −B/V ≤ lim inf
t→∞

∑
c,d

g(d)
c (α(d)

c (t)) (38)

However, because for all t and all (c, d) we have

t−1∑
τ=0

α(d)
c (τ) ≤

t−1∑
τ=0

A(d)
c (τ)

it follows that the lim sup admitted rate is less than or equal
to λ

(d)
c :

α(d)
c ≤ lim sup

t→∞

1
t

t−1∑
τ=0

E
{

α(d)
c (τ)

}
≤ λ(d)

c (39)

Using (39) together with the fact that utilities are continuous
and non-decreasing, it follows that for any particular utility
function (a, b), we have:

lim inf
t→∞

∑
c,d

g(d)
c (α(d)

c (t)) ≤ g(b)
a (α(b)

a ) +
∑

(c,d) 6=(a,b)

g(d)
c (λ(d)

c )

Using this inequality in (38) yields:

g∗ −B/V ≤ g(b)
a (α(b)

a ) +
∑

(c,d) 6=(a,b)

g(d)
c (λ(d)

c )

= g∗ −
[
g(b)

a (λ(b)
a )− g(b)

a (α(b)
a )

]
(40)

where (40) holds by definition of g∗. Now define ν as the
smallest derivative of any utility function over the interval 0 ≤
α ≤ αmax. The assumptions in part (d) of Theorem 1 imply
that ν > 0. Using the fact that λ

(b)
a ≥ α

(b)
a in the right hand

side of (40) yields:

g∗ −B/V ≤ g∗ − ν[λ(b)
a − α(b)

a ]

Therefore, for any (a, b) we have:

α(b)
a ≥ λ(b)

a −B/(V ν)

proving part (d) in Theorem 1.
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D. Proof of parts (e) and (f) of Theorem 1

Part (e) is proven in a manner similar to the proof technique
in Section V-B. Specifically, suppose λ + ε ∈ Λ̃∗(t) for all
t. Then we can replace the control decisions with alternative
feasible control decisions, and it can be shown that there exist
corresponding variables that yield:

γ∗(d)
c (t) = λ(d)

c

E
{

α∗(d)
c (t) | Q(t), T (t)

}
= λ(d)

c

E {P ∗c (t) | Q(t), T (t)} ≤ P av
c

E
{

µ̂
∗(d)
c,r(c,t)(t) | Q(t), T (t)

}
= λ(d)

c + ε

E

{∑
b

µ̂
∗(d)
rb (t)−

∑
a

µ̂∗(d)
ar (t) | Q(t), T (t)

}
= ε

The only difference between the above expressions for the
alternative control variables and those of Section V-B is that
the transmission rate out of each client is increased by an
amount ε, and the difference between transmission rates out
of and into each router node r is now equal to ε (rather than
zero). This is feasible because λ + ε ∈ Λ̃∗(t), and hence
the network can support an extra rate ε added to the original
sources at each client, as well as new exogenous sources of
rate ε added at each router node (for each commodity d ∈ C).

Following the reasoning of Section V-B exactly, we can
use these values to replace the right hand side of the drift
expression (33) to yield (compare with (37)):

∆(Q(t))− V E

∑
c,d

g(d)
c (γ(d)

c (t)) | Q(t)

 ≤ B̃ + C

−
∑

a∈C∪R,d

U (d)
a (t)ε− V

∑
c,d

g(d)
c (λ(d)

c )

The above drift expression is in the exact form for application
of the Lyapunov Optimization Theorem (Theorem 2), and
hence we have:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
a,d

E
{

U (d)
a (τ)

}
≤ B̃ + C

ε

+
V

ε
lim sup

t→∞

1
t

t−1∑
τ=0

∑
c,d

E
{

g(d)
c (γ(d)

c (τ))− g(d)
c (λ(d)

c )
}

(41)

However, by concavity of each utility function g
(d)
c (·) we have:

lim sup
t→∞

1
t

t−1∑
τ=0

E
{

g(d)
c (γ(d)

c (τ))− g(d)
c (λ(d)

c )
}

≤ lim sup
t→∞

g(d)
c (γ(d)

c (t))− g(d)
c (λ(d)

c )

= g(d)
c (lim sup

t→∞
γ(d)

c (t))− g(d)
c (λ(d)

c ) (42)

where γ
(d)
c (t)M= 1

t

∑t−1
τ=0 E

{
γ

(d)
c (τ)

}
. The final equality holds

because utilities are non-decreasing and continuous, and the
variables γ

(d)
c (t) are in the interval [0, αmax] for all t. Because

the Y
(d)
c (t) queues are bounded by a finite Ymax, it follows

that the lim sup expected time average of the γ
(d)
c (t) process is

no more than the lim sup expected time average of the α
(d)
c (t)

process, which can be no more than λ
(d)
c . Hence, the right hand

side of (42) is less than or equal to 0, which implies the final
term of the right hand side of (41) is less than or equal to zero
(because the lim sup of a sum is less than or equal to the sum
of lim sups). This implies:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
a,d

E
{

U (d)
a (τ)

}
≤ B̃ + C

ε
(43)

proving the result of part (e) of Theorem 1.
The statement of part (f) is almost identical to that of part

(c), with the exception that the system is assumed to have
ergodic mobility patterns with a well defined steady state. The
proof uses the Lyapunov Optimization Theorem (Theorem 2)
in exactly the same manner as in the proof of part (c), with the
exception that instead of using the one-step conditional drift,
we use the K-slot Lyapunov drift, defined in [3], which gives
rise to a constant Bmobile that depends on the time required for
the mobility process to reach “near steady state” (formalized
in [3]). Indeed, combining the proof techniques of [3] with
that of part (c) of Theorem 1 establishes the result of part (f).

VI. CHANNEL BLIND SCHEDULING AND
MULTI-RECEIVER DIVERSITY

Here we consider two approaches to channel-blind schedul-
ing. The first uses the same CLC-Mesh algorithm of Section
IV-A, while the second augments the algorithm by partially
removing the cell structure and incorporating multi-receiver
diversity.

A. Using an Estimated Error Probability

Suppose that each client c ∈ C transmits either 0 or 1 packet
per timeslot, so that µcr(t) ∈ {0, 1} for all uplink channels
(c, r) and all t. Each router node r ∈ R uses a downlink
transmission rate that is either 0 or k packets/slot (for some
positive integer k), so that µrc(t) ∈ {0, k} for all downlink
channels (r, c) and all t. Rather than measuring exact channel
states, each router node r maintains a success probability
estimate φup

r and φdown
r , representing success probabilities in

the cell of router r for uplink and downlink transmissions.
These probabilities can easily be estimated based on long-term
ACK/NACK history. The CLC-Mesh algorithm can then be
implemented exactly as before using these probabilities as the
actual channel success probabilities. If this system is modeled
as if uplink and downlink successes in each cell r ∈ R are
i.i.d. over timeslots with probability φup

r and φdown
r , then this

is a special case of the basic model specified in Section II.
Hence, the same analytical results of Theorem 1 hold, where
capacity regions are re-defined in terms of these new system
assumptions. Of course, the ergodic capacity and instantaneous
capacity regions under this channel-blind model are generally
smaller than those of a model where channel state information
gives more detail about current channel states.

B. Multi-Receiver Diversity

Suppose that the control algorithm in the mesh router sub-
network is the same as before, but that uplink and downlink
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transmissions are chosen randomly and without any channel
state measurements. Specifically, every slot each router node
r ∈ R independently enters downlink mode with probability
qdown
r , i.i.d. over each slot and independent of the other

downlinks. If node r enters downlink mode at the beginning
of a timeslot, it sends a control signal to all clients within
its cell that restricts them from transmitting. Otherwise, each
client c in the cell of router node r enters transmission mode
with probability qc, i.i.d. over all timeslots in which the router
of their current cell is not in downlink mode, and independent
across clients. We assume that routers transmit either 0 or k
packets in downlink mode (so that µrc(t) ∈ {0, k} for all
downlink channels (r, c)), and that clients transmit either 0 or
1 packet (so that µcr(t) ∈ {0, 1} for all uplink channels (c, r)).
For simplicity, here we neglect the average power constraints
at the clients, and we assume that each client c has only one
active session A

(dc)
c (t).

If a router node r transmits k packets over a downlink
transmission to a destination client in its cell, each of these
packets is received with a success probability given by the
current channel state (note that the transmitter does not need
to measure this channel state ahead of time). If a client c
transmits a packet, that packet is received at the router node
of its cell with a probability that may depend on the number
of other clients transmitting in that cell. However, we assume
it is also possible for one or more router nodes of an adjacent
cell to successfully overhear the transmission (with some
probability that depends on the distance between client and
router node, the number of other clients transmitting, and the
probability that this other router node is in uplink mode). We
assume that all transmissions are ACKed or NACKed at the
end of the timeslot (the absence of an ACK is considered
equivalent to a NACK). Allowing multiple router nodes to
overhear the same transmission creates a multi-receiver diver-
sity gain, and can significantly increase the probability that a
packet is successfully delivered to at least one of the mesh
routers, particularly when clients are close to several router
nodes simultaneously.

It remains only to specify the action taken when a client
node transmits a packet and receives ACK information (pos-
sibly from one or more router nodes). Let c ∈ C represent
a client that has just transmitted a single packet, and recall
that this client transmits packets only from commodity dc.
If it receives no ACK, it assumes their were no successful
receivers and hence keeps the packet in its queue for a future
attempt. If it receives ACKs from one or more mesh router
nodes r, it selects the successful router node r with the largest
positive differential backlog metric Ŵ

(dc)
cr (t), defined in (19),

breaking ties arbitrarily. We assume each router node r that
successfully heard the client transmission includes its queue
backlog U

(dc)
r (t) in its ACK message, so that the Ŵ

(dc)
cr (t)

metric is computed at the clients quite easily. As a final part
of the timeslot, the client then informs the router node r
with the largest positive Ŵ

(dc)
cr (t) value to take charge of the

packet (using a reliable control channel). In this case, the client
then removes the packet from its queue while the winning
router node adds the packet to its queue. The other successful

router nodes simply delete the packet (not including it in
their backlog). If no successful router nodes r have positive
differential backlog metrics Ŵ

(dc)
cr (t), the client simply retains

responsibility of the packet and retransmits at some future
time. Note that this algorithm ensures every packet is in at
most one queue at the end of every timeslot.

It can be shown that the structure of the algorithm maintains
the U

(b)
a (t) ≤ Umax bound for all t and all client and router

queues (a, b). This algorithm is a variant of the diversity
backpressure routing algorithm DIVBAR developed in [18].
There, a Lyapunov drift argument is constructed and it is
shown that this differential backlog index is an optimal way
to pick the next hop node for each client transmission. It
thus can be shown that, assuming control channel information
and ACK/NACK feedback is perfect, the algorithm specified
above achieves utility similar to the performance specified in
parts (c)-(f) of Theorem 1), but where optimality is measured
with respect to this new network structure. Specifically, in-
stantaneous capacity, ergodic capacity, and utility optimality
is measured over all possible scheduling and next-hop rout-
ing algorithms that use probabilities qdown

r and qc with the
probabilistic transmission and reception rules and multi-user
diversity features described above. More precisely, we assume
optimality is measured with respect to the assumption that
nodes transmit whenever possible (using dummy packets if
there are no actual packets), so that the time varying reception
probabilities can be viewed as a time varying channel state
that is independent of queue backlog (performance can of
course be improved if dummy packets are not transmitted,
but optimality is measured with respect to a larger capacity
region in this case). Finally, we emphasize that optimality is
with respect to the queueing structure as defined in this paper,
and does not include cooperative communication or network
coding strategies.

C. Hybrid Routing Policies

The multi-receiver diversity algorithm still maintains a
partial cell structure for downlink transmissions. However, in
cases when some clients may not be within range of any mesh
router node, it may be necessary to have other clients relay
data to and from this client. General policies of this form are
considered in [2] [3] [12], and in [18] for general networks
with multi-receiver diversity. Such approaches can also be
incorporated into the mesh network paradigm of this paper.
However, one disadvantage is that clients need to maintain
separate queues for commodities associated with each other
client. A simple hierarchical approach can be employed as
a low complexity alternative, where we assume that clients
desire to send their data to any router node, and that the
router nodes are responsible for direct downlink delivery to
the destinations. In this case, all data generated by clients can
be treated as a single commodity that must be routed to any
of the mesh routers, and this data is viewed as the exogenous
arrivals to the mesh router sub-network. This keeps the client
actions quite simple, but does not necessarily achieve network
capacity (due to the fact that commodity information is ignored
at the clients).



AD HOC NETWORKS (ELSEVIER), VOL. 5, NO. 6, PP. 719-743, AUGUST 2007 16

x x x x x

x x x x x

x x x

x x x x

x x x x

0 1

2

3

4

5

6

7

9

8

Fig. 1. An example mesh network with 21 router nodes and 10 clients.

VII. SIMULATIONS

For brevity, we provide a simple simulation of the basic
CLC-Mesh algorithm for a cell partitioned network with 21
mesh router nodes, 21 cells, and 10 active clients (see Fig. 1).
At most one uplink or downlink transmission can take place
per cell per timeslot, and all transmissions send exactly one
packet. We assume that P tran

c = 1, P rec
c = 1, and P av

c = 0.5
for each client node c ∈ {0, . . . , 9}. All uplink transmissions
are successful with probability 0.8. Downlink transmissions
are successful with probability 1.

The mesh network in this example is arranged according
to a grid, and we assume mesh link scheduling takes place
according to a 4-periodic cycle: On the first slot of the cycle,
all mesh router nodes can transmit to the router node to their
North (remaining idle if there is no other cell to the North).
On the next three slots, transmission takes place in the West,
South, and East directions (remaining idle when appropriate).4

We use Hab distances given by the shortest path hop count
between mesh router node a and mesh router node b (so that
the distance between the top right and the bottom right cells
is equal to 7). We choose ω = 2, so that mesh routers only
transmit in a direction that deviates from the estimated shortest
path if there is a backlog differential of more than 2 packets.
To simplify the simulation, we assume client locations are
exactly updated at every node every 8 timeslots.

We assume that each client is the source of a single inde-
pendent session of rate λ, and that client source-destination
pairs are specified as follows:

0 ↔ 1, 2 ↔ 3, . . . , 8 ↔ 9

so that client 0 desires to send data at rate λ to client 1
and client 1 desires to send independent data at rate λ to
client 0, client 2 desires to send data at rate λ to client
3 and client 3 desires to send data at rate λ to client 2,
etc. Uplink/downlink transmissions for CLC-Mesh are thus
scheduled by comparing (21) and (22). All exogenous inputs

4Note that this 4-periodic cycle assumes that mesh router nodes can transmit
and receive simultaneously. For example, an interior node can transmit a
packet in the West direction while receiving a packet from the router to its
East. This can easily be extended to an 8-periodic cycle in cases when the
schedule requires transmission and reception to take place on separate slots.
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Fig. 2. Congestion versus input rate λ.
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Fig. 3. Achieved throughput versus raw input rate λ for various V values.

are independent Bernoulli processes, so that a single packet
arrives i.i.d. with probability λ every timeslot. We assume
there are no transport layer storage buffers, so that all packets
that are not immediately admitted to the network layer at
their source clients are necessarily dropped. Flow control is
performed with respect to the logarithmic utilities in (9).

All clients have initial locations as shown in Fig. 1. For
our first experiment, we assume clients c ∈ {0, . . . , 8} are
stationary, and that client 9 moves according to a Markov
random walk, where every timeslot it stays in its same location
with probability 0.5, and else it moves randomly one step in
either the North, West, South, or East directions. If it decides to
move in an infeasible direction, it stays in its same cell. In Fig.
2 we plot the average total occupancy (summing all packets
in all queues of the network) versus the input rate λ. Each
data point represents a simulation over 100,000 timeslots, and
the different curves show values of the flow control parameter
V ∈ {1, 2, 5, 10, 100}, and the case V = ∞ (no flow control)
is also shown. The vertical asymptote appears roughly at
λ = 0.19 for the simulations without flow control, which is
the capacity of this network. Fig. 3 illustrates the resulting
throughput versus the raw data input rate λ for various V
parameters. The achieved throughput is almost identical to the
input rate λ for small values of λ, and the throughput saturates
at a value that depends on V , being very close to the 0.19
capacity level when V is large.

We next conduct a non-ergodic experiment: We fix λ = 0.15
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(within the capacity region), V = 10, and simulate the system
again for 100,000 timeslots. For the first 50, 000 slots, all
nodes have the same mobility model as before. On timeslot
50, 000, node 1 moves from its initial location in the top left
corner to a new location in the bottom right corner (arriving
there after 7 slots), and remains in that location thereafter, as
illustrated in Fig. 1. This single non-ergodic event takes place
while the algorithm continues to run. Figs. 4 and 5 illustrate
a moving average (over 1000 slots) of the total number of
commodity 0 and commodity 1 packets in the network over
the duration of the experiment. The network throughput does
not diminish (yielding a throughput of 0.1495 packets/slot
for each session, so that less than one percent of all data is
dropped), and the system quickly reaches a “new” equilibrium
with respect to the new topology state. It was also observed
that the maximum number of packets in any queue at any
instant of time was no more than V +max[2αmax, µin

max] = 12
(as proven in Theorem 1).
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Fig. 4. Moving average number of commodity 0 packets versus time.
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Fig. 5. Moving average number of commodity 1 packets versus time.

APPENDIX A – MINIMIZING DRIFT TO WITHIN C

In Section V-A, it was shown that the flow control actions of
the cross layer control policy yield decision variables γ

(d)
c (t)

and α
(d)
c (t) that minimize their contribution to the right hand

side of the drift expression (33). Similarly, here we show
that the remaining control decision variables Pc(t) and µ̂

(d)
ab (t)

affecting the right hand side of (33) come within an additive

constant C of minimizing their contribution. These remaining
terms in the right hand side of (33) can be re-written (switching
the sums, and defining µ̂

(d)
ab (t) = 0 whenever no link (a, b)

exists, and defining U
(c)
c (t) = 0 for all c):∑

c

Xc(t)E {Pc(t) | Q(t)}

−
∑
a,b,d

[
U (d)

a (t)− U
(d)
b (t)

]
E

{
µ̂

(d)
ab (t) | Q(t)

}
The above expression can be further decomposed into a sum
over downlinks, uplinks, and mesh router links:∑

c

Xc(t)E {Pc(t) | Q(t)} (44)

−
∑

r∈R,d∈Cr(t)

U (d)
r (t)E

{
µ̂

(d)
rd (t) | Q(t)

}
(45)

−
∑

r∈R,c∈Cr(t),d

[
U (d)

c (t)− U (d)
r (t)

]
E

{
µ̂(d)

cr (t) | Q(t)
}

(46)

−
∑

r∈R,b∈R,d

[
U (d)

r (t)− U
(d)
b (t)

]
E

{
µ̂

(d)
rb (t) | Q(t)

}
(47)

For simplicity of notation, define ψ(t)M=[P (t); (µ̂(d)
ab )] as the

set of control decision variables used in the above expression
(44)-(47), and let f(ψ(t)) represent this expression. Define
Ψ as the set of all feasible control choices. The goal is to
show that the uplink/downlink transmission and mesh network
routing algorithms of CLC-Mesh come within an additive
constant of minimizing f(ψ(t)) over all ψ(t) ∈ Ψ. First define
the following component functions:

f1(ψ(t))M=
∑

c

Xc(t)E {Pc(t) | Q(t)}

−
∑

r∈R,d∈Cr(t)

U (d)
r (t)E

{
µ̂

(d)
rd (t) | Q(t)

}
−

∑
r∈R,c∈Cr(t),d

W (d)
cr (t)E

{
µ̂(d)

cr (t) | Q(t)
}

f2(ψ(t))M=−
∑

r∈R,b∈R,d

W
(d)
rb (t)E

{
µ̂

(d)
rb (t) | Q(t)

}
+

∑
r∈R,b∈R,d

ω(Hr,n̂r(d,t) −Hb,n̂r(d,t))E
{

µ̂
(d)
rb (t) | Q(t)

}
It follows by the definition of W

(d)
cr (t) in (18) and W

(d)
rb (t) in

(23) that f(ψ(t)) = f1(ψ(t)) + f2(ψ(t)). Because f1(ψ(t))
and f2(ψ(t)) use different control variables, it follows that:

inf
ψ(t)∈Ψ

f(ψ(t)) = inf
ψ(t)∈Ψ

f1(ψ(t)) + inf
ψ(t)∈Ψ

f2(ψ(t))

Now define the modified function f̃1(ψ(t)):

f̃1(ψ(t))M=
∑

c

Xc(t)E {Pc(t) | Q(t)}

−
∑

r∈R,d∈Cr(t)

U (d)
r (t)E

{
µ̂

(d)
rd (t) | Q(t)

}
−

∑
r∈R,c∈Cr(t),d

max[W (d)
cr (t), 0]E

{
µ̂(d)

cr (t) | Q(t)
}

(48)
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The only difference between this modified function and f1(t)
is that the variable W

(d)
cr (t) is replaced with max[W (d)

cr (t), 0].
It follows that:

inf
ψ(t)∈Ψ

f1(ψ(t)) = inf
ψ(t)∈Ψ

f̃1(ψ(t)) (49)

This holds because if W
(d)
cr (t) < 0, then the infimizing

solution would set µ̂
(d)
cr (t) = 0 (recall that the feasible

control space always allows a zero transmission rate in any
component). Define δmax

M=max[2αmax, µin
max]. Note that for

any uplink channel (c, r), we have:

Ŵ (d)
cr (t) ≤ max[W (d)

cr (t), 0] ≤ Ŵ (d)
cr (t) + δmax (50)

where W
(d)
cr (t) and Ŵ

(d)
cr (t) are defined in (18) and (19). The

last inequality holds because U
(d)
r (t) ≤ ηV +δmax for all time

(part (a) of Theorem 1), so that max[W (d)
cr (t), 0] ≤ Ŵ

(d)
cr (t)+

δmax. Now note that:

E
{

µ̂
(d)
rd (t) | Q(t)

}
= E

{
φrd(µrd(t), Srd(t))µ

(d)
rd (t) | Q(t)

}
Hence, the uplink/downlink transmission algorithm of CLC-
Mesh (in (20)) chooses control variables to minimize a func-
tion that is similar to f̃1(ψ(t)), with the exception that the
variable max[W (d)

cr (t), 0] is replaced by Ŵ
(d)
cr (t). Using (50)

and the definition of µout
max it follows that: the uplink/downlink

algorithm chooses transmission rates and client power levels
that come within an additive constant δmaxµout

max|C| of mini-
mizing f̃1(ψ(t)), and hence (by (49)) of minimizing f1(ψ(t)).

Similarly, it can be shown that (using (23) and (24)):

Ŵ
(d)
rb (t) ≤ max[W (d)

rb (t), 0] ≤ Ŵ
(d)
rb (t) + δmax + ωHmax

and that the mesh routing decisions of CLC-Mesh come within
an additive constant |R|µout

max(2ωHmax+δmax) of minimizing
f2(ψ(t)). Therefore, the resulting cross-layer control algo-
rithm comes within an additive constant C of the solution that
minimizes the right hand side of the drift bound (33), where:

C = |R|µout
max(2ωHmax + δmax) + δmaxµout

max|C|
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