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Abstract

Satellite and wireless networks operate over time varying channels that depend on atten-
uation conditions, power allocation decisions, and inter-channel interference. In order to
reliably integrate these systems into a high speed data network and meet the increasing
demand for high throughput and low delay, it is necessary to develop efficient network
layer strategies that fully utilize the physical layer capabilities of each network element. In
this thesis, we develop the notion of network layer capacity and describe capacity achiev-
ing power allocation and routing algorithms for general networks with wireless links and
adaptive transmission rates. Fundamental issues of delay, throughput optimality, fairness,
implementation complexity, and robustness to time varying channel conditions and chang-
ing user demands are discussed. Analysis is performed at the packet level and fully considers
the queueing dynamics in systems with arbitrary, potentially bursty, arrival processes.

Applications of this research are examined for the specific cases of satellite networks
and ad-hoc wireless networks. Indeed, in Chapter 3 we consider a multi-beam satellite
downlink and develop a dynamic power allocation algorithm that allocates power to each
link in reaction to queue backlog and current channel conditions. The algorithm operates
without knowledge of the arriving traffic or channel statistics, and is shown to achieve
maximum throughput while maintaining average delay guarantees. At the end of Chapter
4, a crosslinked collection of such satellites is considered and a satellite separation principle
is developed, demonstrating that joint optimal control can be implemented with separate
algorithms for the downlinks and crosslinks.

Ad-hoc wireless networks are given special attention in Chapter 6. A simple cell-
partitioned model for a mobile ad-hoc network with N users is constructed, and exact
expressions for capacity and delay are derived. End-to-end delay is shown to be O(N), and
hence grows large as the size of the network is increased. To reduce delay, a transmission
protocol which sends redundant packet information over multiple paths is developed and
shown to provide O(

√
N) delay at the cost of reducing throughput. A fundamental rate-

delay tradeoff curve is established, and the given protocols for achieving O(N) and O(
√
N)

delay are shown to operate on distinct boundary points of this curve.
In Chapters 4 and 5 we consider optimal control for a general time-varying network. A

cross-layer strategy is developed that stabilizes the network whenever possible, and makes
fair decisions about which data to serve when inputs exceed capacity. The strategy is
decoupled into separate algorithms for dynamic flow control, power allocation, and routing,
and allows for each user to make greedy decisions independent of the actions of others. The
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combined strategy is shown to yield data rates that are arbitrarily close to the optimally
fair operating point that is achieved when all network controllers are coordinated and have
perfect knowledge of future events. The cost of approaching this fair operating point is an
end-to-end delay increase for data that is served by the network.

Thesis Supervisor: Eytan Modiano
Title: Associate Professor
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Chapter 1

Introduction

Satellite and wireless systems have emerged as a ubiquitous part of modern data communi-

cation networks. Demand for these systems continues to grow as applications involving both

voice and data expand beyond their traditional wireline service requirements. In order to

meet the increasing demand in data rates that are currently being supported by high speed

wired networks composed of electrical cables and optical links, it is important to fully utilize

the capacity available in satellite and wireless systems, as well as to develop robust strate-

gies for integrating these systems into a large scale, heterogeneous data network. Emerging

microprocessor technologies are enabling satellite and wireless units to be equipped with

the processing power needed to implement adaptive transmission techniques and to make

intelligent decisions about packet routing and resource management. It is expedient to take

full advantage of these capabilities by designing efficient network control algorithms.

In this thesis, we develop algorithms for dynamic scheduling, routing, and resource

allocation for satellite and wireless networks. Analysis is performed at the packet level and

considers the complete dynamics of stochastic arrivals and queueing at each node of the

network. Indeed, it is shown that queue backlog information is important in the design of

robust network controllers which provide high throughput and low delay in the presence of

time varying channels and changing user demands.

This research has immediate applications in the design and control of almost all mod-

ern data networks, including: multi-beam satellite downlinks, multi-satellite constellations

(with RF downlinks and optical crosslinks), fully wireless ground networks, ad-hoc mobile

networks, and hybrid networks with both wireless and wireline components in the air and on
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the ground. This variety of systems is studied through a unified framework, where network

analysis and control is performed under the assumption that physical layer communication

between network elements is characterized by a set of given (but arbitrary) link budget

functions. This abstraction maintains a simple separation between network layer and phys-

ical layer concepts, yet is general enough to allow network control algorithms to be suited

to the unique capabilities of each data link.

While it is important to understand the properties common to all data networks, it is

also important to consider the effects that different physical layer characteristics have upon

network design and control. For example, inter-channel interference is negligible or non-

existent in traditional wireline networks, but is of primary importance in wireless networks

and often necessitates careful coordination and scheduling among different users transmit-

ting within close proximity to each other. Furthermore, note that although the channels

for both satellite and wireless systems are time-varying, satellite channels are influenced by

atmospheric conditions, scintillation, and the predictable motion of satellite orbits [29] [94]

[1] [73] [28], while wireless channels are affected by different types of fading, interference,

and user mobility [16] [96] [65] [117]. Such differences lead to dramatically different routing

and power allocation algorithms. To address these specifics, special attention is given to

multi-beam satellite downlinks in Chapter 3, and to ad-hoc mobile networks at the end of

Chapter 4 and all of Chapter 6. Our analysis of satellite systems demonstrates significant

performance gains achievable by dynamic power allocation, and our treatment of ad-hoc

networks contributes to a growing theory of fundamental capacity and delay limits.

1.1 Problem Description and Contributions

Here we introduce the network model used throughout this thesis. For convenience, we

consider any satellite transmitter or wireless user as wireless node, and a collection of such

nodes communicating with each other forms a wireless network. Node-to-node communica-

tion depends on the channel conditions and power constraints of each transmitter. Consider

the wireless network of Fig. 1-1 consisting of N power constrained nodes. Time is slotted,

and every timeslot the channel conditions of each link randomly change (due to external ef-

fects such as fading, user mobility, and/or time varying weather conditions). Multiple data

streams Aij(t) randomly enter the system, where Aij(t) represents an exogenous process of

14



packets arriving to node i destined for node j. These arrival processes are arbitrary and

represent potentially bursty data injected into the network by individual users. Packets are

dynamically routed from node to node over multi-hop paths using wireless data links.
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Figure 1-1: (a) A wireless network with multiple input streams, and (b) a close-up of one
node, illustrating the internal queues.

Nodes can transmit data over multiple links simultaneously by assigning power to the

links for each node pair (a, b) according to a power matrix P (t) = (Pab(t)), subject to a total

power constraint at each node. Transmission rates over all link pairs are determined by the

power allocation matrix P (t) and the current channel state S(t) according to a rate-power

curve µ(P , S). Each node contains N − 1 internal queues for storing data according to its

destination (Fig. 1-1b). A controller allocates power and schedules the data to be routed

over the links in reaction to channel state and queue backlog information. The goal of the

controller is to stabilize the system and thereby achieve maximum throughput and maintain

acceptably low network delay.

We establish the network capacity region: The set of all input rate matrices (λij) that the

system can stably support (where λij represents the rate of data entering node i destined for

node j). This region is determined by considering all possible routing and power allocation

strategies, and can be expressed in terms of the steady state channel probabilities, the

node power constraints, and the rate-power function µ(P , S). We emphasize that this is

a network layer notion of capacity, where µ(P , S) is a general function representing the

rate achievable on the wireless links under a given physical layer modulation and coding

strategy. This is distinct from the information theoretic capacity of the wireless network,

which includes optimization over all possible modulation and coding schemes and involves
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many of the unsolved problems of network information theory [44] [33]. We do not address

the information theoretic capacity in this work, and use the term capacity to represent

network layer capacity.

We present a joint routing and power allocation policy that stabilizes the system and

provides bounded average delay guarantees whenever the input rates are strictly inside the

network capacity region. Such performance holds for general ergodic arrival and channel

state processes, even if the specific channel probabilities and packet arrival rates are un-

known to the network controller. The strategy involves solving an optimization problem

every timeslot. We implement centralized and decentralized approximations of the algo-

rithm for an ad-hoc wireless network, where channel variations are due to user mobility.

1.1.1 Related Work

Previous work on resource allocation for wireless systems is found in [111] [102] [132] [54]

[136] [138] [61] [68] [108] [86] [110] [134] [71] [5] [124] [84] [39] [143] [131] [34] [41] [141] [47]

[50] [113] [149] [72] [27] [70] [148] [57] [58]. Connectivity and asymptotic capacity analysis

for large static networks is presented in [57] [58], and for mobile networks in [54]. The exact

capacity of a wireless uplink and downlink with multiple users is developed in [136] [137]

[138] [68], where it is assumed that all users have infinite backlog.

Optimization approaches to network resource allocation problems are developed in [148]

[70] [34] [86] [92] [40] [76] [93] [12] [78] [69] [121]. In [148], a static routing and power allo-

cation problem is considered for meeting network flow constraints, where link capacities are

assumed to be convex functions of an aggregate link resource. In [70], various cost metrics

are formulated as geometric programs to address resource allocation and quality of service

in networks, again resulting in static resource allocations. Optimal power allocation for

minimizing energy expenditure in a network with link-to-link rate requirements is consid-

ered in [34] under the assumption that transmission rates are linear functions of the signal

to interference ratio on each link. In this case, although the network channels and rate

requirements are constant, the optimal solution is not static but requires the computation

of a periodic transmission schedule to achieve optimality. Simple approximations to optimal

scheduling are developed in [41]. Game theoretic approaches and network pricing issues for

wireless downlinks are developed in [86] [93] and for flow networks in [78] [92] [69], where

pricing schemes are considered for achieving a static equilibrium with respect to some utility
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metric. The equilibrium computed in [69] is shown to be within a constant factor of the

maximum utility. Similar constant factor bounds are developed in [121] for shortest path

routing in static networks, where link costs are are assumed to be convex functions of an

aggregate flow parameter.

We note that the optimization and game theoretic approaches of [148] [70] [78] [76] [92]

[93] [40] [69] [121] do not consider the real effects of queueing in networks with randomly

arriving traffic and potentially time varying data links, and do not provide implementable

control algorithms for achieving the desired operating point. For example, queueing delay in

[121] is modeled as a pure function of the data rate flowing over each link, using the M/M/1

approximation for steady state delay in queues with Poisson inputs. However, even if inputs

to the network are Poisson, the internal queues under a dynamic network control policy will

not be M/M/1, unless there is a long period of time between each control decision so that

steady state averages can be achieved. The timescales over which the network is measured

and the control decisions to take based on these measurements are important questions that

need to be addressed.

Such questions fall into the regime of network control, where queue management, schedul-

ing, and resource allocation decisions must be made in the presence of stochastic packet

arrivals and time varying channel conditions. Control problems are addressed in [132] [133]

[23] [5] [110] [141] [50] [47] [149] [124] [143] [63] [39] [71] [131] [108] [113] [111]. In [133], a

stabilizing server allocation strategy is developed for a multi-user downlink with random

inputs and ON/OFF channel states. Related problems of downlink scheduling are consid-

ered in [124] [5] [143], load balancing in cellular networks is treated in [39], and routing

over finite buffer downlinks is considered in [110]. In [141], [47], optimal power allocation

policies are developed for minimizing the energy expended to transmit data arriving to a

downlink node with a single transmitter. In [149], a delay optimal strategy is developed for

a multi-access uplink in systems with symmetric user parameters. Asymptotically optimal

strategies using heavy traffic limits are developed in [99] [62] [124] for scheduling multiple

users over a shared resource. Transmitter scheduling and power control for one-hop static

networks are considered in [71], and one-hop networks with time varying topology are con-

sidered in [23] [131]. Much of our work is inspired by the approach of Tassiulas in [132],

where a Lyapunov drift technique is used to develop a throughput optimal link scheduling

policy for a multi-hop packet radio network. Further work on Lyapunov analysis is found
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in the switching and scheduling literature [95] [88] [109] [81], and a thorough exposition of

stochastic systems and drift analysis is found in [98].

1.1.2 Contributions

The main contributions in Chapters 3 and 4 of this thesis are the formulation of a general

power control problem for time varying wireless networks, the characterization of the net-

work layer capacity region, and the development of capacity achieving routing and power

allocation algorithms that offer delay guarantees and consider the full effects of queueing.

These algorithms hold for systems with general arrival and channel processes, including

ad-hoc networks with mobility. End-to-end delay is described in terms of a simple set of

network parameters, and our analysis can be viewed as a stochastic network calculus.1

The contribution in Chapter 5 is the development of cross-layer techniques for controlling

the network when input rates are outside of the capacity region. Decoupled algorithms for

flow control, routing, and power allocation are constructed and the combined policy is

shown to drive the network to within a specified distance of an optimally fair operating

point. Such convergence is achieved without requiring users to coordinate with each other

or to have any knowledge of the capacity region or network topology. The cost of closely

approaching this fair operating point is an end-to-end delay increase for data that is served

by the network. This work unifies notions of network capacity, network optimization, and

network control.

The contribution in Chapter 6 is the development of a simple cell-partitioned mobile

network for which explicit capacity regions and end-to-end delay expressions can be com-

puted. This work for the first time presents a non-trivial model for which a (relatively)

complete network theory of throughput and delay tradeoffs can be established.

Another contribution of this thesis is our treatment of time varying queueing analysis,

where we extend and simplify known Lyapunov techniques to treat stability and delay

in stochastic queueing networks with general time varying server processes and general,

potentially bursty arrival processes.

1A non-stochastic network calculus was invented in [35], [36] for static networks with leaky bucket inputs
and fixed routing.
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1.2 Network Model

Consider the N node system of Fig. 1-1. We represent the channel process by the channel

state matrix S(t) = (Sab(t)), where Sab(t) represents the current state of channel (a, b)

(representing, for example, attenuation values and/or noise levels). Channels are assumed

to hold their state for timeslots of length T (representing the coherence time of the channel),

with transitions occurring on slot boundaries t = kT . We normalize the slot length so that

T = 1 and all transition times t take integer values. It is assumed that channel states are

known at the beginning of each timeslot. Such information can be obtained either through

direct measurement (where timeslots are assumed to be long in comparison to the required

measurement time) or through a combination of measurement and channel prediction.2 The

channel process S(t) takes values on a finite state space, and is ergodic with time average

probabilities πS for each state S.

Every timeslot, a controller determines transmission rates by allocating a power matrix

P (t) = (Pab(t)) subject to a total power constraint
∑

b6=i Pib(t) ≤ P tot
i for all nodes i.

Additional power constraints can be introduced, such as constraints on the number of

outgoing links that can be activated simultaneously when a node is transmitting or receiving.

It is therefore useful to represent the power constraint in the form P (t) ∈ Π, where Π is a

compact set of acceptable power allocations which include the power limits for each node.

(b)

µ

µ

µab

ab

ab

(a)

ab

µabrate

power  pab

(p, S  )1

(p, S  )2

(p, S  )3

power  pab

µ

Figure 1-2: (a) A set of rate-power curves for improving channel conditions S1, S2, S3,
and (b) a curve restricted to a finite set of operating points corresponding to full packet
transmissions. Curves illustrate behavior on link (a, b) when the single power parameter
Pab is increased, in which case the concave increasing profiles are typical.

Link rates are determined by a corresponding rate-power curve µ (P , S) = (µab (P , S))

(see Fig. 1-2). It is assumed that data can be split continuously, so that each timeslot

the transmission rate µab determines the number of bits that can be transferred over the

wireless link (a, b). Such an assumption is valid if variable length packets can be split and

2Accurate prediction schemes are developed in [29] [28] [73].
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re-packaged with new headers for re-sequencing at the destination (we neglect the extra bits

due to such headers in this analysis). Alternately, splitting and relabeling can be avoided

altogether if all packets have fixed lengths and the transmission rates µ are restricted to

integral multiples of the packet-length/timeslot quotient L/T .

Note that, in general, the transmission rate over a link (a, b) of the network depends on

the full matrix of power allocation decisions. This is because communication rates over the

link may be influenced by interference from other channels. For example, achievable data

rates could be approximated by using the standard CDMA signal-to-interference ratio in

the log() formula for the capacity of a white Gaussian noise channel:

Example Rate-Power Curve: µab (P , S) =

min

{
log

(
1 +

αabPab

Nb + αab
G1

∑
j 6=b Paj + 1

G2

∑
i6=a αib

∑
j Pij

)
, µmax

}
(1.1)

where G1, G2 ≥ 1 represent the CDMA gain parameters for signals from the same trans-

mitter and different transmitters, respectively, and Nb and αij represent noise and fading

coefficients associated with the particular channel state S.

Alternatively, the µab() curves could represent rate curves for a specific set of coding

schemes designed to achieve a sufficiently low probability of error. Note that practical

systems rely on a finite databank of codes, and hence may be restricted to a finite set of

feasible operating points. In this case, rate-power curves are piecewise constant (see Fig.

1-2b). In general, we assume only that µ (P , S) is a piecewise continuous function of power

for each channel state S.

More precisely, we assume the function is upper semi-continuous3 in the power matrix,

so that at points of discontinuity the limiting function value is less than or equal to the

value of the function evaluated at the limit point. (see Fig. 1-2b).

The general rate-power curve description of a wireless link contains as a special case a

wired link with fixed data rate, as the µab(P , S) function can take a constant value for all

power levels. Note also that a broken or non-existent link can be modeled by a rate-power

curve that is zero for all power levels at one or more channel states. Thus, the general power

curve formulation provides the ability to address hybrid networks containing both wireline

and wireless components.

3I.e., that limP→P∗ µab(P , S) ≤ µab(P
∗, S) for all (a, b) and all P ∗ and S [15].
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Let the backlog matrix U(t) = (Uij(t)) represent the unfinished work in node i destined

for node j. The goal of the controller is to maintain low backlog and thereby stabilize the

system. Throughout this thesis, we assume that centralized control is possible, so that the

network controller has access to the full backlog and channel state matrices U(t) and S(t)

every timeslot. Decentralized control where each node has limited information is considered

in the final sections of Chapter 4 and in Chapters 5 and 6.

1.3 Comments on the Physical Layer Assumptions

The network model described above is quite general, although it contains several implicit

assumptions. Here we describe the import of each of these assumptions.

1.3.1 The Time Slot Assumption

Timeslots are used to facilitate analysis and cleanly represent periods corresponding to new

channel conditions and control actions. However, this assumption presumes synchronous

operation, where control actions throughout the network take place according to a com-

mon timeclock. Asynchronous networking is not formally considered in this thesis, with

the exception of the Join-the-Shortest-Queue Policy presented for finite buffer systems in

Appendix B.

The assumption that channels hold their states for the duration of a timeslot is clearly

an approximation, as real physical systems do not conform to fixed slot boundaries and

may change continuously. This approximation is valid in cases where slots are short in

comparison to the speed of channel variation. In a wireless system with predictable slow

fading and non-predictable fast fading, the timeslot is assumed short in comparison to the

slow fading (so that a given measurement or prediction of the fade state lasts throughout

the timeslot) and long in comparison to the fast fading (so that a transmission of many

symbols encoded with knowledge of the slow fade state and the fast-fade statistics will reach

its destination and be successfully decoded with sufficiently low error probability).

1.3.2 The Error-Free Transmission Assumption

All data transmissions from one node to the next are considered to be successful with

sufficiently high probability. For example, the link budget curves for wireless transmissions

21



could be designed so that decoding errors occur with probability less than 10−6. In such a

system, there must be some form of error recovery protocol which allows a source to re-inject

lost data back into the network [14]. If transmission errors are rare, the extra arrival rate due

to such errors is small and does not appreciably change network performance. Throughout

this thesis, we neglect such errors and treat all transmissions as if they are error-free. An

alternate model in which transmissions are successful with a given probability can likely be

treated using similar analysis.

1.3.3 The Peak Power Constraint

The restriction of the power allocation matrix P (t) to the compact set Π is similar to a

peak power constraint, where power must be contained within fixed bounds every timeslot

regardless of previous transmissions. The set Π can be generalized to a time varying set Π(t)

representing the acceptable power levels at each timeslot t, although this does not change

the fact that power must be held within pre-established limits on each and every timeslot.

Such a constraint is realistic in cases when the electronics driving wireless transmitters must

be operated within a certain power range. Furthermore, peak power constraints allow for

deterministic guarantees on network lifetime. For example, in a wireless sensor network

where nodes are deployed with a fixed amount of energy E0, the network is guaranteed to

last for at least E0/Pmax units of time, where Pmax is the maximum transmission power of

any node. Similarly, in a satellite system where energy for downlink transmission is renewed

by solar radiation according to a periodic satellite orbit, the maximum power constraint can

be selected as the power required to keep the satellite transmitting until the next update.

Much work in the area of wireless communication and wireless networking considers the

alternate formulation of average power constraints, where energy can be stored and re-used

later to either extend network lifetime or enable more powerful future transmissions. This

is the approach in [47], where an optimal energy consumption strategy is developed for

a satellite transmitter with both peak and average power constraints. A related problem

of energy minimization is treated for static wireless channels in [141], where closed form

expressions for the optimal power allocation rule are obtained and shown to be channel-

independent if packet arrivals are fully known. The objective of minimizing energy in a

wireless network in order to maximize network lifetime is treated in [41] [34] [72] [27]. In a

stochastic setting, scheduling with such an objective turns network lifetime into a random
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variable. To ensure more predictable network lifetime guarantees while still optimizing over

unused resources, it is perhaps desirable to take the combined approach of transmitting

according to a fixed power budget, but updating this budget every few minutes or hours

based on energy expenditure since the previous update. We note that if such an approach

is used, the network can be viewed as operating according to a peak power constraint for

the duration between each budget update.

1.3.4 Modulation Strategies for Transmitting with Power P

Here we provide a simple example to illustrate how a single wireless node can transmit data

to another node at a rate µ(P, S) using power P while in channel state S for the duration

of one timeslot. Suppose there is no external interference other than background white

Gaussian noise at the receiver. Let NS represent the noise power associated with channel

state S. Furthermore, let αS represent the attenuation between the transmitting node and

its receiver under channel state S. The overall signal-to-noise ratio at the receiver is αSP
NS

.
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Figure 1-3: A piecewise constant rate curve for the 4 modulation schemes described above.
Scaled power requirements are shown in the table, where ∆ represents the minimum distance
between signal points.

We assume in this example that the rate-power curve is a pure function of the signal-

to-noise ratio and is designed so that transmission errors occur with probability less than
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or equal to 10−6, so that we have:

µ(P, S) = f

(
αSP

NS

)

where f() is a piecewise constant function representing the rate achieved by each code

within the databank of coding schemes known to the transmitter. Here we assume that

each “code” corresponds to a simple QAM modulation strategy as shown in Fig. 1-3, and

a given transmission during a timeslot consists of a long chain of symbols that conform to

this modulation [85].

8 PSK

Figure 1-4: An illustration of the signal constellation for 8-PSK modulation.

Clearly, the power expended at the transmitter will fluctuate on a symbol-to-symbol

basis. Such fluctuations are inherently part of any modulation strategy, with the excep-

tion of constant envelope strategies such as phase shift keying with k modulation points

arranged on a circle of radius r (see Fig. 1-4). We do not concern ourselves with such

symbol-to-symbol fluctuations, and define the transmission power P as the average symbol

power over a timeslot. It is assumed that all symbol points are equally likely, so that P

represents an average of the squared radius of each symbol of a given modulation scheme.

For example, under the 2-PAM scheme with a symbol distance of ∆, we have P = 0.25∆2.

The corresponding power for 4, 16, and 64 QAM is given in the table of Fig. 1-3. The value

of ∆ depends on the signal attenuation αS and the background noise NS , and is chosen so

as to maintain a sufficiently low probability of decoding error.

Rate-power functions that correspond to more complex physical layer coding schemes

can also be considered. For example, in a system with one transmitter communicating

over a single link, the system state S may describe both the background noise level at the
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receiver and the frequency response of the channel, where the state S includes a collection of

attenuation coefficients for each bandwidth interval within a set of intervals comprising the

frequency range of interest. In such a case, the transmission rate µ(P, S) may be determined

by an optimal water pouring of the power P over each frequency interval [125] [85]. However,

rather than delve into the details of physical layer modulation and coding, throughout this

thesis we treat the physical layer as an abstraction that is represented solely in terms of a

rate-power function µ(P , S).

1.4 Thesis Outline

In the next chapter we introduce the notion of queue stability and develop the queueing

theoretic tools necessary to analyze wireless networks with bursty data and time varying

server rates. In Chapter 3 we begin our analysis of optimal network control by investigat-

ing the problem of dynamic power allocation in a multi-beam satellite downlink. A joint

problem of routing and power allocation is also treated in the chapter. We have published

the results of this chapter in [108]. Readers interested only in the general network problem

may skip this chapter and proceed directly to Chapter 4 without loss of continuity.

In Chapter 4 we consider the general network problem and establish the wireless network

capacity region. Capacity achieving power allocation and routing strategies are developed

for systems with both known and unknown arrival and channel statistics. Distributed im-

plementations are considered in Section 4.4, where optimal distributed control is established

for networks with independent channels, and a distributed approximation algorithm is de-

veloped for networks with interference. This distributed approximation is implemented for

ad-hoc mobile networks in Section 4.5, where it is shown through analysis and simulation

to offer higher data rates and lower delay than the Grossglauser-Tse relay algorithm of [54].

Satellite constellation networks with optical crosslinks and RF downlinks are considered

in Section 4.6, where a satellite separation principle is developed that demonstrates joint-

optimal control can be decoupled into separate algorithms acting on the constellation and

on the individual downlinks. Finally, in Section 4.7 a perspective on dynamic optimization

is provided by relating these optimal network control algorithms to an iterative solution of

a static convex program. We have presented preliminary versions of this work in [111].

In Chapter 5, we consider the problem of optimal networking when data rates exceed
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the capacity of the network. In this case, it is not possible to serve all of the data, and

optimally fair decisions about which data to serve must be made. We develop a simple flow

control mechanism that operates together with the dynamic routing and power allocation

strategies of Chapter 4. The combined cross-layer algorithm is proven to yield data rates

that are arbitrarily close to an optimal operating point that lies on the boundary of the

capacity region. Closeness to optimality is determined by a parameter affecting a tradeoff

in average delay for data that is served by the network. The flow control and routing

algorithms are decoupled from the power allocation decisions and can be implemented in a

fully distributed manner. A natural pricing mechanism is constructed and shown to yield

similar network performance in a scenario where individual users make greedy decisions

independent of the actions of others.

In Chapter 6 we further explore ad-hoc networks with mobility. We impose a cell-

partitioned structure on the network and compute exact expressions for network capacity. A

capacity achieving control strategy is provided, and exact end-to-end delay under the given

strategy is computed for a simplified i.i.d. user mobility model. It is shown that delay can be

improved by orders of magnitude by considering schemes that transmit redundant versions

of each packet, and a fundamental capacity and delay tradeoff curve is established. This

chapter can be read independently of Chapters 2, 3 and 4. We have presented preliminary

versions of this work in [106] and [103].

Miscellaneous queueing results on convexity and routing over finite buffer queues are

presented in Appendices A and B, which can be read independently. We have presented

the results within these appendices in [105] and [110].
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Chapter 2

Analytical Tools for Time Varying

Queueing Analysis

Here we develop the queueing theoretic tools necessary to analyze wireless networks. We

begin with a precise definition of stability. Our definition extends previous definitions in [6]

[98] [88] [81] [95] [132] and yields a simplified set of necessary and sufficient conditions that

are useful tools for analyzing capacity and delay in time varying wireless networks.

2.1 Stability of Queueing Systems

Consider a single queue in isolation, with an input process A(t) and a time varying server

process µ(t). Because the input stream and server process could arise from an arbitrary,

potentially non-ergodic routing and power allocation policy, our definition of queue stability

must be robust to handle all possible arrival and server processes. Let the unfinished work

function U(t) represent the amount of unprocessed bits remaining in the queue at time t.

This unfinished work function evolves according to a probabilistic model determined by

the stochastics of the A(t) and µ(t) processes. As a measure of the fraction of time the

unfinished work in the queue is above a certain value V , we define the following “overflow”

function g(V ):

g(V ) = lim sup
t→∞

E
{

1
t

∫ t

0
1[U(τ)>V ]dτ

}
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where the indicator function 1X used above takes the value 1 whenever event X is satisfied,

and 0 otherwise. The above limit1 always exists, so that 0 ≤ g(V ) ≤ 1. In cases where the

unfinished work only changes on slot boundaries, the integral above can be replaced by a

discrete sum over timeslots.

Definition 1. A single queue is stable if g(V ) → 0 as V →∞.

Note that the expectation E
{

1
t

∫ t
0 1[U(τ)>V ]dτ

}
in the g(V ) definition above is equal to

1
t

∫ t
0 Pr [U(τ) > V ] dτ . Hence, if sample paths of unfinished work in the queue are ergodic

and a steady state exists, the overflow function g(V ) is simply the steady state probability

that the unfinished work in the queue exceeds the value V . Stability in this case is identical

to the usual notion of stability defined in terms of a vanishing complementary occupancy

distribution (see [98] [6] [81] [88] [132] [95]).

Definition 2. A network of queues is said to be stable if all individual queues are stable.

2.1.1 On the lim sup definition

The lim sup definition of stability was carefully chosen because of its applicability to net-

works with arbitrary inputs and control laws. Indeed, the lim sup of any bounded function

always exists, whereas the regular limit does not. For the reader unfamiliar with such limits,

we note that the lim sup of a function is simply the limiting value of the maximum of the

function. For example, the lim sup of the cosine function is equal to 1 (likewise, the lim inf

of the cosine function is equal to −1). The lim sup has the following important properties,

which follow immediately from the definition:

• For any functions f(t) and g(t) satisfying f(t) ≤ g(t), the lim sup of f(t) is less than

or equal to the lim sup of g(t).

• The lim sup of a sum of functions is less than or equal to the sum of the lim sups of

the functions: lim supt→∞
∑

k fk(t) ≤
∑

k lim supt→∞ fk(t)

Furthermore, the lim sup is equivalent to a regular limit, and hence has all of the same

properties, whenever the regular limit converges.

1Where the lim sup of a bounded function f(t) always exists, and is defined: lim supt→∞ f(t) =
limt→∞

ˆ
supτ≥t f(τ)

˜
. The lim inf is defined similarly.
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While the intuitive notion of stability is clear, its definition was surprisingly difficult

to capture mathematically. For example, a queue should certainly be considered stable if

its backlog remains bounded for all time. However, it is possible for bounded queues to

have non-ergodic variations in backlog, so that regular limits may not exist. Furthermore,

stability should not be confined to systems with deterministically bounded queue sizes.

Otherwise, no system with Poisson inputs would be stable.

µ=1

µ=1

λ

Figure 2-1: A 2-queue system with input stream of rate λ.

One might therefore consider defining stability in terms of a lim inf, or in terms of the

backlog falling below a given threshold infinitely often. However, these definitions are also

insufficient. Indeed, suppose stability were defined in terms of a queue emptying infinitely

often. Consider now the simple 2-queue network of Fig. 2-1, where each queue has a

constant service rate of µ = 1. A single input stream of rate λ enters the system, and

packets must be routed to either the top queue or the bottom queue upon arrival. Clearly,

the stability region of such a network should be no larger than the set of all data rates λ such

that λ ≤ 2, as this is the maximum output rate of the system. However, under the stability

definition of the queue emptying infinitely often, the stability region of the network in Fig.

2-1 becomes the set of all λ <∞. This is achievable by the simple (and non-ergodic) policy

of routing all data to one queue while the other empties, upon which time the routing is

reversed. Using a lim inf leads to a similar counter-example. However, the given definition

of stability in terms of a lim sup yields the correct stability region of λ ≤ 2. That is, λ ≤ 2

is a necessary condition for stability, and λ < 2 is a sufficient condition—provided that a

mild additional assumption concerning boundedness of the second moment of arrivals also

holds, as described in Section 2.2.2

2Stability at the point λ = 2 may or may not be achievable, depending on further details of the arrival
process. Boundedness of the second moment is not imperative but facilitates analysis.
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2.1.2 A Necessary Condition for Network Stability

Consider a network of N queues with unfinished work levels Uk(t) for k ∈ {1, ..., N}, and

define:

gk(V ) = lim sup
t→∞

E
{

1
t

∫ t

0
1[Uk(τ)>V ]dτ

}
gsum(V ) = lim sup

t→∞
E
{

1
t

∫ t

0
1[U1(τ)+...+UN (τ)>V ]dτ

}

Lemma 1. (Network Stability — Necessary Condition) For a network of N queues, we

have:

(a) gsum(V ) → 0 if and only if gk(V ) → 0 for all queues k ∈ {1, . . . , N}.

(b) If the network is stable, then for any δ > 0 there exists a finite value V for which

arbitrarily large times t̃ can be found so that Pr[
∑

i Ui(t̃) ≤ V ] > 1− δ.

In particular, the probability that work in all queues simultaneously drops below the value

V is greater than 1/2 infinitely often (i.e., for the special case where δ = 1/2).

Proof. (a) Note that for any queue k ∈ {1, . . . , N}, we have:

1[Uk(t)>V ] ≤ 1[
P

i Ui(t)>V ] ≤
∑

i

1[Ui(t)>V/N ]

where the last inequality follows because the event
∑

i Ui(t) > V implies that Ui(t) > V/N

for some i ∈ {1, . . . , N}. Using this together with the fact that the lim sup of a sum is less

than or equal to the sum of the lim sups, it follows that for all queues k ∈ {1, . . . , N}, we

have:

gk(V ) ≤ gsum(V ) ≤
N∑

i=1

gi(V/N)

Taking limits as V →∞ proves part (a).

Part (b) follows from (a) by noting that stability implies there exists a value V such that

gsum(V ) < δ for arbitrarily small δ. By definition, gsum(V ) = lim supt→∞
1
t

∫ t
0 Pr[

∑
i Ui(τ) >

V ]dτ . Hence, for any arbitrarily large time t1, there must be a value t̃ ≥ t1 for which the

integrand is less than δ.

A more stringent definition of stability which defines the overflow function g(V ) without

the expectation could also be used, as in [111]. An analogue of Lemma 1 in this case shows
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that if the network is stable then the unfinished work in all queues simultaneously drops

below some threshold value V infinitely often, with probability 1. It turns out that both

definitions of stability lead to the same network capacity region (defined in Chapter 4),

although the definition provided here which incorporates an expectation is slightly easier

to work with and is used throughout this thesis.

2.1.3 A Sufficient Condition for Network Stability

The necessary condition given in the section above is a used to establish the network layer

capacity region described in Chapters 3 and 4. A sufficient condition is also required, and

for this we extend a well developed theory of Lyapunov drift (see [98] [81] [6] [88] [132] [95]).

Consider a network of N queues operating in slotted time, and let U(t) = (U1(t), . . . , UN (t))

represent a row vector of unfinished work in each of the queues for timeslots t ∈ {0, 1, 2, . . .}.

Define a non-negative function L(U) of the unfinished work vector U . We call L(U) a

Lyapunov function. The lemma below combines the Lyapunov stability analysis presented

in [6] [98] and the delay analysis in [88] into a simple and new statement useful for stability

and performance analysis in a wireless network.

Lemma 2. (Network Stability — Sufficient Condition using Lyapunov Drift) If there exists

a positive integer K such that for all timeslots t, the Lyapunov function evaluated K steps

into the future satisfies:

E {L(U(t+K))− L(U(t)) | U(t)} ≤ B −
∑

i

θiUi(t) (2.1)

for some positive constants B, {θi}, and if E {L(U(t0))} < ∞ for t0 ∈ {0, 1, . . . ,K − 1},

then the network is stable, and:

lim sup
t→∞

1
t

t−1∑
τ=0

[∑
i

θiE {Ui(τ)}

]
≤ B (2.2)

The fact that Lyapunov drift is compared after K slots (rather than after a single

slot) is required for systems that approach steady state only over a long period of time.

SimilarK-slot analysis of Lyapunov drift has been used in [131], and similar drift statements

for i.i.d. systems where K = 1 are found in [81] [88] [95] [6] [98]. To our knowledge,

the statement above is the strongest known sufficient condition applicable to time varying
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wireless networks, and yields the following simple and self-contained stability proof using

the machinery of the g(V ) function together with the telescoping series approach taken in

[88].

Proof. Consider (2.1) at times t = mK+t0, where t0 ∈ {0, . . . ,K−1}. Taking expectations

of this inequality over the distribution of U(mK + t0) and summing over m from m = 0 to

m = M − 1 creates a telescoping series, yielding:

E {L(U(MK + t0))} − E {L(U(t0))} ≤ BM −
M−1∑
m=0

∑
i

θiE {Ui(mK + t0)}

Dividing by M and using non-negativity of the Lyapunov function, we have:

1
M

M−1∑
m=0

∑
i

θiE {Ui(mK + t0)} ≤ B + E {L(U(t0))} /M

The above inequality holds for all t0. Summing over t0 ∈ {0, . . . ,K − 1} yields:

1
M

MK−1∑
τ=0

∑
i

θiE {Ui(τ)} ≤ KB +
K−1∑
t0=0

E {L(U(t0))} /M

Dividing by K and taking the lim sup of the above inequality as M → ∞ yields the

performance bound (2.2).

To prove stability, note the performance bound implies that for any queue i:

lim sup
t→∞

1
t

t−1∑
τ=0

E {Ui(τ)} ≤ B/θi

Now considering the overflow function gi(V ), we have:

gi(V ) M= lim sup
t→∞

1
t

t∑
τ=0

E
{
1[Ui(τ)>V ]

}
≤ lim sup

t→∞

1
t

t∑
τ=0

E {Ui(τ)/V } (2.3)

≤ B

θiV

where inequality (2.3) follows because 1[Ui>V ] ≤ Ui/V for any non-negative random variable

Ui. Taking limits as V →∞ shows that gi(V ) → 0 and proves stability.
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For notational convenience, we define:

∑
i

θiUi
M= lim sup

t→∞

1
t

t−1∑
τ=0

[∑
i

θiE {Ui(τ)}

]

so that the Lyapunov drift condition of Lemma 2 implies
∑

i θiUi ≤ B. In Chapter Appendix

2.A we state conditions under which the limit of time average backlog in each node converges,

so that the lim sup is equal to the regular limit and can be pushed through the sum, implying

that:
∑

i θiUi =
∑

i θiU i ≤ B. However, we do not require these convergence conditions,

and throughout this thesis we use the more general expression
∑

i θiUi. The reader can

freely interpret this expression as a weighted sum of individual time averages whenever

such time averages converge.

2.2 Delay Analysis Via Lyapunov Drift

It is illuminating to consider the impact of the above result on the study of a single queue

with a general arrival process A(t) (representing the number of bits that arrive during

slot t) and a general server process µ(t) (representing the server rate at slot t). Both the

arrival and server processes are assumed to be rate convergent with average rates λ and

µav, respectively, as defined below.

2.2.1 Rate Convergence

Definition 3. A process A(t) is rate convergent with rate λ if:

(i) 1
t

∑t−1
τ=0A(τ) → λ with probability 1 as t→∞

(ii) For any δ > 0, there exists an interval size K such that for any initial time t0 and

regardless of past history, the following condition holds:
∣∣∣E{ 1

K

∑K−1
k=0 A(t0 + k)

}
− λ
∣∣∣ ≤ δ

The notion of rate convergence is similar to that of ergodicity, although it is a bit more

general as ergodicity is often associated with stationary and non-periodic processes, while

rate-convergent processes include any that are periodic and many that are non-stationary.

2.2.2 Generalized Bound for Average Delay

Consider again the rate convergent arrival and server processes A(t) and µ(t) for a single

queue. Suppose the new arrivals A(t) are bounded in their second moments every timeslot,
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so that E
{
A(t)2

}
≤ A2

max for all t, regardless of past history. Likewise, suppose the server

process is bounded so that µ(t) ≤ µmax for all t. The following result can be viewed as a

generalization of the well known P-K formula for average delay in an M/GI/1 queue (see,

for example, [49], [14]).

Lemma 3. (Backlog Bound for */*/1 Queues) For a single queue with rate convergent

arrival and server processes A(t) and µ(t) described above, if λ < µav then the time average

unfinished work in the queue satisfies:

U ≤ K(µ2
max +A2

max)
µav − λ

(2.4)

where K is the smallest integer such that at every timeslot t and regardless of past history

of the system, the following condition holds:

E

{
1
K

t+K−1∑
τ=0

µ(τ)− 1
K

t+K−1∑
τ=t

A(t+ k)

}
≥ (µav − λ)/2 (2.5)

Proof. The unfinished work in the queue K slots into the future can be bounded in terms

of the current unfinished work as follows:

U(t+K) ≤ max

[
U(t)−

t+K−1∑
τ=t

µ(τ), 0

]
+

t+K−1∑
τ=t

A(τ)

The above expression is an inequality instead of an equality because new arrivals may depart

before the K slot interval is finished. Squaring both sides of the inequality above, we have:

U2(t+K) ≤ U2(t) +K2µ2
max +

(
t+K−1∑

τ=t

A(τ)

)2

− 2KU(t)

[
1
K

t+K−1∑
τ=t

µ(τ)− 1
K

t+K−1∑
τ=t

A(τ)

]

Taking expectations, noting that E {A(τ1)A(τ2)} ≤
√

E {A(τ1)2}E {A(τ1)2} ≤ A2
max, and

using the definition of K yields:

E
{
U2(t+K)− U2(t) |U(t)

}
≤ K2µ2

max +K2A2
max − 2KU(t)(µav − λ)/2

Applying Lemma 2 to the above inequality (using L(U) = U2) proves the result.

Thus, the unfinished work bound grows linearly with the parameter K, representing the
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number of timeslots required for the system to reach near steady-state starting from any

initial condition. By Little’s Theorem, it follows that the average bit delay Dbit satisfies

Dbit ≤ K(µ2
max +A2

max)/[λ(µav−λ)]. For an intuitive understanding of the tightness of the

bound, consider a queue with Poisson inputs but with an ON/OFF server process, where

the server rate is 1 in the ON state and 0 in the off state, and state transitions occur with

equal probability δ every timeslot. The average server rate for this system is thus µav = 1/2.

Starting in the OFF state, the number of timeslots K required to achieve an expected time

average service rate of at least µav/2 is proportional to 1/δ, as is the expected waiting time

to reach an ON state for a packet that arrives while the server is OFF. Because half of all

packets arrive while the server is OFF, expected delay must also be proportional to 1/δ.

Hence, expected delay must grow linearly in the K parameter, which is a property that is

captured in the upper bound. We note that if arrivals and channel states are i.i.d. every

slot, then K = 1, and the term (µav − λ)/2 on the right hand side of (2.5) can be replaced

by (µav − λ).

It is easy to see that λ ≤ µav is necessary for queue stability, as otherwise the unfinished

work would increase to infinity with probability 1.3 Defining the stability region of the

queue as the closure of all stabilizable data rates, it follows that the stability region is the

set {λ | λ ≤ µav}. That is, λ < µav is a sufficient condition for stability, and λ ≤ µav is

necessary.

2.2.3 Channel Convergence

A wireless data network may have many data links, and the channel conditions of each link

could vary from slot to slot. It is useful to develop a notion of channel convergence, which

is similar to the notion of rate convergence for arrival and server processes. Specifically,

suppose there are N links, and let ~S(t) = (S1(t), . . . , SN (t)) represent the vector process of

link conditions as a function of time. Each component Si(t) takes values on some finite state

space Ci (representing a set of link conditions for channel i), so that the channel process

~S(t) takes values in the finite state space C1 × C2 × · · · × CN . For all states ~S and for any

initial time t0, let T~S(t0,K) represent the set of timeslots during the interval [t0, t0 +K−1]

at which the system is in state ~S. Let ||T~S(t0,K)|| represent the total number of these

3Hence, if λ > µav, for any given value V we cannot find arbitrarily large times t̃ such that Pr[U(t̃) ≤
V ] ≥ 1/2.
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timeslots.

Definition 4. A channel process ~S(t) is channel convergent with steady state probabilities

π~S if:

(i) For all states ~S, ||T~S
(0,K)||
K → π~S with probability 1 as K →∞

(ii) For any δ > 0, there exists an interval size K such that for all channel states ~S, all

initial times t0, and regardless of past history, the following condition holds:

∑
S

∣∣∣∣∣E
{
||TS(t0,K)||

}
K

− πS

∣∣∣∣∣ ≤ δ (2.6)

Thus, for channel convergent processes, the time average fraction of time in each chan-

nel state converges to the steady state distribution π~S , and the expected time average is

arbitrarily close to this distribution if sampled over a suitably large interval. This notion of

channel convergence is important for systems with server rates that depend on channel con-

ditions. Indeed, consider a channel convergent process ~S(t) that determines the expected

service rate E {µ(t)} for a particular link, so that independently of past history, we have

E
{
µ(t) | ~S(t) = ~S

}
= R~S (for some given set of rates {R~S}). We have the following simple

lemma.

Lemma 4. The process µ(t) defined over the channel convergent process ~S(t) as described

above is rate convergent with average rate µav
M=
∑

~S π~SR~S. Furthermore

∣∣∣∣∣µav − E

{
1
K

t0+K−1∑
τ=t0

µ(τ)

}∣∣∣∣∣ ≤ Rmaxδ (2.7)

where Rmax is the maximum value of R~S over all channel states ~S, and K and δ are the

parameters of the ~S(t) process described in (2.6).

Proof. The difference between µav and the empirical rate over K slots is given by:

µav −
1
K

t0+K−1∑
τ=t0

µ(τ) =
∑

~S

πSR~S −
1
K

∑
~S

∑
τ∈T~S

(t0,K)

µ(τ) (2.8)

=
∑

~S

π~SR~S −
∑

~S

||T~S(t0,K)||
K

1
||T~S(t0,K)||

∑
τ∈T~S

(t0,K)

µ(τ)

Note that defining t0 = 0 and using the fact that ||T~S(0,K)||/K → π~S and the fact that
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(by the law of large numbers), 1
||T~S

(0,K)||
∑

τ∈T~S
(0,K) µ(τ) → R~S as K → ∞ reveals that

1
K

∑K−1
τ=0 µ(τ) → µav, proving the first condition of rate convergence.

Now fix δ > 0 and let K be large enough so that for any initial timeslot t0, we have∑
~S

∣∣∣∣E{||T~S
(t0,K)||}
K − π~S

∣∣∣∣ ≤ δ. Taking expectations of inequality (2.8) yields

µav − E

{
1
K

t0+K−1∑
τ=t0

µ(τ)

}
=

∑
~S

π~SR~S − E

 1
K

∑
~S

∑
τ∈T~S

(t0,K)

E
{
µ(τ) | ~S

}
=

∑
~S

πSR~S −
∑

~S

E
{
||T~S(t0,K)||

}
K

R~S

≤
∑

~S

R~S

∣∣∣∣∣π~S −
E
{
||T~S(t0,K)||

}
K

∣∣∣∣∣
and hence

∣∣∣µav − E
{

1
K

∑t0+K−1
τ=t0

µ(τ)
}∣∣∣ ≤ Rmaxδ. The expectation of the time average

rate can thus be made arbitrarily close to µav, proving the result.

Note that in the special case of i.i.d. channel states, the parameters in (2.6) can be set

to K = 1, δ = 0, as steady state averages are achieved every timeslot.

2.3 Miscellaneous Queueing Theoretic Results

During the course of this thesis we have developed a number of interesting queueing theoretic

results applicable to general queues with time varying server rates. The following results

are not used in this thesis but are presented in Appendices A, B, and C.

2.3.1 Convexity in Queues

In Appendix A we prove that any moment of unfinished work in a queue is monotonically

increasing and convex in the input rate λ. This holds for general arrival streams, where the

data rate is described either in discrete steps corresponding to a finite set of indistinguishable

substreams being added or removed from the arrival process to the queue, or as a continuous

variable obtained by probabilistically splitting the traffic from an arbitrary stream. The

result is intuitive and the analysis is simple and elegant, using a novel form of stochastic

coupling. This result establishes an important foundation, as convexity is often assumed

when applying optimization techniques to finding optimal flow distributions in queues. Such
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convexity results can be extended to any system satisfying the non-negativity, symmetry,

and monotonicity conditions. This work was presented in [105].

2.3.2 Join-the-Shortest-Queue Routing in Finite Buffer Systems

In Appendix B we consider a problem of routing packets from an arbitrary input stream

over a set of N parallel queues with heterogeneous and arbitrarily varying server rates

µ1(t), . . . , µN (t). We define dπ(B) as the drop rate when each queue has a finite buffer size

B when some routing algorithm π is used, and say that the system is stable if dπ(B) → 0

as B → ∞. Considering the Join-the-Shortest-Queue (JSQ) policy in comparison to any

other policy (perhaps one with full knowledge of future events), it is shown that:

dJSQ(B) ≤ dπ

(
B

N
− Lmax −

Lmax

N

)

where Lmax is the maximum length of a packet.

Hence, the JSQ strategy yields stability whenever possible, and has a loss rate which

is lower than the loss rate of any other policy implemented on queues with a suitably

smaller buffer size. Upper and lower bounds on the loss rate can be computed in terms of a

single queue with an aggregate server rate µsum(t) equal to the sum of the individual rates

µ1(t) + . . .+ µN (t). This work was presented in [110].

2.3.3 The Jitter Theorem

In Appendix C we prove that any moment of unfinished work in a queue with an arbitrary

arrival process and an independent and stationary time varying server process µ(t) is greater

than or equal to the corresponding moment in a system with a constant server rate µ equal

to the time average of µ(t). Two different and simple proofs are given, and a simple upper

bound is conjectured.
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Chapter Appendix 2.A — Extension of Foster’s Criterion

Here we present additional conditions which, together with the K-slot Lyapunov drift con-

dition of Lemma 2, imply that time averages of unfinished work Ui(t) in each node i con-

verge to some finite value U i. This involves extending a well known Lyapunov Drift result

called Foster’s Criterion [6] (similar to the Pakes drift lemma given in [14]) to address first

moments of backlog in general stochastic systems with uncountably infinite state spaces,

as the unfinished work vector ~U(t) has uncountably infinite cardinality in each of the N

dimensions.

Lemma 5. (Extension of Foster’s Criterion) Consider an unfinished work process ~U(t) ∈

RN which satisfies the following four conditions:

(i) The ~U(t) stochastics evolve according to a finite state Markov Chain M(t), so that

channel and arrival distributions at slot t are determined by the state of M(t).

We define F (t) = [~U(t),M(t)] as the combined system state consisting of the current

backlog vector and the current state of the Markov chain.

(ii) There exists a positive integer K and values B < ∞ and ε > 0 such that for all

timeslots t0 and regardless of the initial state F (t0), a Lyapunov function evaluated K steps

into the future satisfies:

E
{
L(~U(t0 +K))− L(~U(t0)) | F (t0)

}
≤ B − ε

∑
i

Ui(t0)

(iii) E
{
L(~U(τ))

}
<∞ for all τ ∈ {0, 1, . . . ,K − 1}.

We define the following compact set Ωδ parameterized by a value δ > 0:

Ωδ
M=

{
~x ∈ RN | ~x ≥ 0,

∑
i

xi ≤
B + δ

ε

}

(iv) There exists a δ > 0 such that for any time t0 and for any initial backlog ~U(t0) ∈ Ωδ,

there is some positive probability p that the backlog in all queues will simultaneously empty

within a finite number of timesteps.

If conditions (i)-(iv) are satisfied, then there are finite values U1, U2, . . . , UN such that

for all i, 1
t

∑t−1
τ=0 Ui(τ) → U i as t→∞, and these steady state values satisfy

∑
i U i ≤ B/ε.

Before proving the lemma, we note its applicability to time varying wireless networks
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and to Lemma 2. Note that conditions (ii) and (iii) are similar to the Lyapunov drift

conditions of Lemma 2, and follow from these conditions by defining εM=θmin. Condition (i)

indicates that we are considering only systems with arrival and channel processes modulated

by a finite state Markov chain. Finally, condition (iv) holds in cases where every timeslot

there is some nonzero probability that no new arrivals enter the network, so that the system

will empty after a suitably large number of such successive “no arrival” slots. Lemma 2

together with the lemma above thus imply time averages U i exist and satisfy
∑

i θiU i ≤ B.

Proof. Suppose conditions (i)−(iv) hold. Condition (ii) combined with the definition of the

compact set Ωδ implies that the K-step Lyapunov drift is less than or equal to −δ whenever

the initial backlog ~U(t0) is outside of the Ωδ region. Define T (~U,M) as the random number

of timeslots required to return to the Ωδ region given that the unfinished work vector leaves

Ωδ starting at a point ~U ∈ Ωδ when the Markov chain is in state M . By the standard drift

theory for Foster’s Criterion [6] [14], this time has a finite mean T (~U,M).4 From this fact

together with the fact that any finite function over a compact set has a maximum value

[100], it follows that the maximum of T (~U,M) over all M and all ~U ∈ Ωδ exists and is also

finite (as the number of Markov states ||M || is finite and the set Ωδ is compact). Define T

as this maximum value, representing the maximum mean recurrence time to the Ωδ region

starting at any point within the region.

Let Z represent the number of timeslots required for the system to have a positive

probability p of emptying within Z slots, starting from any ~U ∈ Ωδ and starting in any

Markov state. Such a value exists by condition (iv). Consider starting at any ~U ∈ Ωδ and

waiting until either Z slots expire and the unfinished work has not left Ωδ, or until the

unfinished work exits the Ωδ region and returns again. The average time to wait for such

a duration is no more than Z + T , and the system empties with probability p during each

such interval. It follows that the average time to empty starting at any point in the Ωδ

region is no more than (Z + T )/p, independent of past history.

Define T0(M → M) as the time required to return to an empty network when the

Markov chain is in state M , starting from an empty network in the same Markov state.

(That is, T0(M → M) is the mean recurrence time to state [~0,M ].) Further define NM (t)

to be the number of times the system is empty while the Markov chain is in state M during

4The proof of this fact is similar to (2.12)-(2.14) given in the proof of the claim below.
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the interval 0 ≤ τ ≤ t. By renewal theory [49], we have:

lim
t→∞

NM (t)
t

=
1

E {T0(M →M)}

so that the limit above always converges, and E {T0(M →M)} is finite whenever the limit

is strictly positive. Now define N(t) =
∑

M NM (t) as the total number of times the system

empties during 0 ≤ τ ≤ t. Because there are a finite number of Markov states M , we can

pass the limit through the summation to find:

lim
t→∞

N(t)
t

=
∑
M

lim
t→∞

NM (t)
t

=
∑
M

1
E {T0(M →M)}

(2.9)

However, because the expected duration between emptying times is independently bounded

by (Z + T )/p, it follows that:

lim
t→∞

N(t)
t

≥ p

Z + T
(2.10)

Combining (2.9) and (2.10), we find that:

∑
M

1
E {T0(M →M)}

≥ p

Z + T
> 0

Thus, there is some state M1 such that E {T0(M1 →M1)} <∞.

We mark the times when the network empties and the Markov chain is in state M1 as

renewal times, and note that the system has independent and identical stochastics after

renewals. By renewal theory [49], it follows that for each i, we have:

lim
t→∞

1
t

t−1∑
τ=0

Ui(τ) =
E
{
A

(i)
M1→M1

}
E {T0(M1 →M1)}

where E
{
A

(i)
M1→M1

}
is defined as the expected sum of unfinished work in queue i between

renewal times. If this value is finite for queue i, then the time average unfinished work in

this queue is finite and converges to the value U i
M=

E
n

A
(i)
M1→M1

o
E{T0(M1→M1)} .

Claim:
∑

i E
{
A

(i)
M1→M1

}
≤ BE{T0(M1→M1)}

ε +
PK−1

k=0 E{L(~U(r0+k))}
ε , where r0 is a renewal

time. In particular, from condition (iii) we have that the value E
{
A

(i)
M1→M1

}
is finite for

each i.

The claim is proved separately below. From the claim, it follows that time averages of

41



unfinished work converge, so that limt→∞
1
t

∑t−1
τ=0 Ui(τ) = U i, where the U i values satisfy:

∑
i

U i ≤
B

ε
+

∑K−1
k=0 E

{
L(~U(r0 + k))

}
εE {T0(M1 →M1)}

Note that the above inequality holds for any definition of a renewal interval, provided

that renewals begin when the network is empty and the Markov chain is in state M1 (so

that F (t) = [~0,M1]). Hence, the above analysis can be repeated in the case when renewals

are defined on every Rth visitation to the state F (t) = [~0,M1]. Nothing changes except for

the denominator of the error term, and we have:

∑
i

U i ≤
B

ε
+

∑K−1
k=0 E

{
L(~U(r0 + k))

}
εRE {T0(M1 →M1)}

The above inequality holds for any positive integer R. Taking limits as R→∞ shows that∑
i U i ≤ B

ε , proving the result.

Proof of Claim:
∑

i E
{
A

(i)
M1→M1

}
≤ BE{T0(M1→M1)}

ε +
PK−1

k=0 E{L(~U(r0+k))}
ε , where r0

is a renewal time.

Proof. Consider the system starting out with initial state F (0) = [~0,M1], so that time 0 is

a renewal time. Recall that T0(M1 → M1) represents the number of timesteps required to

return to this renewal state. For simplicity of notation, we represent this time as T , and

note from the above result that E {T} < ∞. Recall that A(i)
M1→M1

represents the sum of

unfinished work for the duration {0, 1, . . . , T − 1} between renewal events. We have:

E
{
A

(i)
M1→M1

}
= E

{
T−1∑
τ=0

Ui(τ)

}

= E

{ ∞∑
τ=0

Ui(τ)1[T>τ ]

}
(2.11)

Define H(t) as the complete history of the F (τ) system state for τ ∈ {0, 1, . . . , t}. Define

Y (t)M=L(~U(t))1[T>t]. Imitating the proof for the fact that E {T} < ∞ given in [6] [14], we

have for any time t:
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E {Y (t+K) | H(t)} = E
{
L(~U(t+K))1[T>t+K] | H(t)

}
≤ E

{
L(~U(t+K))1[T>t] | H(t)

}
(2.12)

≤ E

{[
L(~U(t)) +B − ε

∑
i

Ui(t)

]
1[T>t] | H(t)

}
(2.13)

= Y (t) +B1[T>t] − ε
∑

i

Ui(t)1[T>t] (2.14)

where (2.12) follows because 1[T>t+K] ≤ 1[T>t] for all t, and (2.13) follows by condition (ii)

of the above lemma together with the fact that ~U(t) and 1[T>t] are fixed quantities given

H(t). Taking expectations of (2.14) over the distribution of H(t), we thus have:

E {Y (t+K)} − E {Y (t)} ≤ BPr[T > t]− ε
∑

i

E
{
Ui(t)1[T>t]

}
Fix t0 ∈ {0, . . . ,K − 1} and apply the above equations at times t = t0 +mK. Summing

over m from 0 to M − 1 yields:

E {Y (t0 +MK)}−E {Y (t0)} ≤ B

M−1∑
m=0

Pr[T > t0+mK]−ε
∑

i

M−1∑
m=0

E
{
Ui(t0 +mK)1[T>t0+mK]

}
Summing over t0 from t0 = 0 to t0 = K − 1 yields:

K−1∑
t0=0

E {Y (MK + t0)} −
K−1∑
t0=0

E {Y (t0)} ≤ B
MK−1∑

τ=0

Pr[T > τ ]− ε
∑

i

MK−1∑
τ=0

E
{
Ui(τ)1[T>τ ]

}

Taking limits as M →∞ and using the fact that 0 ≤ E {Y (t)} ≤ E
{
L(~U(t))

}
, we have:

∑
i

∞∑
τ=0

E
{
Ui(τ)1[T>τ ]

}
≤
B
∑∞

τ=0 Pr[T > τ ]
ε

+
1
ε

K−1∑
t0=0

E
{
L(~U(t0))

}

Using (2.11) and noting that E {T} =
∑∞

τ=0 Pr[T > τ ], we have:

∑
i

E
{
A

(i)
M1→M1

}
≤ BE {T}

ε
+

1
ε

K−1∑
t0=0

E
{
L(~U(t0))

}

proving the claim.
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Hence, the conditions of Lemma 5 imply that:

1
t

t−1∑
τ=0

Ui(τ) → U i
M=

E
{
A

(i)
M1→M1

}
E {T0(M1 →M1)}

For completeness, we show that 1
t

∑t−1
τ=0 E {Ui(τ)} converges to the same limit.

Proof. Let R(t) represent the number of complete renewal intervals that occur by time t.

We have:
t−1∑
τ=0

E {Ui(τ)} = E {A0}+ E


R(t)∑
r=1

Ar

+ E
{
ÃR(t)+1

}
(2.15)

where A0 represents the sum of unfinished work in queue i from time 0 up to the time just

before the first renewal event, Ar represents the sum of unfinished work in queue i over

renewal interval r, and ÃR(t)+1 represents the portion of AR(t)+1 summed up to the cutoff

time t. Hence:

E


R(t)∑
r=1

Ar

 ≤
t−1∑
τ=0

E {Ui(τ)} ≤ E {A0}+ E


R(t)+1∑

r=1

Ar


Note that for all integers r ≥ 1, we have:

E {Ar} = E
{
A

(i)
M1→M1

}
By renewal reward theory [49], it follows that 1

t E
{∑R(t)

r=1 Ar

}
→ E {A1} /E {T0(M1 →M1)},

and the result follows.56

5In particular, the process R(t)+1 is a stopping time process [49], and hence by Wald’s equality it follows

that: E
nPR(t)+1

τ=0 Ar

o
= E {A1} (E {R(t)}+ 1)

6This page 44 is a corrected version of page 44 in the original thesis, as the original proof contained
incorrect statements about renewal theory. In particular, it was originally and incorrectly stated that R(t)
itself is a stopping time process (whereas R(t)+1 should have been used as the stopping time process), and
it was incorrectly stated that E

˘
AR(t)+1

¯
= E {A1}.
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Chapter 3

Satellite and Wireless Downlinks

Consider the example network of two downlink nodes shown in Fig. 3-1. Data streams

X1, X2, and X3 arrive to the system and are intended for destinations 1, 2, and 3, re-

spectively. Packets from the first input stream arrive to Node A, while packets from the

second input stream can be routed to either Node A or Node B. Packets from the third

input stream arrive to Node B but can be delivered either directly to destination 3 or indi-

rectly through destination 4. Furthermore, the downlink data rates depend on time varying

channel conditions as well as power allocation decisions. We thus have the following joint

problem of routing and power allocation:

Routing : In which station do we put packets from Source 2? From the figure, it seems

that the most direct path for these packets is through Node A, as Node A is closer to

destination 2 than Node B. However, if traffic from stream X1 is heavy, it may be better

to route most packets from Source 2 through Node B, which allows Node A to devote most

of its power resources to the Source 1 traffic. How can these decisions be made dynamically

without prior knowledge of the arrival patterns of other users?

Another routing issue involves selecting a downlink path for the X3 data in node B. If

destinations 3 and 4 are connected and can forward data to each other, it may be useful to

send some of the data destined for node 3 over the (B, 4) downlink, rather than the (B, 3)

downlink.

Power Allocation: Each satellite is power constrained, so that downlink allocations must
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Figure 3-1: An example problem of routing and power allocation for satellite or wireless
downlinks.

satisfy the following constraints for all time:

PA1(t) + PA2(t) ≤ PA
tot

PB2(t) + PB3(t) + PB4(t) ≤ PB
tot

How must power be allocated, and how must this be done dynamically as a function of the

queue backlog and the current channel conditions?

A further problem of packet scheduling does not arise in this example, but would arise if

destination 3 where able to forward packets to destination 2. In this case, data from either

source X2 or source X3 might be delivered over the downlink (B, 3). Thus, given a power

allocation for this link, one must still decide which data to transmit.

In this chapter, we introduce the downlink problem and develop dynamic network control

algorithms for the specific application of a multi-beam satellite. The analysis provided here

is also applicable to wireless systems. We begin by examining the power allocation problem.

The joint problem of routing and power allocation is treated in Section 3.5, and the full

problem of routing, power allocation, and scheduling is treated in Chapter 4 where the

general network problem is considered. We have published much of the work contained in

this chapter in [108] [107].

3.1 The Multi-Beam Satellite Downlink

Consider the multi-beam satellite downlink system of Fig. 3-2, where a single satellite

transmits data to N ground locations over N different downlink channels. Each channel is
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assumed to be time varying (e.g., due to changing weather conditions or satellite motion),

and the overall channel state is described by the channel convergent vector process ~S(t) =

(S1(t), . . . , SN (t)). Packets destined for ground location i arrive from an input stream Xi

and are placed in an output queue to await processing. The servers of each of the N

output queues may be activated simultaneously at any time t by assigning to each a power

level Pi(t), subject to the total power constraint
∑

i Pi(t) ≤ Ptot. The transmission rate of

each server i depends on the allocated power pi(t) and on the current channel state Si(t)

according to a concave rate-power curve µi(Pi, Si). A controller allocates power to each

of the N queues at every instant of time in reaction to channel state and queue backlog

information. The goal of the controller is to stabilize the system and thereby achieve

maximum throughput and maintain acceptably low levels of unfinished work in all of the

queues.
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Output Queues
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2U (t)

1U (t)X (t)

Nµ 

11(P (t), S (t))2µ 

2 2(P (t), S (t))1µ 

NX  (t)

2X (t)

1

Figure 3-2: A multibeam satellite with N time-varying downlink channels and N onboard
output queues.

Related work on queue control strategies and resource allocation for satellite and wireless

systems is found in [108] [136] [138] [68] [86] [23] [18] [133] [131] [132] [60] [142] [5] [99] [143]

[124] [141] [47] [111] [110] [134]. In [136], the capacity of a wireless uplink is established

using optimal information theoretic methods, and a related downlink problem is treated in

[138], leading to the Serve-the-Best-Channel policy for maximizing the sum output rate.

This work assumes that users have an infinite backlog of data which can be delivered upon

request. A similar problem is treated in [86] for finding a static power allocation in a wireless

downlink to maximize a sum of user utility functions. In [133], dynamic scheduling in a

parallel queue system with a single server is examined, where every timeslot the transmit

channels of the queues vary between ON and OFF states and the server selects a queue
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to service from those that are ON. The capacity region of the system is developed when

packet arrivals and channel states are i.i.d. Bernoulli processes, and stochastic coupling

is used to show optimality of the Serve − the − Longest − Connected − Queue policy

in the symmetric situation that arrival and channel processes are identical for all queues

(i.e., λ1 = . . . = λN , p
on
1 = . . . = pon

N ). Similar server scheduling problems for wireless

downlinks are treated in [5] [124]. Such server allocation problems can be viewed as special

cases of our power allocation formulation, and in Section 3.4 we verify stability of the

Serve− the−Longest−Connected−Queue policy for symmetric and asymmetric systems

with multiple servers, as well as provide a delay bound. We note that a rate allocation

scheme similar to our power allocation algorithm was independently proposed in [143] for

stabilizing a wireless downlink in a cellular context.

In [132], a wireless network of queues is analyzed when input packets arrive according

to Poisson processes and have exponentially distributed length. A Lyapunov function is

used to establish a stabilizing routing and scheduling policy under network connectivity

constraints. In [131], Lyapunov analysis is used to develop a server allocation algorithm

in a network with time-varying connectivity. Such a technique has been recently used for

establishing stability in an uplink with static channels in [149], [84], in a one-hop static

network in [71], and in the switching literature [97] [95] [75] [88] [109]. In [95], an N × N

packet switch is treated and input/output matching strategies are developed to ensure 100%

throughput whenever the arrival rates are within the feasible region. In [88], [81] [98], the

method of Lyapunov stability analysis is used to prove that queues are not only stable but

have finite backlog moments. In particular, a switch with Poisson inputs and operating

under the Maximum Weight Matching (MWM) scheduling algorithm is shown in [88] to

have delay that is upper bounded by a function which grows linearly in the number of

input ports to the switch.1 A similar delay analysis was independently developed in [71] for

scheduling in a one-hop network with memoryless inputs.

The main contribution in this chapter is the treatment of a general power allocation

problem for multi-beam satellites with adaptive transmission rates, and the development

of throughput maximizing power and server allocation algorithms for systems with general

inputs and time varying channels. This is accomplished through the Lyapunov theory

established in Chapter 2. This analysis extends to other wireless networking problems

1A logarithmic delay algorithm for switch scheduling is developed in [104].
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where power allocation and energy efficiency is a major issue. Recent work in [141] treats

a problem of minimizing the total energy expended to transmit blocks of data arriving to a

single queue, and it is shown that power control can be effectively used to extend longevity of

network elements. In [134] power allocation for wireless networks is addressed. The authors

consider ON/OFF type power allocation policies and observe that for random networks,

capacity regions are not extended much by including more power quantization levels. Our

capacity results in this chapter illustrate that the capacity region is often considerably

extended if multiple power levels are utilized for the satellite downlink problem.

3.2 Power and Server Allocation

Consider the N queue system of Fig. 3-2. Each time varying channel i can be in one

of a finite set of states Ci. We represent the channel process by the channel state vector

~S(t) = (S1(t), · · ·SN (t)), where ~S(t) ∈ C1 × · · · × CN . Time is slotted, and channels hold

their states for the duration of a timeslot (where the slot size is normalized to 1 unit of

time). It is assumed that the channel states are known at the beginning of each timeslot.

The channel process is assumed to be channel convergent with channel probabilities π~S for

each state ~S. At every timeslot, the server transmission rates can be controlled by adjusting

the power allocation vector ~P (t) = (P1(t), . . . , PN (t)) subject to the total power constraint∑
i Pi(t) ≤ Ptot. For any given state Si of downlink channel i, there is a corresponding rate-

power curve µi(Pi, Si) which is increasing, concave, and continuous in the power parameter

(Fig. 3-3). Note that these curves implicitly assume that channels are independent, as the

rate over channel i depends only on the power allocated to that channel and not on the

power allocated elsewhere. This model is realistic for satellite downlinks in which individual

beams do not interfere with each other, and leads to simple real-time control algorithms.

We note that general rate-power functions µ(P , S) with arbitrary curvature, interchannel

interference, and potential discontinuities are treated in Chapter 4.

The power curve µi(Pi, Si) could represent the logarithmic Shannon capacity curve of

a Gaussian channel, or could represent a rate curve for a specific set of coding schemes

designed to achieve a sufficiently low probability of error in the given channel state. In

general, any practical set of power curves will have the concavity property, reflecting di-

minishing returns in transmission rate with each incremental increase in signal power. The
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Figure 3-3: A set of concave power curves µi(Pi, Si) for channel states S1, S2, S3.

continuity property is less practical. A real system will rely on a finite databank of coding

schemes, and hence actual rate/power curves restrict operation to a finite set of points. For

such a system, we can create a new, virtual power curve by a piecewise linear interpolation

of the operating points (see Fig. 3-4a). Such virtual curves have the desired continuity and

concavity properties, and are used as the true curves in our power allocation algorithms.

Clearly a virtual system which allocates power according to the virtual curves has a capacity

region which contains that of a system restricted to allocate power on the vertex points.

However, when vertex points are equally spaced along the power axis and integrally divide

the total power Ptot, the capacity regions are in fact the same, as any point on a virtual

curve can effectively be achieved by time-averaging two or more feasible rate-power points

over many timeslots. Indeed, in Section 3.4 we design a stabilizing policy for any set of

concave power curves which naturally selects vertex points at every timeslot if power curves

are piecewise linear.

0 1Power P
(a) (b)

µi(p)rate µi

Figure 3-4: Virtual power curves for systems with a finite set of operating points.
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This power allocation formulation generalizes a simpler problem of server allocation.

Assume that there are K servers, and every timeslot the servers are scheduled to serve K

of the N queues (K < N). A given queue i transmits data at a fixed rate µi whenever a

server is allocated to it, and transmits nothing when no server is allocated. This problem

can be transformed into a power allocation problem by defining the virtual power constraint∑
i Pi(t) ≤ K and the virtual power curves:

µ̃i(P ) =

 µiP if 0 ≤ P ≤ 1

µi if P > 1
(3.1)

Such a virtual curve contains the feasible points (P = 0, µ̃i = 0) and (P = 1, µ̃i = µi),

corresponding to a server being either allocated or not allocated to queue i (see Fig. 3-4b).

However, it suffices to remove this feasible point restriction and treat the system as if it

operates according to the continuous virtual power curve (3.1). This preserves the same

capacity region, and later it is shown that any stabilizing algorithm which uses the virtual

curves can be transformed into a stabilizing algorithm which conforms to the feasible point

restriction.

3.2.1 Example Server Allocation Algorithm

One might suspect the policy of serving the K fastest, non-empty queues would maximize

data output and achieve stability. However, we provide the following counterexample which

illustrates this is not the case. Consider a 3-queue, 2-server system with constant processing

rates (µ1, µ2, µ3) = (1, 1, 1/2). All arriving packets have length L = 1 and arrive according

i.i.d. Bernoulli processes with packet arrival probabilities (p1, p2, p3) = (p, p, (1−p2)/2+ ε),

where p < 1/2 and 0 < ε < p2/2. Note that the policy of serving the two fastest non-empty

queues removes a server from queue 3 whenever there are simultaneous arrivals at queues

1 and 2. This happens with probability p2, and hence the time average processing rate at

queue 3 is no more than (1 − p2)/2 (where the factor 1/2 is due to the rate of server 3).

This effective service rate cannot support the input rate, and hence queue 3 is unstable

under this server allocation policy. However, the system is clearly stabilizable: The policy

of always allocating a server to queue 3 and using the remaining server to process packets

in queues 1 and 2 stabilizes all queues.
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3.3 The Downlink Capacity Region

Let the arrival process Xi(t) represent the total bits that arrive to queue i during the first

t slots, and assume this process is rate convergent with rate λ. It is assumed that all

processes have bounded second moments, so that the expected number of total arrivals∑
iAi(t) during any slot t satisfies E

{
(
∑

iAi(t))
2
}
≤ A2

max for all i and for all timeslots

t, regardless of past history. Recall that ~S(t) represents the time varying server process,

and is channel convergent with state probabilities π~S . Let the unfinished work vector ~U(t)

represent the state of queue backlog at slot t.

Definition 5. The Downlink Capacity Region Λ is the closure of the set of all rate vectors

~λ that can be stabilized by some power allocation strategy.

Establishing that a set Λ represents the capacity region of the downlink requires proving

that any inputs with rate vector λ strictly interior to Λ can be stabilized, as well as proving

that stability is impossible for any rates outside of Λ. This is accomplished in the following

theorem. The theorem further shows that if the channel model and arrival rates are known

in advance, any power allocation policy which stabilizes the system—possibly by making

use of special knowledge of future events—can be transformed into a stabilizing policy which

considers only the current channel state.

Theorem 1. (Downlink Capacity) The capacity region of the downlink system of Fig. 3-2

with power constraint Ptot and rate-power curves µi(Pi, Si) is the set of all rate vectors ~λ

such that there exist power levels P ~S
i satisfying

∑
i P

~S
i ≤ Ptot for all channel states ~S and

such that

λi ≤
∑

~S

π~Sµi

(
P

~S
i , Si

)
for all i ∈ {1, . . . , N} (3.2)

Proof. Using the stationary policy of allocating a power vector ~P ~S =
(
P

~S
1 , . . . , P

~S
N

)
when-

ever the system is in channel state ~S creates a server rate µi(t) = µi(Pi(t), Si(t)) for all

queues i, which is rate convergent with average rates given by the right-hand side of in-

equality (3.2). Thus, the single-queue delay result of Lemma 3 implies that each queue is

stable with bounded delay whenever the rate vector ~λ satisfies (3.2) with strict inequality in

all entries. We now show that restricting power control to such stationary policies (which

use only the current channel state ~S when making power allocation decisions) does not
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restrict the capacity region and, hence, the region (3.2) captures all input rates which yield

stable systems.

Suppose all queues of the downlink can be stabilized with some power control function

~P (t) which meets the power constraints—perhaps a function derived from a policy which

knows future events. Under any such scheme, we have the relationship between arrivals,

potential service opportunities, and unfinished work:

Xi(t) ≤ Ui(t) +
∫ t

0
µi(Pi(τ), Si(τ))dτ (3.3)

This holds because, assuming all queues are initially empty, the total bits that arrive

during [0, t] must be less than or equal to the current backlog plus the total bits that could

have been served. Let T~S(t) represent the subintervals of [0, t] during which the channel

is in state ~S, and define ||T~S(t)|| as the total length of these subintervals. Fix ε > 0 and

let
∣∣∣~S∣∣∣ represent the total number of channel states of the system (i.e., it is the product of

the cardinalities of the number of states for each channel i). Because the arrival processes

are rate convergent, the channel processes are channel convergent, and there are a finite

number of queues and channel states, there must exist a time t1 such that the time-average

fraction of time in each channel state and the time-average arrival rates are simultaneously

within ε of their limiting values for any t ≥ t1:

Xi(t)
t

≥ λi − ε for all i (3.4)

||T~S(t)||
t

≤ π~S + ε for all ~S (3.5)

However, by the stability necessary condition of Lemma 1, there must exist a threshold

value V such that arbitrarily large times t̃ can be found so that
∑

i Ui(t̃) ≤ V with proba-

bility at least 1/2. Choose such a time t̃ for which t̃ ≥ t1 and V/t̃ ≤ ε. Considering (3.3) at

time t̃ and using (3.4) and (3.5), the following inequality simultaneously holds true for all

i with probability at least 1/2:

λi − ε ≤ Xi(t̃)
t̃

≤ ε+
1
t̃

∫ t̃

0
µi(Pi(τ), Si(τ))dτ (3.6)

By breaking the integral into a sum over intervals corresponding to distinct channel
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states, we have for all i:

λi ≤ 2ε+
∑

~S

||T~S(t̃)||
t̃

1
||T~S(t̃)||

∫
τ∈T~S

(t̃)
µi(Pi(τ), Si)dτ

≤ 2ε+
∑

~S

||T~S(t̃)||
t̃

µi

(
1

||T~S(t̃)||

∫
τ∈T~S

(t̃)
Pi(τ)dτ, Si

)
(3.7)

≤ 2ε+
∑

~S

(π~S + ε)µi

(
1

||T~S(t̃)||

∫
τ∈T~S

(t̃)
Pi(τ)dτ, Si

)
(3.8)

where (3.7) follows from concavity of the µi(P, Si) functions with respect to the power

variable P , and (3.8) follows from (3.5). We define for all states ~S and queues i:

P̃
~S
i

M=
1

||T~S(t̃)||

∫
τ∈T~S

(t̃)
Pi(τ)dτ (3.9)

Hence, from (3.8) and (3.9)

λi ≤
∑

~S

π~Sµi

(
P̃

~S
i , Si

)
+ ε(2 +

∣∣∣~S∣∣∣µmax) for all i (3.10)

where µmax is defined as the maximum processing rate of a queue (maximized over all

queues and channel states) when it is allocated the full power Ptot.

Because the original power function satisfies the power constraint
∑

i Pi(t) ≤ Ptot for all

times t, from (3.9) it is clear that the P̃ ~S
i values satisfy the constraint

∑
i P̃

~S
i ≤ Ptot for all

channel states ~S.

Recall now that the inequality (3.10) is not guaranteed to hold, but holds simultaneously

for all i with probability at least 1/2. Thus, there must exist a set of power values P̃ ~S
i

satisfying the power constraint for all channel states ~S such that (3.10) holds simultaneously

for all i (otherwise, the probability of (3.10) holding would be zero). Thus, (3.10) indicates

that the arrival vector ~λ is arbitrarily close to a point in the region specified by (3.2).

Because the region (3.2) is closed, it must contain ~λ. Thus, the region (3.2) represents the

capacity region of the system.

In the case when the channel does not vary but stays fixed, the rate-power curve for each

queue i is given by µi(P ), and the expression for the downlink capacity region in Theorem

1 can be greatly simplified:
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Corollary 1. (Static Channel Capacity) The downlink capacity region for static channels

is the set of all rate vectors ~λ such that:

N∑
i=1

µ−1
i (λi) ≤ Ptot

where

µ−1
i (λi) =

 The smallest P such that µi(P ) = λ

∞ if no such P exists
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Figure 3-5: Capacity regions for static channels. (a) Two-queue system with power alloca-
tion. (b) K-server allocation problem with K = 2, N = 3.

In Fig. 3-5a we illustrate a general capacity region for N = 2 channels with fixed channel

states and concave power curves µ1(P ) and µ2(P ). In this case of fixed channel states,

one might suspect the optimal solution to be the one which maximizes the instantaneous

output rate at every instant of time: allocate full power to one queue whenever the other

is empty, and allocate power to maximize the sum output rate µ1(P1) + µ2(P2) subject to

P1 +P2 ≤ Ptot whenever both queues are full. Doing this restricts the throughput region to

linear combinations of the three operating points, as illustrated in Fig. 3-5a. The shaded

regions in the figure represent the capacity gains obtained by power allocation using the full

set of power levels. Note that the region is restricted further if only ON/OFF allocations

are considered.

Corollary 2. (Server Allocation Capacity) For the K − server allocation problem where

the channel rate of queue i is µi when it is allocated a server (and 0 otherwise), the capacity
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region is the polytope set of all ~λ vectors such that

∑
i

λi
µi
≤ K (3.11)

0 ≤ λi ≤ µi , for all i ∈ {1, . . . , N} (3.12)

Proof. Using the virtual power curves and constraints given in Section 3.2, we find by Corol-

lary 1 that the polytope region described by (3.11) and (3.12) contains the true capacity

region. However, the K-server problem is constrained to allocate rates only on the ver-

tex points of the polytope (see Fig. 3-5b). Timesharing amongst vertex points, however,

achieves any desired point within the polytope.

3.4 A Dynamic Power Allocation Algorithm

Theorem 1 implies that stability of the downlink channel can be achieved by a stationary

power allocation policy which allocates power levels P ~S
i whenever the channel is in state ~S.

Such power levels can in principle be calculated with full knowledge of the arrival rates λi

and channel state probabilities π~S . However, such computation is impractical if the number

of channel states is large, and cannot be done if the arrival and channel state probabilities

are unknown. Here we present a power allocation policy which stabilizes the system at every

point of the capacity region (3.2) without using the arrival and channel state probabilities.

In essence, the policy learns the system parameters indirectly by basing power allocation

decisions both on channel state and queue backlog information. Furthermore, because the

policy is not bound to a particular set of system parameters, it is shown to be robust to

arbitrary changes in the input rates λi. The policy operates as follows:

Dynamic Power Allocation Policy: Every timeslot t, observe the unfinished work vector

~U(t) and the channel state vector ~S(t) and allocate a power vector ~P (t) = (P1(t), . . . PN (t))

which is a solution to the following maximization problem:

Maximize:
∑N

i=1 θiUi(t)µi(Pi, Si(t)) (3.13)

Subject to:
∑

i Pi ≤ Ptot

where {θi} is any arbitrary set of positive weights.

The weights {θi} can be chosen to allow the more heavily weighted queues to have better
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delay guarantees, as described subsequently. Notice that this policy acts only through

the current value of ~U and ~S without specific knowledge of the arrival rates or channel

probabilities. Intuitively, we desire a policy that gives more power to queues with currently

high processing rates (to achieve maximum throughput) as well as gives more power to

queues with large backlog (to ensure that these queues are stabilized). The above policy

does both by considering as a metric the product of backlog and data rate for each queue.

A similar metric is used in [99] for scheduling packets of different classes over a single

server, and in [133] [5] for scheduling a single server over a set of parallel queues. Maximum

weight metrics are also considered in the switching and scheduling literature [95] [97] [88]

[132] [81] [62], and recently for multi-access uplink communication in [149] [84] and for a

single server downlink with heavy traffic in [124].

We analyze the above dynamic strategy by comparing it with the stationary policy.

Suppose the channel process ~S(t) is channel convergent with steady state probabilities π~S .

Likewise, assume the arrival processes Ai(t) are rate convergent with rates λi. We assume

these arrival rates are strictly interior to the downlink capacity region Λ, so that for some

positive ε > 0 the vector (λ1 + ε, . . . , λN + ε) is also inside Λ. The value of ε represents a

measure of the distance the arrival rate vector is to the boundary of the capacity region.

From the capacity equation (3.2), it follows that there exist power levels P ~S
i satisfying the

power constraints and such that for all i:

λi + ε ≤
∑

~S

π~Sµi

(
P

~S
i , Si

)
(3.14)

Consider the stationary policy of allocating these power levels based on channel state. To

be explicit, let us denote ~P stationary(~S) = (P stationary
1 (~S), . . . , P stationary

N (~S)) as the power

vector chosen according to this stationary policy when the system is in channel state ~S. The

server rate processes under this policy are given by µstationary
i (t) = µi

(
P stationary

i (~S(t)), ~S(t)
)

for all queues i. By Lemma 4 it follows that these server processes are rate convergent with

rates
∑

~S π~Sµi

(
P

~S
i , Si

)
(because the underlying channel process is channel convergent).

Now define K as the smallest number such that at any time t0 and regardless of past

history, we have for all i:

1
K

t0+K−1∑
τ=t0

E
{
µstationary

i (τ)−Ai(τ)
}
≥ ε/2 (3.15)
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A finite value of K must exist because for each i ∈ {1, . . . , N}, the server process is rate

convergent with average rate given by the right hand side of (3.14) and the arrival process

Ai(t) is rate convergent with average rate λi.2

The value of K represents the timescale over which we can expect the system to yield

steady state behavior, and is important in proving stability and establishing a delay bound.

We additionally assume that the second moment of the total arrival process is bounded, so

that E
{

(
∑

iAi(t))
2
}
≤ A2

max on every timeslot t, regardless of past history.

Theorem 2. (Dynamic Power Allocation) The dynamic power allocation policy of choos-

ing a power vector ~P to maximize
∑

i θiUi(t)µi(Pi, Si(t)) subject to the power constraint

stabilizes the downlink system whenever the arrival rate vector λ is strictly interior to the

capacity region Λ.

Furthermore, the average unfinished work in the queues satisfies:

∑
i

θiUi ≤
KθmaxB

ε
+

(K − 1)θmaxB̃

ε

where B = (A2
max + µ2

max), B̃ = µout
max(Amax + µout

max)/2, and µout
max represents the maximum

sum output rate over all servers (optimized over all channel states and power allocation

distributions conforming to the power constraint).

We note that when arrivals and channel states are i.i.d. every timeslot, then the bound

reduces to
∑

i θiUi ≤ Bθmax
ε .

We prove the theorem by first proving stability of a frame-based modification of the

dynamic power allocation strategy, which operates on frames of duration K slots and allo-

cates power every slot t to maximize
∑

i θiUi(t0)µi(Pi, Si(t)) subject to the power constraint,

where Ui(t0) represents the unfinished work in the system at the beginning of a frame. This

frame-based scheme is thus identical to the dynamic power allocation policy with the excep-

tion that it uses out-of-date backlog information equal to the backlog present in the system

at the start of the frame. Note that, unlike the dynamic power allocation policy (3.13),

this frame based scheme cannot be implemented without knowledge of the frame size K.

Let ~P frame(~S, ~U0) represent the power allocation decisions of this frame based scheme as a

function of the channel state and initial backlog.

2Note that limK→∞
1
K

Pt0+K−1
τ=t0

E
˘
µstationary

i (τ)−Ai(τ)
¯
≥ ε by (3.14).
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Lemma 6. (Frame Based Allocation) The frame based power allocation policy stabilizes the

system and ensures unfinished work satisfies
∑

i θiU i ≤ KθmaxB
ε .

Proof. We make use of the sufficient condition for network stability using Lyapunov drift

(Lemma 2 of Chapter 2). Consider the K-step dynamics for unfinished work:

Ui(t0 +K) ≤ max

[
Ui(t0)−

t0+K−1∑
τ=t0

µi(τ), 0

]
+

t0+K−1∑
τ=t0

Ai(τ)

To simplify notation, we define: Ui
M=Ui(t0), µi

M= 1
K

∑t0+K−1
τ=t0

µi(τ), Ai
M= 1

K

∑t0+K−1
τ=t0

Ai(τ).

Squaring both sides of the above inequality yields:

U2
i (t0 +K) ≤ (Ui −Kµi)

2 +K2 (Ai)
2 + 2KAi max [Ui −Kµi, 0]

≤ (Ui −Kµi)
2 +K2 (Ai)

2 + 2KAiUi

≤ U2
i +K2µ2

i +K2A2
i − 2KUi [µi −Ai] (3.16)

Now define the Lyapunov function L(~U) =
∑

i θiU
2
i . Multiplying (3.16) by the weight

θi and summing over all i, we find:

L(~U(t0 +K))− L(~U(t0)) ≤ θmaxK
2

(∑
i

A2
i +

∑
i

µ2
i

)
− 2K

∑
i

θiUi(t0) [µi −Ai] (3.17)

Taking conditional expectations given ~U(t0) and using the inequalities E
{∑

iA
2
i

∣∣∣~U(t0)
}
≤

A2
max and E

{∑
i µ

2
i

∣∣∣~U(t0)
}
≤ (µout

max)2 (which are proven in Chapter Appendix 3.A at the

end of this chapter), we have:

E
{
L(~U(t0 +K))− L(~U(t0))

∣∣∣~U(t0)
}
≤ K2θmaxB − 2K

∑
i

θiUi(t0)E
{

[µi −Ai]
∣∣∣~U(t0)

}
(3.18)

The above equation represents Lyapunov drift for any power allocation algorithm yield-

ing server rates µi(t). If the stationary power allocation is used so that the server process is

µstationary
i (t), the expression (3.15) can be inserted directly into the right hand side of the

drift equation above, proving that the K-step drift under the stationary policy is less than

or equal to K2θmaxB − 2K
∑

i θiUi(t0)[ε/2]. By Lemma 2, it follows that unfinished work

under the stationary policy satisfies
∑

i θiU
stationary
i ≤ KθmaxB

ε .

However, the frame based allocation algorithm is designed to maximize the quantity
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E
{∑

i θiUi(t0)[µi −Ai]
∣∣∣~U(t0)

}
(which is contained in the drift expression (3.18)) over all

other power allocations which conform to the power constraint. In particular, notice that

at any time t such that t0 ≤ t ≤ t0 +K − 1, we have:

∑
i

θiUi(t0)µi

(
P frame

i (~S(t), ~U0), Si(t)
)
≥
∑

i

θiUi(t0)µi

(
P stationary

i (~S(t)), Si(t)
)

This inequality holds deterministically for all initial backlogs ~U(t0) and all channel states

Si(t) (where t0 ≤ t ≤ t0 +K − 1), and is hence preserved under conditional expectations.

It follows that the Lyapunov drift of the frame algorithm is less than or equal to the bound

K2θmaxB − 2K
∑

i θiUi(t0)[ε/2] computed for the stationary algorithm. Using this bound

together with Lemma 2 proves the result.

The frame based algorithm minimizes the K-step Lyapunov drift, but uses out-of-date

backlog information during the last K − 1 slots of the frame. Intuitively, the dynamic

power allocation algorithm of Theorem 2 should offer better performance, as it uses current

values of queue backlog on each slot. However, analytically we can only prove that the

performance of this algorithm is no more than a fixed amount worse than the frame based

scheme, as described in the next lemma. Let P dynamic
i (t) and µdynamic

i (t) represent the

power and server rate under the dynamic power allocation policy.

Lemma 7. Given an initial timeslot t0, a common backlog vector ~U(t0), and any time t

such that t0 ≤ t ≤ t0 +K − 1, we have:

∑
i

θiUi(t0)E

{
1
K

t0+K−1∑
τ=t0

µdynamic
i (τ)

∣∣∣~U(t0)

}
≥

∑
i

θiUi(t0)E

{
1
K

t0+K−1∑
τ=t0

µframe
i (τ)

∣∣∣~U(t0)

}
− (K − 1)θmaxB̃

Proof. The dynamic power allocation policy optimizes (3.13) on each timeslot. Hence, for

all times τ such that t0 ≤ τ ≤ t0 +K − 1, we have:

∑
i

θiU
dynamic
i (τ)µi(P

dynamic
i (τ), Si(τ)) ≥

∑
i

θiU
dynamic
i (τ)µi(P

frame
i (τ), Si(τ))

Define ∆i(τ)M=U
dynamic
i (τ) − Ui(t0) as the change in backlog in queue i after running the

dynamic power allocation algorithm during slots {t0, . . . , τ}. Plugging this definition into
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the above inequality yields:

E

{∑
i

θiUi(t0)µi(P
dyn
i (τ), Si(τ))

∣∣∣~U(t0)

}
≥ E

{∑
i

θiUi(t0)µi(P
frame
i (τ), Si(τ))

∣∣∣~U(t0)

}
−

E

{∑
i

θi∆i(τ)(µ
dyn
i (τ)− µframe

i (τ))
∣∣∣~U(t0)

}

Note that
∣∣∣µdynamic

i (τ)− µframe
i (τ))

∣∣∣ ≤ µout
max. Furthermore, E {

∑
i |∆i(τ)|} represents

the maximum possible change in total backlog in the satellite after τ − t0 slots, and is

upper bounded by (Amax + µout
max)(τ − t0). (Note that E {Ai(τ)} ≤

√
E
{
A2

i (τ)
}
≤ Amax).

Summing from τ = t0 to τ = t0 +K − 1, it follows that:

∑
i

θiUi(t0)E

{
t0+K−1∑

τ=t0

µdynamic
i (τ)

∣∣∣~U(t0)

}
≥
∑

i

θiUi(t0)E

{
t0+K−1∑

τ=t0

µframe
i (τ)

∣∣∣~U(t0)

}
−

θmaxµ
out
max(Amax + µout

max)
t0+K−1∑

τ=t0

(τ − t0)

The lemma follows by noting that µout
max(Amax +µout

max)
∑t0+K−1

τ=t0
(τ − t0) = B̃(K − 1)K.

Lemma 7 applied to inequality (3.18) in Lemma 6 together prove Theorem 2.

Note that the positive weights {θi} in the dynamic power allocation algorithm (3.13)

can be chosen arbitrarily. Larger weights can be given to specific queues to improve their

relative performance according to the downlink performance bound of Theorem 2. Choosing

weights θi = 1 for all i yields a policy which chooses a power vector that maximizes
∑

i Uiµi

at every timestep. The following corollary makes use of a different set of weights.

3.4.1 Serve the K Longest Queues

Consider again the N -queue, K-server allocation problem where each queue has only 2

channel states, ON or OFF, and these states form the N dimensional vector process ~S(t)

which is channel convergent with some steady state distribution. When a server is allocated

to queue i while it is in the ON state, the server transmits data from the queue at a rate

µi (the transmission rate is zero when in the OFF state or when no server is allocated).

Corollary 3. (Dynamic Server Allocation) For the K-server allocation problem with ON/OFF
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channel states, the policy of allocating the K servers to the K longest ON queues stabilizes

the system whenever the system is stabilizable.

Proof. Assume the system operates according to the virtual rate-power curves of (3.1) in

Section 3.2. The capacity region under these curves clearly contains the capacity region

when power is restricted to the vertex points—corresponding to a feasible allocation of

K servers to K queues. Define weights θi
M=1/µi, and implement the stabilizing policy of

allocating power to maximize
∑

i
1
µi
Ui(t)µ̃i(Pi, Si) (where Si ∈ {ON,OFF}). Clearly this

optimization needs not place any power on queues in the OFF state, so the summation can

be restricted to queues that are ON:

Maximize:
∑

{i|Si=ON} Ui(t)
µ̃i(Pi,ON)

µi
(3.19)

Subject to:
∑

i Pi ≤ K (3.20)

Notice that the above maximization effectively chooses a rate vector ~µ within the polytope

capacity region specified in (3.11) and (3.12). The optimal solution for maximizing a linear

function over a polytope will always be a vertex point. Fortunately, such a vertex point

corresponds to the feasible allocation of K servers (with full power Pi = 1) to K queues.

Considering (3.19), the optimal way to do this is to choose the K queues with the largest

value of Ui(t). Thus, stability is attained by using pure server allocation, which also proves

the capacity region of pure server allocation is the same as the capacity region corresponding

to the virtual power curves µ̃().

Using the same reasoning as in the proof above, it follows that the power allocation

policy of Theorem 2 naturally chooses a vertex point when power curves are piecewise

linear. It follows that optimization can be restricted to searches over the vertex points

without loss of optimality.

3.4.2 On the Link Weights θi

3 Although any positive weights θi can be used to stabilize the system, dynamically varying

these rates cannot guarantee stability for the full capacity region Λ, but only guarantees
3This section corrects a claim in paragraph 6, Section IV.D in [111] suggesting that dynamically varying

the weights still guarantees stability.
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stability for the scaled region θmin
θmax

Λ (where θmax and θmin represent the maximum and

minimum weight). This follows because optimizing over any set of weights that are upper

and lower bounded by θmax and θmin yields a solution which is within a factor θmin/θmax

from the corresponding solution for any alternate set of weights conforming to the same

bounds.

A counter-example illustrating that dynamic link weights may not achieve stability is a

parallel queue system with 2 queues, a single server, and independently time varying output

rates. Suppose that every timeslot, the rate of each queue is independently 1 or 2 with equal

probability, but weights θi vary so that whenever any queue has output rate 2, the weight

for that queue is θ, while the weight for any queue with output rate 1 is 2θ. Thus, the

multiplication of rate and weight is constant every timeslot, so the system can do nothing

but serve the longest queue. Such a policy cannot stabilize the system for all data rates

within the capacity region, as it cannot take advantage of good channel states while they

last. It does, however, provide stability when the system is half loaded.

3.4.3 Real Time Implementation

The dynamic power allocation policy of the previous section requires solving a nonlinear

optimization problem every timeslot (eq.(3.13)). However, because the rate curves µi() are

concave in the power parameter for every fixed channel state, the solution can be com-

puted efficiently. Indeed, for positive weights {θi} and known unfinished work and channel

state vectors ~U(t) and ~S(t), the problem (3.13) becomes a standard concave maximization

problem: Maximize
∑

i θiUi(t)µi(Pi, Si(t)), subject to the simplex constraint
∑

i Pi ≤ Ptot.

Using standard Lagrange multiplier techniques [13], it can be shown that a solution is op-

timal if and only if power is allocated so that the power constraint is met and the scaled

derivatives θiUi(t)(d/dPi)µi(Pi, Si) are equalized to some value γ∗ for all queues i which re-

ceive nonzero power, while all queues which receive zero power have scaled derivatives less

than γ∗. A fast bisection-type algorithm can be constructed to find such a solution, where

a bracketing interval [γ1, γ2] is found which contains γ∗, and the interval size is decreased

iteratively by testing the midpoint γ value to see if the corresponding powers sum to more

or less than the power constraint Ptot. An illustration of this is given in Fig. 3-6. Such

an algorithm yields power allocations whose proximity to the optimal solution converges

geometrically with each iteration.
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Figure 3-6: An iterative routine for equalizing scaled derivatives of the θiUiµi(P, Si) func-
tions.

An important set of rate-power curves to consider are the standard curves for Shannon

capacity:

µi(Pi, αi) = log(1 + αiPi)

where αi represents the attenuation-to-noise level for downlink channel i during a particular

timeslot. With these curves, the solution to (3.13) is found by the following computation:

Ω = Set of downlinks i ∈ {1, . . . , N} such that Ui(t) > 0

Pi =
θiUi(t)

(
Ptot +

∑
j∈Ω

1
αj

)
∑

j∈Ω θjUj(t)
− 1
αi

, if i ∈ Ω (3.21)

Pi = 0 , if i /∈ Ω

The above equations produce the optimal power allocations whenever the resulting Pi

values are non-negative. If any Pi values are negative, these are set to zero, the correspond-

ing i-indices are removed from the set Ω, and the calculation is repeated—a process ending

in at most N − 1 iterations.

3.4.4 Robustness to Input Rate Changes

Here we consider the case when arrivals are independent from slot to slot, but the input

rates ~λ can vary. We demonstrate that the dynamic power allocation policy is robust to

arbitrary changes in the input rates as long as the resulting rate vectors ~λt remain within the

capacity region at each timestep. Specifically, suppose that the input rate to the downlink

system is ~λ(1) for a certain duration of time, then changes to ~λ(2)—perhaps due to changing
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user demands. This change will be reflected in the backlog that builds up in the queues

of the system. Because the power allocation algorithm bases decisions on the size of the

queues, it reacts smoothly to such changes in the input statistics.

Formally, this situation is modeled by defining an input distribution ft( ~A) on the arrival

vector ~A(t) every timeslot. The ft( ~A) distributions are arbitrary and unknown to the

network controller, although we assume they yield input rates ~λt = E
{
~A(t)

}
, all of which

are within a distance ε of the capacity region (so that (~λt + ~ε) ∈ Λ for all t). We further

assume that second moments are bounded, so that E
{

(
∑

iAi(t))
2
}
≤ A2

max for all t. We

note that because the distributions are varying arbitrarily every timeslot, there is no notion

of a steady state arrival rate. However, a meaningful performance bound can be developed

using the lim sup.

Let K be the smallest time interval over which any target boundary point on the bound-

ary of the capacity region Λ can be achieved to within a distance of ε/2 using some station-

ary power allocation policy ~P stationary(~S) which allocates a fixed power vector whenever the

channel is in state ~S. Specifically, given any target rate point ~r ∈ Λ, assume that K is large

enough so that for all i, 1
K

∑t0+K−1
τ=t0

E
{
µi

(
P stationary

i (~S(τ)), Si(τ)
)}

≥ ri − ε/2. Likewise

note that E
{

1
K

(
~A(t0) + ~A(t0 + 1) + . . .+ ~A(t0 +K − 1)

)}
yields another rate vector ~rin

such that ~rin + ~ε ∈ Λ (and hence we can choose ~r such that ~r = ~rin + ~ε). The K-step drift

can thus be computed exactly as in the proof of Theorem 2, yielding

E
{
L(~U(t0 +K))− L(~U(t0))

∣∣∣~U(t0)
}
≤ K2θmaxB+K(K − 1)θmaxB̃− 2K

∑
i

θiUi(t0)[ε/2]

Thus, using Lemma 2, the following performance bound is guaranteed:

lim sup
t→∞

1
t

t−1∑
τ=0

[∑
i

θiE {Ui(τ)}

]
≤ KθmaxB

ε
+

(K − 1)θmaxB̃

ε

3.5 Joint Routing and Power Allocation

We consider now a collection of M multi-beam satellites and develop a method for jointly

routing packets and allocating power over the downlinks. Each satellite has multiple output

queues (corresponding to multiple downlink channels) and operates according to individual

power constraints (Fig. 3-7). Every timeslot, packets enter the system fromN input streams
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according to input processes X1(t), . . . , XN (t) with arrival rates (λ1, . . . , λN ). Each input

stream i can route incoming packets to a subset of the output queues, where the subsets

may overlap with each other and may contain queues from different satellites. The problem

is to jointly route packets and allocate power to each of the downlinks in order to stabilize

the system and ensure maximum throughput.

NX

3X

2X

1X

JJ

(2)
totP

(1)
totP

J (P  (t), S  (t))µ

kkk (P  (t), S  (t))µ

1µ 11(P  (t), S  (t))

(M)
totP

Figure 3-7: A multiuser multisatellite system with joint routing and power control. User Xi

can route to queues within set Qi. Satellite m allocates power subject to
∑

j∈Sat(m) Pj(t) ≤
P

(m)
tot .

Such a scenario arises, for example, when several satellites have a connection to the

same ground unit, and hence packets destined for this unit have several routing options.

Alternatively, the routing options may represent a cluster of ground locations connected

together by a reliable ground network. In this case, packets arrive to the cluster from the

downlinks and are routed to their final destinations using the wire lines on the ground. We

note that the formulation of this joint routing and power allocation problem also applies to

wireless systems, where base stations communicate with users over a wireless network.

Let J represent the total number of output queues (summed over all satellites), and let

each output queue be indexed with a single integer j ∈ {1, . . . , J}. For each satellite m, let

Sat(m) represent the set of output queues which it contains (hence, Sat(m) ⊂ {1, . . . , J}

for all m). Likewise, for each input stream i, let Qi represent the set of all output queues

that input i can route packets to (where Qi ⊂ {1, . . . , J}). Note that the Qi subsets are

arbitrary and need not be disjoint. Channel states vary according to a J-dimensional vector

~S(t) and are channel convergent with steady state probabilities π~S . Similarly, the vector of

queue backlogs ~U(t) is J-dimensional.

Every timeslot, routing decisions are made and a power vector ~P (t) is allocated according
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to the individual power constraints of each satellite. In general, the full queue state and

channel state vectors ~U(t) and ~S(t) are important in both the routing and power allocation

decisions. For example, more power should be allocated to queues which are expected to

grow large—which is dependent on the state of unfinished work in other satellites as well

as on future routing decisions. Likewise, a router should place packets in faster queues

(especially if these rates are likely to be high for one or more timeslots) and should avoid

queues likely to be congested because of high contention with other input sessions.

However, here we show that the routing and power allocation decisions can be decoupled

into two policies: A routing policy which considers only ~U(t), and a power allocation policy

which considers both ~U(t) and ~S(t). Furthermore, a router for stream i needs only to

consider the entries of the unfinished work vector ~U(t) within the set Qi of queues to which

it can route. Likewise, the power allocation decisions use information local to each satellite:

Power is allocated in satellite m based only on the unfinished work and channel state

information for queues in Sat(m). The resulting strategy stabilizes the system whenever

the system is stabilizable.

Joint Routing and Power Allocation Algorithm:

We assume that enough is known about the channel to identify and remove from the

set of routing options any queues which produce zero output rate for all channel states and

power allocations.4 Hence, in the algorithm below, we assume that all queues j have a

nonzero probability of being in a functional channel state.

-Power Allocation: At each timestep, each satellite m allocates power as before, us-

ing the ~U(t) and ~S(t) vectors to maximize
∑

j∈Sat(m) θjUj(t)µj(Pj(t), Sj(t)) subject to∑
j∈Sat(m) Pj(t) ≤ Pm

tot.

-Routing: All packets from stream i are routed to the queue j ∈ Qi with the smallest

amount of unfinished work.

We note that Join-the-Shortest-Queue (JSQ) routing was shown to be delay optimal in

[45] for the case of arbitrary arrivals to a set of two homogeneous servers with i.i.d. and

exponential service times, and an extension in [142] demonstrates that a threshold policy is

optimal when the two exponential servers have different service rates. In [147] an analysis of

the waiting time distribution for the JSQ strategy is presented for a system with a Poisson

4One way to achieve this is to avoid routing to any queue until its associated channel has a demonstrated
history of being functional.
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input stream, multiple homogeneous servers, and i.i.d. exponential service times. Here,

we use the JSQ strategy in conjunction with power allocation in a system with multiple

input streams with arbitrary arrival processes which are routed over heterogeneous, time

varying downlinks. Further results on stability, delay, and near-optimality for JSQ routing

are provided in Appendix B and in [110].

Theorem 3. (Joint Routing and Power Allocation) The capacity region Λ for the multi-

satellite system with joint routing and power allocation is the set of all arrival vectors

~λ = (λ1, . . . , λN ) such that there exist splitting rates (rij) and power levels P ~S
j such that:

∑
j∈Qi

rij = λi for all i ∈ {1, . . . , N} (3.22)∑
j∈Sat(m) P

~S
j ≤ P

(m)
tot for all m and all channel states ~S (3.23)∑
i rij ≤

∑
~S π~Sµj

(
P

~S
j , Sj

)
(3.24)

Furthermore, the joint routing and power allocation algorithm described above stabilizes the

multi-satellite system whenever the input rates are within this capacity region.

Intuitively, the above theorem says that the system is stabilizable if the input rates can

be split amongst the various queues (in accordance with the routing restrictions) so that

the aggregate input rates allow each satellite to be stabilized individually.

Proof. (That ~λ ∈ Λ is necessary for stability) Suppose a stabilizing algorithm exists for

some set of routing decisions and power controls ~P (t). Define Xij(t) to be the total amount

of data the algorithm routes from input i to queue j during the time interval [0, t]. For

simplicity, we assume the routing process is ergodic so that limt→∞Xij(t)/t is well defined

for all i and j. (The general non-ergodic case can be handled similarly to the treatment

of Theorem 1, and its proof is covered as a special case of the multi-node analysis in

Chapter 4). Let {rij} represent these limiting values. The ith input stream Xi(t) can

be written Xi(t) =
∑

j∈Qi
Xij(t). Dividing both sides by t and taking limits, it follows

that
∑

j∈Qi
rij = λi for all i, and hence condition (3.22) holds. Note that the aggregate

data rate entering any queue j ∈ {1, . . . , J} is
∑

i rij . Because the system is stable, the

stability conditions of Theorem 1 must be satisfied for each satellite, and hence the remaining

conditions (3.23) and (3.24) must also hold.
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The fact that stability within the set Λ is achievable is demonstrated using the joint

routing and power allocation algorithm given above.

Proof. (Stability of the Joint Routing and Power Allocation Algorithm) For simplicity of

exposition, we consider only the case when all weights θj are identically 1, and prove the

result under the assumption that arrivals and channel states are i.i.d. from one slot to the

next. Rate convergent arrivals and channel convergent processes can be treated similarly,

and such general treatment is provided for the network case in Chapter 4.

Suppose the λ vector is strictly interior to Λ so that conditions (3.22)-(3.24) are satisfied

even with an additional input stream of rate ε applied to each queue j ∈ {1, . . . , J}. That

is, there exist rij and P ~S
j values such that conditions (3.22) and (3.23) hold, and such that

∑
i

rij + ε ≤
∑

~S

π~Sµi

(
P

~S
j , Sj

)
for all j (3.25)

Define the Lyapunov function L(~U) =
∑

j U
2
j . Let Ai(t) represent the total bits from

packets arriving from stream i during slot t, and let (ai1(t), . . . , aiJ(t)) represent the bit

length of packets from stream i routed to queues j ∈ {1, . . . , J} (where Ai(t) =
∑

j aij(t),

and E {Ai(t)} = λi). Let µj represent the transmission rate µj(Pj(t), Sj(t)) of queue j

during slot t under the specified power allocation policy. As in the stability proof for the

dynamic power allocation policy of Theorem 2, we have for all queues j [compare with

(3.18)]:

E
{
L(~U(t0 + 1))− L(~U(t0))

∣∣∣~U(t0)
}
≤

A2
max +M(µout

max)2 − 2
∑

j

Uj(t0)

[
E
{
µj

∣∣∣~U(t0)
}
−
∑

i

E
{
aij

∣∣∣~U(t0)
}]

(3.26)

where µout
max represents the maximum total output rate of any satellite.

The E
{
µj

∣∣∣~U(t0)
}

and E
{
aij

∣∣∣~U(t0)
}

values in the above inequality are influenced by

the power control and routing algorithm, respectively, and will determine the performance

of the system. To examine the impact of routing, we switch the sum above to express the

routing term as:

2
∑

i

∑
j∈Qi

UjE
{
aij

∣∣∣~U(t0)
}
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Notice that the given routing strategy of placing all bits from stream i in the queue

j ∈ Qi with the smallest value of unfinished work minimizes the above term over all possible

routing strategies, including the strategy of routing according to flow rates rij of condition

(3.22) in Theorem 3, and hence:

2
∑

i

∑
j∈Qi

UjE
{
aij

∣∣∣~U(t0)
}
≤ 2

∑
i

∑
j∈Qi

Ujrij (3.27)

To examine the power allocation term in (3.26), we rewrite the single summation as a

double summation over all satellites m ∈ {1, . . . ,M}:

2
∑

j

UjE
{
µj

∣∣∣~U(t0)
}

= 2
∑
m

∑
j∈Sat(M)

UjE
{
µj

∣∣∣~U(t0)
}

(3.28)

Thus, the given power allocation policy maximizes (3.28) over all allocation policies—

including the stationary policy of allocating a power vector ~P
~S(t) =

(
P

~S
1 (t), . . . , P ~S

J (t)
)

whenever the channel is in state ~S. Hence:

2
∑

j

UjE
{
µj

∣∣∣~U(t0)
}
≥ 2

∑
j

Uj

∑
~S

π~Sµi

(
P

~S
j , Sj

)
(3.29)

Using (3.27), (3.29), and (3.25) in (3.26), we find:

E
{
L(~U(t0 + 1))− L(~U(t0))

∣∣∣~U(t0)
}
≤ A2

max +M(µout
max)2 − 2

∑
j

Uj(t0)ε (3.30)

The above drift condition together with Lemma 2 proves stability.

Corollary 4. The average occupancy under the joint routing and power allocation algorithm

satisfies the following performance bound (for i.i.d. channel states and arrivals):

∑
j

θjUj ≤
A2

max +M(µout
max)2

2ε

where ε is the distance to the boundary of the capacity region (so that ~λ+ ε ∈ Λ).

Proof. This follows immediately from (3.30) and Lemma 2. A similar bound can be derived

for general channel and arrival processes using a K-step analysis.
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Figure 3-8: A joint routing and power allocation problem where the goal is to transmit the
data to any node of the reliable ground network (i.e., Qi = {1, . . . , J} for all input streams
i).

An important special case of the above theorem is when inputs can route to the full set

of available queues, i.e., Qi = {1, . . . , J} for all inputs i. The goal is to simply transmit all

the data to the ground as soon as possible. Such a situation arises when the ground units

are connected together via a reliable ground network, and the wireless paths from satellite

to ground form the rate bottleneck (See Fig. 3-8). In this case, it is shown in [110] (and

Appendix B) that the capacity region of Theorem 3 simplifies to the simplex set of all input

rates λ such that:

λ1 + · · ·+ λN ≤ µout (3.31)

where

µout
M=
∑

~S

π~S

M∑
m=1

maxP
j∈Sat(m) Pj≤P

(m)
tot

 ∑
j∈Sat(m)

µj(Pj , Sj)


that is, µout is the average output rate of the system when power is allocated to maximize

the instantaneous processing rate at every instant of time.

In Fig. 3-9 we illustrate the capacity region for a 2-queue system with and without

routing constraints. As expected, exploiting the full set of routing options considerably

expands the capacity region of the system. Indeed, the simplex region (3.31) always contains

the capacity region specified in Theorem 3 for joint routing and power allocation. This
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capacity gain is achieved by utilizing the extra resources offered by the ground network.

µ+

Λ

a

b

1λ1

λ2

(p (t), S (t))
a a

µa

(p (t), S (t))
bb

µ
b

λ2

λ1

λ2λ

Figure 3-9: Capacity region for a two-queue system with routing and power control. The
region Λ corresponds to the routing constraints shown in the figure, and is dominated by
the simplex region for unconstrained routing.

We note that this joint routing and power allocation problem has been formulated for

the case when data already contained within a single satellite or within a constellation of

satellites is to be routed through a choice of downlinks. Hence, it is reasonable to assume the

unfinished work values Ui(t) are known to the controllers when making routing decisions.

However, it can be shown (using an argument similar to that given in Lemma 7) that one

can apply the same strategy when only estimates of the true unfinished work values are

known. If estimates deviate from actual values by no more than an additive constant, the

system will still be stable for all arrival rates within the stability region.

3.6 Connectivity Constraints

It has been assumed throughout that all transmit channels can be activated simultaneously,

subject only to the total power constraint
∑

j∈Sat(m) Pj(t) ≤ P
(m)
tot for all time t. Hence,

it is implicitly assumed that there is no interchannel interference. Such an assumption

is valid when there is sufficient bandwidth to ensure potentially interfering channels can

transmit using different frequency bands, or when ground users are sufficiently separated

so that beamforming techniques can focus each downlink beam on its intended recipient

without affecting other users. However, in bandwidth and space limited scenarios, power

allocation vectors ~P (t) may be additionally restricted to channel activation sets: finite sets

Π1, ...,ΠR, where each set Πr is a convex set of points (P1, ..., PN ) representing power vectors

which, when allocated, ensure interchannel interference is at an acceptable level. This use of

activation sets is similar to the treatment in [132], where activation link sets for scheduling

ON/OFF links in a wireless network are considered. Here, the definition is extended from
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sets of links to sets of power vectors to treat power control.

As an example of an activation set, consider the single satellite system of Fig. 3-2

with N output queues, and suppose that downlink channels 1, 2, and 3 can be activated

simultaneously if all other transmitters are silent. Such an activation set can be represented:

Πr =

(P1, P2, P3, 0, . . . , 0) ∈ RN

∣∣∣∣∣∣Pj ≥ 0,
3∑

j=1

Pj ≤ Ptot


Another type of system constraint is when power allocation is further restricted so that

no more than K transmitters are active at any given time. Such a constraint corresponds

to N!
K!(N−K)! convex activation sets. Multi-satellite systems can also be treated using this

activation set model. Indeed, the N output queues of Fig. 3-2 may be physically located

in several different satellites. In the following, we assume that each activation set Πr

incorporates the power constraints
∑

j∈Sat(m) Pj ≤ P
(m)
tot .

Consider the downlink system of Fig. 3-2. Packets arrive according to rate convergent

processes with rates (λ1, . . . , λN ), and channel states ~S(t) vary according to a channel

convergent process with steady state probabilities π~S . Define the set Π as the union of all

power activation sets: Π = Π1
⋃

Π2
⋃
· · ·
⋃

ΠR. Each timeslot a power allocation vector

~P (t) is chosen such that it lies within Π, that is, it lies within one of the acceptable activation

sets {Π1, . . . ,ΠR}.

Theorem 4. (Power Allocation with Connectivity Constraints): For the multi-queue system

of Fig. 3-2 with power constraints ~P (t) ∈ Π:

(a) The capacity region of the system is the set Λ of all arrival rate vectors λ such that:

~λ ∈ ΛM=
∑

~S

π~SConvex Hull
{(
µ1(~P , ~S), . . . , µN (~P , ~S)

) ∣∣∣~P ∈ Π
}

(3.32)

where addition and scalar multiplication of sets has been used above.5

(b) The policy of allocating a power vector ~P = (P1, ..., PN ) at each timestep to maximize

the quantity
∑

j θjUj(t)µj(Pj , Sj(t)) (subject to ~P ∈ Π) stabilizes the system whenever the

~λ vector is in the interior of the capacity region.

We note that the allocation policy specified in part (b) of the theorem involves the non-

5For sets A, B and scalars α, β, the set αA + βB is defined as {γ |γ = αa + βb for some a ∈ A, b ∈ B }.
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convex constraint ~P ∈ Π = Π1
⋃
· · ·
⋃

ΠR. Maximizing the given metric over individual

activation sets Πr is a convex optimization problem, although a complete implementation

of the given policy is non-trivial if the number of activation sets is large. However, the

proof of parts (a) and (b) are simple extensions of the analysis presented in Theorems 1

and 2. For brevity, we omit the proof of (a) (this proof proceeds similarly to the proof of

the necessary condition in Theorem 1, and is proven in more generality for the network

problem in Chapter 4).

Proof. (Part (b)) For simplicity of exposition, we consider only the case when channel states

and arrivals are i.i.d. from slot to slot (the more general case is treated in Chapter 4). Define

the Lyapunov function L(~U) =
∑

i θiU
2
i . The proof of Theorem 2 can literally be repeated

up to (3.18):

E
{
L(~U(t0 + 1))− L(~U(t0))

∣∣∣~U(t0)
}
≤ θmaxB − 2

∑
i

θiUi(t0)
[
E
{
µi

∣∣∣~U(t0)
}
− λi

]
(3.33)

From this point, negative drift of the Lyapunov function can be established by noting

that the value of E
{
µi

∣∣∣~U(t0)
}

maximizes
∑

j θjUjγj over all vectors ~γ within the region Λ

specified in (3.32). To see this, note that any ~γ in Λ can be written ~γ = (γ1, . . . , γN ), where

γi =
∑

~S

π~S

R∑
r=1

α~S,Πr
µi

(
~P

~S,Πr , ~S
)

for some vectors ~P
~S,Πr ∈ Πr, and some scalar values α~S,Πr

≥ 0 such that
∑R

r=1 α~S,Πr
= 1

for all channel states ~S. To see this, define P ∗~S
i as the power allocations from the dynamic

scheme which optimizes
∑

i θiUi(t)µi(Pi, Si(t)) every timeslot. We thus have for any ~γ

vector described above:

∑
i

θiUiγi =
∑

i

θiUi

∑
~S

π~S

R∑
r=1

α~S,Πr
µi

(
P

~S,Πr

i , Si

)

=
∑

~S

π~S

[
R∑

r=1

α~S,Πr

∑
i

θiUiµi

(
P

~S,Πr

i , Si

)]

By definition of (P ∗~S
i ), we have

∑
i θiUiµi(P ∗

~S
i , Si) ≥

∑
i θiUiµi(Pi, Si) for any other power

allocations Pi, and hence:
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∑
i

θiUiγi ≤
∑

~S

π~S

[
R∑

r=1

α~S,Πr

∑
i

θiUiµi(P ∗
~S

i , Si)

]

=
∑

~S

π~S

[∑
i

θiUiµi(P ∗
~S

i , Si)

]

=
∑

i

θiUiE
{
µi

∣∣∣~U }

Using this fact in (3.33) proves that the Lyapunov drift is less than or equal to Bθmax −

2
∑

i θiUi(t0)ε, which by Lemma 2 proves the result.

3.7 Numerical and Simulation Results for Satellite Channels

Here we present numerical and simulation results illustrating the capacity and delay per-

formance provided by the dynamic power allocation policy of Section 3.4 (eq. (3.13)) for a

simple satellite downlink consisting of two channels and two queues. We assume the cor-

responding input streams consist of unit length packets arriving as Poisson processes with

rates (λ1, λ2). We consider a Markov modulated channel state that is typical of a satellite

downlink [29] [28] [42] [51] and demonstrate the ability of the dynamic power allocation

policy (3.13) to perform well under general time varying channel conditions.

3.7.1 Downlink Channel Model of the Ka Band

Experimental and modeling work for satellite downlinks is considered in [29] [28] [94] [1]

[73] [42] [51]. Channel modeling experiments show that satellite channel states could be

modeled as i.i.d. during clear weather conditions (due to the observed rapid fluctuation

of signal attenuation from scintillations in the Ka band [29] [94] [28]). However, in rainy

weather, future channel states are highly dependent on the current state. In [29] and [28]

it is shown that channel state variations can be modeled as a Markov process.

We thus consider the following model. Each downlink channel is modulated by an

independent Markov chain with three states corresponding to “Good,” “Medium,” and

“Bad” channel conditions, with transition probabilities shown in Fig. 3-10. Such a three

state system has been considered in [28] and extends the well known two-state Gilbert-

Elliott model [42] [51] for satellite and wireless channels. In each state, we assume signal
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attenuation is log-normally distributed with a given mean and variance. Such a distribution

is consistent with the Karasawa model [73] based on short term fading measurements in the

Ka band.

Good
Medium 

.264 db-squared

.868 db-squared10 db
15 db
mean variance

  0 dbBad .145 db-squared

Good

αiLog-normal distribution of     for
each of three channel conditions:

0.10.1

0.2 0.2

BadMedium

Figure 3-10: A three-state Markov chain representing Good, Medium, and Bad conditions
for a single downlink from satellite to ground. In each state, an attenuation level αi is
chosen according to a log-normal distribution with means and variances as shown.

Total transmit power at the satellite is assumed to be 100 Watts. Factoring together

the antenna gains, signal attenuation, and receiver noise, the average signal to noise ratio

when full power is allocated to a single channel is assumed to be 15db, 10db, and 0db (for

Good, Medium, and Bad conditions). The corresponding variances are (.264, .868, .145)db-

squared, respectively. These values are based on measurement data in [28] for Ka band

satellite channels under different conditions. We consider the Shannon capacity curves for

data rate as a function of a normalized signal power:

µi(Pi, Si) = log(1 + αiPi)

where
∑

i Pi ≤ 1 and αi represents the fading coefficients, chosen according to the specified

log-normal distributions with mean and variance determined by the channel state Si ∈

{Good,Medium,Bad}. For the simulation, we discretize the log-normal distribution with

11 quantization levels. The two channels from satellite to ground are assumed to vary

independently, each according to the described Markov modulated process.
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Figure 3-12: Average unfinished work
E {U1 + U2} obtained from simulations of the
three power allocation algorithms using the
isolated rate points from Fig. 3-11. Data is
plotted on a log scale.

3.7.2 Capacity and Delay Plots

In Fig. 3-11 we plot the downlink capacity region given by Theorem 1 (eq. (3.2)). No-

tice the non-linear “bulge” curvature, representing capacity gains due to dynamic power

allocation. This full region is achievable using the dynamic power allocation algorithm of

Theorem 2 (eq. (3.13), (3.21)). We compare the capacity region offered by this algorithm

to the corresponding stability regions when power is allocated according to the following

alternative strategies:

1) ON/OFF Power Allocation: Only one transmitter can be activated at any time.

2) Static Power Allocation: Constant Power Ptot/2 is allocated to each channel for all

time.

The ON/OFF strategy allocates full power to the channel with the largest rate-backlog

index Ui(t)µi(Ptot, Si(t)), which, by Theorem 4, achieves full capacity among all policies

restricted to using a single transmitter. Notice that the stability region is slightly non-linear,

because of the capacity boost due to the diversity offered by the independently time varying

channels. The stability region for the static power allocation algorithm has a rectangular

shape, as shown in Fig. 3-11. The capacity for this static algorithm is expanded beyond

the stability region for the single transmitter algorithm when the input rates λ1 and λ2 are

roughly within a factor of two of each other, although the single-transmitter algorithm is
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better for highly asymmetric data rates. Both policies are stable on a significantly reduced

subset of the capacity region offered by the dynamic power allocation policy. Note that even

in the completely symmetric case λ1 = λ2, the stability point of the static power allocation

policy is slightly below the stability point of the dynamic power allocation policy, because

the static policy cannot take advantage of the time varying channel conditions.

In addition, we simulate system dynamics for 2 million iterations using the three power

allocation policies and a variety of data rates which linearly approach a boundary rate point

(λ1, λ2) = (2.05, 3.79) of the capacity region. The rates tested are shown in Fig. 3-11. In

Fig. 3-12 we plot the empirical average occupancy E {U1 + U2} for the two queue system

when the multi-beam dynamic power allocation algorithm is used, where power is allocated

according to (3.21) (with weights θi = 1 for all i). The plot illustrates that the dynamic

power allocation policy achieves stability throughout the entire capacity region, with an

average delay growing asymptotically as the input data rates approach the boundary point

(2.05, 3.79).

We compare the dynamic power allocation algorithm to the two other strategies, whose

simulated performance is also shown in Fig. 3-12. From the figure, it is clear that the

average occupancy (and hence, average delay) of the multi-beam dynamic power allocation

algorithm is significantly lower than the corresponding averages for the other algorithms

at all data rates (note that the asymptotes for instability occur earlier for the other two

algorithms). For the rate regime tested, the stability region for the constant power allocation

algorithm is slightly larger than the single-transmitter dynamic algorithm, and hence the

corresponding average occupancies are lower. However, the static policy cannot adjust to

asymmetries in data rate, and thus the single transmitter algorithm will perform better in

the regime where one input rate is much larger than the other (see capacity plot in Fig.

3-11). The figures illustrate that to enable high data rates and low delay in a satellite

downlink, it is essential to dynamically allocate power to the multiple beams.

3.8 Chapter Summary

We have treated data transmission over multiple time-varying channels in a satellite down-

link using power control. Processing rates for each channel i were assumed to be determined

by concave rate-power curves µi(Pi, Si), and the capacity region of all stabilizable arrival
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rate vectors ~λ was established. This capacity region is valid for general rate-convergent input

streams and channel convergent state processes (including Markovian modulated channel

states). Inputs with arrival rates ~λ in the interior of the capacity region can be stabilized

with a power allocation policy which only considers the current channel state ~S(t). In the

case when arrival rates and channel probabilities ~λ and π~S are unknown, a stabilizing pol-

icy which considers both current channel state and current queue backlog was developed.

Intuitively, the policy favors queues with large backlogs and better channels by allocating

power to maximize
∑

i Uiµi at every timeslot. The policy reacts smoothly to channel state

changes and arbitrary variations in the input rates. A real time implementation of the

algorithm was described, and an analytical bound on average bit delay was established.

This power control formulation was shown to contain the special case of a server alloca-

tion problem, and analysis verified stability and provided a performance bound for the

Serve-the-K-Longest-Connected-Queues policy.

A joint routing and power allocation scenario was also considered for a system with

multiple users and multiple satellites, and a throughput maximizing algorithm and a cor-

responding performance bound was developed. The structure of this algorithm allows for

decoupled routing and power allocation decisions to be made by each user and each satellite

based on local channel state and queue backlog information. In the case of interchannel

interference, modified power allocation policies were developed when power vectors are

constrained to a finite collection of activation sets. The policies offer 100% throughput,

although are difficult to implement if the number of activation sets is large.

Stability properties of these algorithms hold for general rate convergent and channel

convergent processes, and were established by demonstrating negative drift of a Lyapunov

function defined over the current state of unfinished work in the queues. Robustness to

arbitrary input rate changes was demonstrated by establishing an upper bound on time

average queue occupancy in the case when the arrival rate vector ~λt is inside the capacity

region for all timesteps t. Thus, the algorithms offer desirable performance under a wide

variety of input processes and time varying channel conditions.

Our focus was power control for a satellite downlink, although the results extend to

other wireless communication scenarios where power allocation and energy efficiency is a

major issue. The use of dynamic power allocation can considerably extend the throughput

and performance properties of such systems.
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Chapter Appendix 3.A

Here we prove the inequalities:

E

{∑
i

A2
i

∣∣∣~U(t0)

}
≤ A2

max (where Ai
M= 1

K

∑t0+K−1
τ=t0

Ai(τ))

E

{∑
i

µ2
i

∣∣∣~U(t0)

}
≤ (µout

max)2 (where µi
M= 1

K

∑t0+K−1
τ=t0

µi(τ))

which are needed in the proof of Lemma 6.

Proof. We prove only the first inequality (the second is similar). Because Ai ≥ 0 for all i,

we have:

∑
i

A2
i ≤

(∑
i

Ai

)2

=

(
1
K

t0+K−1∑
τ=t0

(∑
i

Ai(τ)

))2

≤ 1
K

t0+K−1∑
τ=t0

(∑
i

Ai(τ)

)2

(3.34)

where (3.34) follows from Jensen’s inequality and convexity of the function x2. Taking

conditional expectations yields:

E

{∑
i

A2
i

∣∣∣~U(t0)

}
≤ 1

K

t0+K−1∑
τ=t0

E


(∑

i

Ai(τ)

)2 ∣∣∣~U(t0)


≤ 1

K

t0+K−1∑
τ=t0

A2
max = A2

max

which proves the result.
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Chapter 4

Network Control

In this chapter we consider joint routing, scheduling, and power allocation in a multi-node,

multi-hop network with time varying channels (Fig. 4-1). The network layer capacity region

is established, and a dynamic control algorithm for achieving this capacity is constructed.

We describe the network in terms of the general rate-power curves µ(P , S) introduced

in Chapter 1, which reflect the physical characteristics of each network element and the

interchannel interference properties of each data link. Throughout this chapter we refer to

the network as a wireless network. However, recall that such curves are general enough to

describe satellite networks, switching systems, and hybrid networks with both wireless and

wireline components, so that our analytical results can be applied to these systems as well.
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Figure 4-1: (a) A wireless network with multiple input streams, and (b) a close-up of one
node, illustrating the internal queues.
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4.1 The General Network Model

Consider a multi-node wireless network characterized by the following properties:

• A channel convergent process S(t) with a finite number of channel states and state

probabilities πS

• An upper semi-continuous rate-power function µ (P , S)

• A power constraint P ∈ Π for all t (where Π is a compact set of acceptable power

allocations)

For convenience, we classify all data flowing through the network as belonging to a

particular commodity c ∈ {1, . . . , N}, representing the destination node for the data. Let

A
(c)
i (t) represent the amount of commodity c bits that arrive exogenously to the network

at node i during slot t. We assume the A(c)
i (t) process is rate convergent with rates λij .

4.1.1 System Parameters

We define the following system parameters which capture all of the features of the network

needed to analyze stability and delay.

• Transmission Rate Bounds (µout
max) and (µin

max): Define:

µout
max = max

{i,S,P∈Π}

∑
b

µib(P , S)

µin
max = max

{i,S,P∈Π}

∑
a

µai(P , S)

The bounds µout
max and µin

max place limits on the maximum transmission rate out of

any node and into any node, respectively. Such bounds exist by compactness of the

power allocation region Π [100] [15]. In practice, they represent physical limits on the

rate at which a node can send or receive under the best channel conditions.

• Arrival Bound A2
max: We assume that the second moment of exogenous arrivals to

any node is bounded every timeslot by some finite maximum value A2
max regardless

of past history, so that

E


[∑

c

A
(c)
i (t)

]2
 ≤ A2

max
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for all t, and the same bound holds for conditional expectations given any past event.

Note that E {A} ≤
√

E {A2} for any random variable A, so that the expected first

moment of arrivals is bounded by Amax:

E

{∑
c

A
(c)
i (t)

}
≤ Amax

We emphasize that this bound A2
max places a limit on the second moment of arrivals

during a timeslot. This allows for arrival processes such as Poisson streams, where

the maximum number of arrivals is unbounded but the second moment is finite. In

practice, a more stringent peak arrival bound would apply, representing the maximum

rate at which the applications at each node can transfer data to the network layer.

• The Convergence Interval K: As in Chapter 2, we define TS(t0,K) as the set

of timeslots at which S(t) = S during the interval t0 ≤ τ ≤ t0 + K − 1, and define

||TS(t0,K)|| as the total number of such slots. For given values δ > 0, δ̃ > 0, we define

the convergence interval K to be the smallest number of timeslots such that for any

t0, any (i, j), and regardless of past history, we have:

∣∣∣∣∣λic −
1
K

t0+K−1∑
τ=t0

E {Aic(τ)}

∣∣∣∣∣ ≤ δ̃ (4.1)

∑
S

∣∣∣∣∣E
{
||TS(t0,K)||

}
K

− πS

∣∣∣∣∣ ≤ δ

max{µout
max, µ

in
max}

(4.2)

Such a valueK exists because there are a finite number of arrival processes Aij(t), each

of which is rate convergent, and the channel process S(t) is channel convergent.1 This

convergence interval represents the time period over which the network is expected to

reach steady state, regardless of past history. All of the time varying properties of the

network that we use to analyze stability and delay (such as the mobility dynamics,

fading distributions, or link outage statistics) are captured in this scalar value K. We

note that in systems with i.i.d. arrivals and channel states, steady state is exactly

achieved every timeslot, so that K = 1 even when both δ and δ̃ are set to 0 in (4.1)

1The right hand side of the bound in (4.2) has the form δ/ max{µout
max, µin

max} so that transmission rates
of a stationary power allocation policy are rate convergent with K-slot averages that are within δ of the long
term input or output rate, as described in Lemma 8.
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and (4.2) above.

Below we develop a stochastic network calculus2 for analyzing stability and delay of

capacity achieving control schemes in the network layer using these parameters µout
max, µin

max,

A2
max, and K.

4.1.2 The Queueing Equation

Each network node i maintains a set of output queues for storing data according to its

destination. Let U (c)
i (t) represent the current backlog of bits in node i destined for node c.

The U (c)
i (t) processes evolve according to the following queueing dynamics:

U
(c)
i (t+ 1) = max

[
U

(c)
i (t)−D

(c)
i (t), 0

]
+ E

(c)
i (t) +A

(c)
i (t)

where

D
(c)
i (t) M= amount of commodity c bits transmitted out of node i during slot t

E
(c)
i (t) M= amount of commodity c bits that endogenously arrive to node i during slot t

The quantities D(c)
i (t) and E(c)

i (t) are determined by the routing, scheduling, and power

allocation decisions made by the network control algorithm.

4.2 The Network Capacity Region

Definition 6. The capacity region Λ is the closed region of N ×N rate matrices (λic) with

the following properties:

• (λic) ∈ Λ is a necessary condition for network stability, where all possible ergodic or

non-ergodic stabilizing power control and routing algorithms are considered (including

algorithms which have full knowledge of future events).

• (λic) strictly interior to Λ is a sufficient condition for the network to be stabilized by

some routing and power allocation policy.

2A non-stochastic network calculus was invented in [35], [36] for static networks with leaky bucket inputs
and fixed routing.
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Remarkably, we show that a stabilizing policy can be developed which does not require

knowledge of future events, and hence such knowledge does not expand the region of sta-

bilizable rates. Below we describe the set of rate matrices Λ making up this region, and in

Theorem 5 we show this set Λ is the true capacity region by establishing both the necessary

and sufficient conditions listed above.

To build intuition, we first consider the capacity region of a traditional wireline network

with no time variation, defined on a weighted graph with N nodes, E edges, and node-to-

node link capacities given by a link matrix (Gab). The link matrix describes the rate at

which node a can deliver data to node b (for all (a, b) node pairs), so that Gab = 0 if there

is no directed edge from node a to node b, and is equal to the positive transmission rate for

that link otherwise. To avoid confusion, we note that there are two sets of rate matrices

defined here: the exogenous arrival rate matrix (λic) and the node-to-node link transmission

rate matrix (or “link capacity” matrix) (Gab). The network capacity region is described

implicitly as the set of all arrival rate matrices (λic) such that there exist multi-commodity

flow variables f (c)
ab (for a, b, c ∈ {1, . . . , N}) which satisfy the non-negativity, flow efficiency,

and flow conservation constraints specified in (4.4)-(4.6), and which additionally satisfy the

link constraint
∑

c f
(c)
ab ≤ Gab for all links (a, b). We describe each of these constraints

below.

The non-negativity constraint (4.4) ensures that all flow variables f (c)
ab are non-negative.

The flow efficiency constraints (4.5) imply that data is never transfered from a node to itself,

and data is never retransmitted once it has reached its destination. The flow conservation

constraint (4.6) is most easily understood when equality holds, which implies that the

net influx of commodity c bits is zero at intermediate nodes i 6= c. The constraint is

relaxed to an inequality because smaller input rates λic can also be supported. Finally,

the link constraint for a traditional wireline network is that
∑

c f
(c)
ab ≤ Gab for all links

(a, b), ensuring that the total rate of flow over any link does not exceed the capacity of that

link. Together, these constraints indicate that the multi-commodity flow variables {f (c)
ab }

represent a feasible routing for all commodities c. Such multi-commodity flows must exist

in order for the network to be stable, regardless of whether bits flow as a continuous fluid

or bits arrive and are transmitted in packetized form every timeslot.

The major difference between the capacity region of a wireless network and the capacity

region of the traditional wireline network comes in the link constraint. First note that, due
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to the time varying channels, the node-to-node link capacity Gab for any wireless link (a, b)

must be defined in a time average sense, where the resulting transmission rate is averaged

over all possible channel states. Second, the resulting time average node-to-node rates (Gab)

are not fixed, but depend on the power allocation policy. A particular power allocation

policy 1 gives rise to a particular time average rate matrix G(1) = (G(1)
ab ), while another

policy 2 might give rise to another rate matrix G(2) = (G(2)
ab ). Thus, instead of describing

the network as a single weighted graph (Gab) of link rates, the network is described by a

collection of graphs, or a graph family Γ. We define the graph family Γ as the following set

of node-to-node transmission rate matrices:

Γ =
∑
S

πSConvex Hull
{
µ(P , S) | P ∈ Π

}
(4.3)

where addition and scalar multiplication of sets is used3, and the convex hull of a set A is

defined as the set of all convex combinations p1a1 + p2a2 + . . . + pkak of elements ai ∈ A

(where {pi} are probabilities summing to 1).

Thus, a transmission rate matrix G = (Gab) is in graph family Γ if and only if G can

be represented as G =
∑

S πSGS for some set of matrices GS , each one being inside the

convex hull of the set of node-to-node transmission rates achievable by power allocation

under channel state S (see Fig. 4-2).
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Figure 4-2: A construction of the set Γ for the case of 2 dimensions, illustrating the set of
all achievable long term link rates (µ1, µ2). In this example, we consider only two channel
states S1 and S2, each equally probable. Note that for the first channel state, the set{
µ(P , S1) | P ∈ Π

}
is disconnected and non-convex. Its convex hull is shown in the first plot.

The second plot illustrates the weighted sum of the convex hull of the regions associated
with each of the two channel states. This is the Γ region, and is necessarily convex. It can
be shown that if the µ(P , S) function is upper semi-continuous in the power matrix P , then
the extended set Γ̃, formed by considering all rate matrices entrywise less than or equal to
some element of Γ, is both convex and closed.

3For sets A, B and scalars α, β, the set αA + βB is defined as {γ | γ = αa + βb for some a ∈ A, b ∈ B}.
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In the proof of Theorem 5, it is shown that graph family Γ can be viewed as the set

of all long-term transmission rates (Gab) that the network can be configured to support on

the single-hop wireless links connecting node pairs (a, b). It is useful to define the extended

graph family Γ̃ as the set of all rate matrices entrywise less than or equal to a matrix in Γ

(see Fig. 4-2), as traffic on or below a point in Γ can likewise be supported.

Network Capacity Region: The capacity region Λ is the set of all input rate matrices

(λic) such that there exist multi-commodity flow variables {f (c)
ab } satisfying:

f
(c)
ab ≥ 0 ∀a, b, c (Non-negativity) (4.4)

f (c)
aa = f

(a)
ab = 0 ∀a, b, c (Flow-efficiency) (4.5)

λic ≤
∑

b

f
(c)
ib −

∑
a

f
(c)
ai ∀i, c such that i 6= c (Flow conservation) (4.6)(∑

c

f
(c)
ab

)
≤ (Gab) for some (Gab) ∈ Γ (Link constraint) (4.7)

where the matrix inequality in (4.7) is considered entrywise. Note that the link constraint

(4.7) can equivalently be written
(∑

c f
(c)
ab

)
∈ Γ̃.

Thus, a rate matrix (λic) is in the capacity region Λ if there exists a matrix (Gab) ∈ Γ

that defines link capacities in a traditional graph network, such that there exist multi-

commodity flow variables {f (c)
ab } which support the λic rates with respect to this graph.

It can be shown using standard convex analysis techniques [15] that the set Γ is convex,

and that sets Γ̃ and Λ are compact and convex (see Chapter Appendix 4.C). Such structural

properties are used in the proof of the following theorem.

Theorem 5. (Capacity Region for a Wireless Network)

(a) A necessary condition for stability is (λic) ∈ Λ.

(b) A sufficient condition for stability is that (λic) is strictly interior to Λ.

Proof. The proof of (a) is given in Chapter Appendix 4.A, where it is shown that no control

algorithm can achieve stability beyond the set Λ, even if the entire set of future events is

known in advance. Part (b) can be shown constructively by routing data according to the

flow variables {f (c)
ab } and allocating power to meet the long-term link capacity requirements

(Gab) (where the f (c)
ab and Gab values correspond to the input rate matrix (λic) via (4.4)-

(4.7)). Such a construction together with a bound on average delay is developed in the next

section.
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We note that the time varying channel conditions influence the network capacity region

only through their steady state probabilities πS . Cross correlations and higher order channel

statistics effect network delay (as described in the next section) but do not change network

capacity. We thus have the following corollary.

Corollary 5. (Capacity Region Invariance) A wireless network with a general channel

convergent process S(t) with time average state probabilities πS has the same capacity region

as an identical network in which channel states are chosen i.i.d. every timeslot according

to the πS distribution. �

4.3 Stabilizing Control Policies

The capacity region Λ of a wireless network is described in terms of flow variables f (c)
ab and a

link matrix (Gab) ∈ Γ which satisfy (4.4)-(4.7). In principle, these values can be computed if

the arrival rates (λic) and channel probabilities πS are known in advance. This allows us to

view power allocation and routing in a decoupled manner, where data is routed according to

flow variables f (c)
ab , and power is allocated to achieve long-term link capacities (Gab). Here

we construct such a policy and show it provides a bound on average delay. We then use this

analysis to construct a more practical and robust strategy that offers similar performance

without requiring knowledge of the input and channel statistics.

4.3.1 Control Decision Variables

A network control algorithm makes decisions about power allocation, routing, and schedul-

ing. As a general algorithm might schedule multiple commodities to flow over the same link

on a given timeslot, we define µ(c)
ab (t) as the rate offered to commodity c traffic along link

(a, b) during timeslot t. Note that this provides the means of modeling dynamic routing

decisions, as commodity c data in a given node can be routed to any of the outgoing links,

as determined by the µ(c)
ab (t) rates chosen by the control algorithm. Specifically, a network

control algorithm must make the following decisions:

Power Allocation: Choose P (t) such that P (t) ∈ Π.

Routing/Scheduling: Choose µ(c)
ab (t) such that:

∑
c

µ
(c)
ab (t) ≤ µab(t)M=µab(P (t), S(t))

88



Note that in the special case where there is no power allocation, the µab(t) process is

purely determined by the dynamic channel states of the network, and any network control

algorithm reduces to pure routing and scheduling.

4.3.2 Stability for Known Arrival and Channel Statistics

To construct a stabilizing policy, we first show that power can be allocated to achieve any

long-term link transmission rate matrix (Gab) within the network graph family Γ.

Lemma 8. (Graph Family Achievability) Let (Gab) be a matrix within the graph family Γ

(defined in (4.3)), so that ∑
S

πSGS = (Gab) (4.8)

for some matrices GS within Convex Hull{µ(P , S) | P ∈ Π}. Then:

(a) A stationary randomized power allocation policy PSTAT (τ) can be implemented which

yields a transmission rate process µSTAT (t)M=µ(PSTAT (t), S(t)) which is entrywise rate con-

vergent with rate matrix (Gab). That is, for all links (a, b), we have limt→∞
1
t

∑t
τ=0 µ

STAT
ab (t) =

Gab. Furthermore, for all nodes i and for any time t0:∣∣∣∣∣ 1
K

t0+K−1∑
τ=t0

[∑
b

E {µib(τ)}

]
−
∑

b

Gib

∣∣∣∣∣ ≤ δ (4.9)

∣∣∣∣∣ 1
K

t0+K−1∑
τ=t0

[∑
a

E {µai(τ)}

]
−
∑

a

Gai

∣∣∣∣∣ ≤ δ (4.10)

where the K and δ parameters are defined in (4.1) and (4.2).

The structure of the policy is as follows: Every timeslot in which the channel state S is

observed, the power matrix PSTAT (τ) is chosen randomly from a finite set of m allocations

{P 1
S , . . . , P

m
S } according to a set of probabilities {q1S , . . . , qm

S }.

(b) If the set {µ(P , S) | P ∈ Π} is convex for every channel state S, then a power control

algorithm yielding a rate convergent transmission rate process µSTAT (t) with rates (Gab) and

satisfying (4.9) and (4.10) can be implemented by a non-randomized policy, where a fixed

power matrix PS is allocated whenever in channel state S.

Proof. The proof follows by expressing each GS matrix as a convex combination of ma-

89



trices in {µ(P , S) | P ∈ Π} according to Caratheodory’s Theorem [15], and defining the

probabilities of the stationary randomized scheme according to the weights of the convex

combination. A full proof is given in Chapter Appendix 4.D.

Note that in the policy of Lemma 8, power allocations are only changed on timeslot

boundaries and hence it is not necessary to vary power during the course of a single slot

to achieve rates in the graph family Γ. The given strategy bases decisions only on the

current channel state and does not depend on queue backlogs. However, the policy is

rather idealized: The existential nature of Lemma 8 does not provide any practical means

of computing the power values and probabilities needed to implement the policy. However,

this allocation policy is analyzable using a well developed theory of Lyapunov drift [6] [98]

[81] [132] [88] [95].4 Below we develop a control strategy based on this idealized policy. The

strategy is not offered as a practical means of network control, but as a baseline by which

our dynamic algorithm of Section 4.3.3 can be compared.

Assume the channel probabilities πS are known, and that the exogenous arrival rates

(λic) are known and are strictly interior to the capacity region Λ, so that there is a positive

value ε that can be added to each component of (λic) such that (λic + ε) ∈ Λ. Let (Gab)

and {f (c)
ab } represent the network graph and multi-commodity flow variables, respectively,

associated with rates (λic + ε) and satisfying (4.4)-(4.7). In particular:

(λic + ε) ≤
∑

b f
(c)
ib −

∑
a f

(c)
ai for i 6= c (4.11)(∑

c f
(c)
ab

)
≤ (Gab) (4.12)

The values f (c)
ab and Gab could in principle be computed with knowledge of πS and (λic),

and we assume in this subsection that they are known to the network controller.

Stationary Randomized Policy (STAT) for Known System Statistics:

Power Allocation: Every timeslot, observe the channel state S and allocate power ac-

cording to the stationary algorithm PSTAT (t) of Lemma 8, yielding the rate convergent

process µSTAT
ab (t) on each link (a, b) with a long-term link capacity matrix (Gab).

Scheduling/Routing: For every link (a, b) such that
∑

c f
(c)
ab > 0, transmit the single

4In particular, we use the drift result developed in Chapter 2, which both simplifies and generalizes the
known theory while enabling analysis of our general stochastic wireless network.

90



commodity ĉab, where ĉab is chosen randomly with probability f (c)
ab /

∑
c f

(c)
ab . However, use

only a fraction
P

c f
(c)
ab

Gab
of the instantaneous link rate, so that:

µ
(c)STAT
ab (t) =

 µSTAT
ab (t)f

(c)
ab

Gab
if c = ĉab

0 otherwise

If a node does not have enough (or any) bits of a certain commodity to send over its output

links, null bits are delivered, so that links have idle times which are not used by other

commodities.

Note that:

E
{
µ

(c)STAT
ab (t) | µSTAT

ab (t)
}

= µSTAT
ab (t)

f
(c)
ab

Gab
(4.13)

By Lemma 8, we know µSTAT
ab (t) is rate convergent with rate Gab, and hence µ(c)STAT

ab (t) is

rate convergent with rate f (c)
ab .

Fix δM=δ̃M=ε/6, which defines the convergence interval K according to (4.1) and (4.2).

The bounds of (4.1), (4.9), and (4.10) thus become:

∣∣∣∣∣λic −
1
K

t0+K−1∑
τ=t0

E {Aic(τ)}

∣∣∣∣∣ ≤ ε

6
(4.14)

∣∣∣∣∣ 1
K

t0+K−1∑
τ=t0

[∑
b

E
{
µ

(c)STAT
ib (t)

}]
−
∑

b

f
(c)
ib

∣∣∣∣∣ ≤ ε

6
max
a,b

{
fab

Gab

}
≤ ε

6
(4.15)

∣∣∣∣∣ 1
K

t0+K−1∑
τ=t0

[∑
a

E
{
µ

(c)STAT
ai (t)

}]
−
∑

a

f
(c)
ai

∣∣∣∣∣ ≤ ε

6
max
a,b

{
fab

Gab

}
≤ ε

6
(4.16)

where (4.15) and (4.16) follow by multiplying (4.9), and (4.10) by f (c)
ab /Gab and using (4.13).

Inequalities (4.14)-(4.16) state that the K-slot time averages for the exogenous arrival

rates, endogenous arrival rates, and transmission rates for each node are within ε/6 of their

limiting values. Hence, the difference between the transmission rates and the sum of the

endogenous and exogenous arrival rates must be within ε/2 of the limiting difference. By

(4.11), this limiting difference is given by:

∑
b

f
(c)
ib −

∑
a

f
(c)
ai − λic ≥ ε for i 6= c (4.17)
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Hence, we have:5

1
K

t0+K−1∑
τ=t0

E

{∑
b

µ
(c)STAT
ib (τ)−

∑
a

µ
(c)STAT
ai (τ)−A

(c)
i (τ)

}
≥ ε

2
(4.18)

The above inequality (4.18) holds at any time t0, regardless of the condition of the arrival or

server process at this time. The convergence interval K was defined for δ = ε/6 according

to (4.1) (4.2) in order to establish this inequality. In cases where a smaller value K ′ can

be found for which inequality (4.18) holds, the smaller value can be used in place of K in

all of the following analysis. We note that when arrivals and channel states are i.i.d. every

timeslot, then K = 1, δ = δ̃ = 0, and the right hand side of the above inequality can be

increased from ε/2 to ε, as steady state averages are achieved exactly on every timeslot (and

hence the left hand side of (4.18) reduces to the left hand side of (4.17)).

Theorem 6. (Stabilizing Policy for Known Statistics) Consider an N node wireless net-

work as described above, with capacity region Λ and input rates (λic) such that (λic + ε) ∈ Λ

for some ε > 0. Then, jointly routing and allocating power according to the above sta-

tionary randomized policy STAT stabilizes the system and guarantees bounded average bit

occupancies satisfying: ∑
i,c

U
(c)STAT
i ≤ KBN

ε
(4.19)

where
B M=(Amax + µin

max)2 + (µout
max)2 (4.20)

and the overbar notation on the left side of (4.19) is defined

∑
i,c

U
(c)
i

M= lim sup
t→∞

1
t

t−1∑
τ=0

∑
i,c

E
{
U

(c)
i (τ)

}
Proof. The K-step dynamics of unfinished work satisfies the following bound for all i 6= c:

U
(c)
i (t0 +K) ≤ max

(
U

(c)
i (t0)−

t0+K−1∑
τ=t0

∑
b

µ
(c)
ib (τ), 0

)
+

t0+K−1∑
τ=t0

∑
a

µ
(c)
ai (τ) +

t0+K−1∑
τ=t0

Aic(τ) (4.21)

5Inequality (4.18) follows easily by noting that for any variables x1, x2, x3, x̃1, x̃2, x̃3 satisfying x1 − x2 −
x3 ≥ ε and |xi − x̃i| ≤ ε/6 for i = 1, 2, 3, then x̃1 − x̃2 − x̃3 ≥ ε/2.
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where (4.21) holds as an inequality instead of an equality because the total bits arriving to

node i from other nodes of the network may be less than
∑t0+K−1

τ=t0

∑
a µ

(c)
ai (τ) if these other

nodes have little or no data to send, and because some arrivals during the K slot interval

may also depart in the same interval.

Now define the Lyapunov function L(U) =
∑

i6=c [U (c)
i ]2, where the notation “

∑
i6=c”

represents the double summation “
∑N

i=1

∑
c∈{1,...,N}−{i}”. By squaring both sides of (4.21),

taking conditional expectations, and performing simple manipulations, we have the follow-

ing expression for the K-slot Lyapunov drift [see Chapter Appendix 4.E for the detailed

manipulations]:

E {L(U(t0 +K))− L(U(t0)) | U(t0)} ≤ K2BN+

−2K
∑

i6=c U
(c)
i (t0) 1

K

∑t0+K−1
τ=t0

E
{∑

b µ
(c)
ib (τ)−

∑
a µ

(c)
ai (τ)−Aic(τ) | U(t0)

}
(4.22)

where B is defined in (4.20). The above expression for Lyapunov drift holds for any control

policy that chooses general µ(c)
ij (t) rates. Implementing the stationary randomized control

policy yields rates µ(c)STAT
ij (t). Directly applying the condition (4.18) in the expectation of

(4.22) yields:

E {L(U(t0 +K))− L(U(t0)) | U(t0)} ≤ K2BN − 2K
∑
i6=c

U
(c)
i (t0)[ε/2]

Applying the Lyapunov Drift Lemma (Lemma 2) to the above inequality proves the

result.

In the case of i.i.d. arrivals and channel states, K = 1 and the ε/2 value in (4.18) can

be replaced by ε, yielding a performance guarantee of
∑

i,c U
(c)STAT
i ≤ BN

2ε .

4.3.3 A Dynamic Policy for Unknown System Statistics

The stabilizing policy of the above section requires full knowledge of arrival rates and channel

state probabilities, along with the associated multi-commodity flows and the randomized

power allocations. Here we present a dynamic power control and routing scheme which

requires no knowledge of the arrival rates or channel statistics, yet guarantees performance

similar to the previous policy which does use this information. This surprising result arises

because the dynamic policy considers both the channel state S(t) and the system backlogs
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U(t) when making control decisions. The policy is inspired by the maximum differential

backlog algorithms developed by Tassiulas in [132] for stable server scheduling in a multi-

hop radio network and an N ×N packet switch, and generalizes the Tassiulas algorithm by

considering the power allocation problem and treating a network with general interference

and time varying channel characteristics. Furthermore, we obtain a simple expression for

average end-to-end network delay by relating network performance of our dynamic scheme to

the performance of the stationary control policy STAT developed in the previous subsection.

Every timeslot the network controller observes the channel state S(t) and the matrix of

queue backlogs U(t) = (U (c)
i (t)) and performs routing and power control as follows.

Dynamic Routing and Power Control (DRPC) Policy:

1. For all links (a, b), find commodity c∗ab(t) such that:

c∗ab(t) = arg max
c∈{1,...,N}

{
U (c)

a (t)− U
(c)
b (t)

}
and define:

W ∗
ab(t) = max[U (c∗ab(t))

a (t)− U
(c∗ab(t))

b (t), 0] (4.23)

2. Power Allocation: Choose a matrix P (t) such that:

P (t) = arg max
P∈Π

∑
a,b

µab(P , S(t))W ∗
ab (4.24)

3. Routing: Over link (a, b), send an amount of bits from commodity c∗ab according to

the rate offered by the power allocation. If any node does not have enough bits of a

particular commodity to send over all its outgoing links requesting that commodity,

null bits are delivered.

Thus, the corresponding µ(c)DRPC
ab (t) values for this algorithm are given by:

µ
(c)DRPC
ab (t) =

 µab

(
PDRPC(t), S(t)

)
if c = c∗ab and W ∗

ab > 0

0 otherwise
(4.25)

Note that the W ∗
ab values represent the maximum differential backlog of commodity c

bits between nodes a and b. The policy thus uses backpressure to find an optimal routing.
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We emphasize that this scheme does not use any pre-specified set of routes. The route

for each unit of data is found dynamically according to the maximum differential backlog

policy.

Theorem 7. (Stabilizing Policy for Unknown System Statistics) Suppose an N-node wireless

network has capacity region Λ and rate matrix (λic) such that (λic + ε) ∈ Λ for some ε > 0,

although these rates and the channel probabilities πS are unknown to the network controller.

Then, jointly routing and allocating power according to the above DRPC policy stabilizes

the system and guarantees bounded average bit occupancies satisfying:

∑
i,c

U
(c)DRPC
i ≤ KBN

ε
+

(K − 1)NB̃
ε

(4.26)

where B is defined in (4.20), and

B̃ M=2(µin
max + µout

max)
(
Amax + µin

max + µout
max

)
(4.27)

We prove this theorem through a sequence of two lemmas. The first lemma compares

the Lyapunov drift of the STAT algorithm (which is known to be stable by Theorem 6), to

the drift of a modified DRPC algorithm we call FRAME. The second lemma compares the

drift of FRAME to that of DRPC.

For the Lyapunov function L(U) =
∑

i6=c[U
(c)
i ]2, a general bound on the K-step drift of

any control strategy is given in (4.22) [see Theorem 6 and Chapter Appendix 4.E]. Below

we rewrite the drift bound (4.22) in terms of a quantity Φ (U(t0)), which captures the only

component of the bound that depends on the control strategy:

E {L(U(t0 +K))− L(U(t0)) | U(t0)} ≤ K2BN − 2K [Φ (U(t0))− β (U(t0))] (4.28)

where

Φ (U(t0)) M=
1
K

t0+K−1∑
τ=t0

E

∑
i6=c

U
(c)
i (t0)

[∑
b

µ
(c)
ib (τ)−

∑
a

µ
(c)
ai (τ)

]
| U(t0)

 (4.29)

β (U(t0)) M=
1
K

t0+K−1∑
τ=t0

E

∑
i6=c

U
(c)
i (t0)A

(c)
i (τ) | U(t0)


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Note that using the stationary randomized control strategy STAT yields a drift variable

ΦSTAT (U(t0)), and from Theorem 6 we have

ΦSTAT (U(t0))− β (U(t0)) ≥
ε

2

∑
i6=c

U
(c)
i (t0) (4.30)

We now consider a frame-based modification of the DRPC policy which maximizes the

Φ (U(t0)) function over all conceivable control policies. The modified algorithm FRAME is

defined as follows: Scheduling, power allocation, and routing are done every timeslot exactly

as in the DRPC algorithm, with the exception that backlog updates are performed only

everyK slots. Specifically, for any timeslot τ within aK slot frame {t0, t0+1, . . . , t0+K−1},

power is allocated to maximize
∑

ab µab(P , S(τ))W ∗
ab(t0) subject to P ∈ Π. Thus, current

channel state information but out of date backlog information is used every slot (note that

W ∗
ab(t0) depends only on U(t0) according to (4.23)).

Lemma 9. The control algorithm FRAME maximizes Φ (U(t0)) over all possible power

allocation, routing, and scheduling strategies. That is:

ΦFRAME (U(t0)) ≥ ΦX (U(t0))

for any other strategy X, including strategies that have full knowledge of arrival and channel

statistics.

Proof. Given in Chapter Appendix 4.F.

Using the above lemma to compare the FRAME and STAT algorithms, it follows that:

ΦSTAT (U(t0)) ≤ ΦFRAME (U(t0)) (4.31)

It follows that the K-step Lyapunov drift of the FRAME algorithm is less than or equal to

the drift bound given for the algorithm STAT, and hence by Lemma 2 we have that:

∑
i,c

U
(c)FRAME
i ≤ KBN

ε

We use the algorithm FRAME as an analytical means to prove stability of the DRPC

algorithm, not as a recommended control strategy. Note that FRAME and DRPC are
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equivalent in the case of i.i.d. arrival and channel statistics where K = 1. However,

for general arrivals and channels, the FRAME algorithm cannot be implemented without

knowledge of the convergence interval K, whereas DRPC does not require this knowledge.

Intuitively, the DRPC algorithm should perform better than FRAME, as it uses current

backlog information. However, analytically we can only show that DRPC performs no

more than a fixed amount worse than FRAME. This worst case bound holds because the

unfinished work matrix U(τ) for τ within a given frame {t0, . . . , t0 + K − 1} differs from

the unfinished work U(t0) at the beginning of the frame by no more than a fixed amount

determined by the parameters Amax, µ
in
max, and µout

max governing the maximum number of

arrivals and departures, as described in the lemma below.

Lemma 10. Comparing FRAME and DRPC, we have:

ΦDRPC (U(t0)) ≥ ΦFRAME (U(t0))− (K − 1)NB̃/2

where B̃ is defined in (4.27).

Proof. Given in Chapter Appendix 4.F.

Combining Lemmas 9 and 10, it follows from (4.28) that the Lyapunov drift of the

DRPC algorithm satisfies:

DRPC︷ ︸︸ ︷
E {L(U(t0 +K))− L(U(t0)) | U(t0)} ≤ K2BN − 2K

[
ΦDRPC(U(t0))− β(U(t0))

]
≤ K2BN +K(K − 1)NB̃

−2K
[
ΦFRAME(U(t0))− β(U(t0))

]
≤ K2BN +K(K − 1)NB̃ −Kε

∑
i6=c

U
(c)
i (t0)

Where the last inequality follows from the fact that ΦFRAME(U(t0)) ≥ ΦSTAT (U(t0)) and

from (4.30). This drift bound together with Lemma 2 proves Theorem 7.

4.3.4 Delay Asymptotics

Define the constant

BK
M=B +

(K − 1)
2K

B̃ (4.32)
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so that the performance bound of the DRPC policy can be written:
∑

i Ui ≤ KBKN/ε

(note that BK = B for K = 1). This bound grows asymptotically like 1/ε as the data rates

are increased, where ε can be viewed as the “distance” measure of the rate matrix to the

boundary of the capacity region. Such behavior is characteristic of queueing systems, as

exemplified by the standard equation for average delay in an M/G/1 queue [49] [14].

Consider now an input rate matrix (λij) where each user sends at the same total rate

λ, so that each row i of the matrix has the form (λi1, λi2, . . . , λiN ), and
∑

j λij = λ for all

users i. Suppose this rate matrix is a distance ε away from a capacity boundary matrix

(rij), where each row i has the form:

(ri1, ri2, . . . , riN ) = (λi1 + ε, λi2 + ε, . . . , λiN + ε)

Define RM=λ + Nε as the row sum of these rates, representing the total transmission rate

if node i were to send according to the rate vector given above. Let ρM=λ/R represent

the effective loading on each user, assumed constant as the network is scaled. Note that

ε = R
N (1− ρ). From Little’s Theorem, the average bit delay satisfies:

Dbit =
1
Nλ

∑
i,c

U
(c)
i ≤ KBKN

εNλ
=
KBK

ερR
=

KBKN

ρ(1− ρ)R2
(4.33)

In a static network where the average distance between users is O(
√
N), such as that given

by the Gupta-Kumar model [58] [57], the maximum data rate R for every user necessarily

decreases as O(1/
√
N). Hence, the average bit delay of the DRPC algorithm in this scenario

is no more than O(KN2

1−ρ ).

In ad-hoc mobile networks with full user mobility, it is shown in [54] that the node to

node transmission rate R does not decrease with the number of users, so that R is O(1). In

this case, average delay is O(KN
1−ρ).

4.3.5 Enhanced DRPC

The DRPC algorithm stabilizes the network by making use of back-pressure, where packets

find their way to destinations by moving in directions of decreasing backlog. However,

when the network is lightly loaded, packets may take many false turns, which could lead

to significant delay for large networks. Performance can often be improved by using the
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DRPC algorithm with a restricted set of desirable routes for each commodity. However,

restricting the routes in this way may reduce network capacity, and may be harmful in time

varying situations where networks change and links fail.

Alternatively, we can keep the full set of routes, but program a bias into the DRPC

algorithm so that, in low loading situations, nodes are inclined to route packets in the

direction of their destinations. We use this idea in the following Enhanced DRPC algorithm,

defined in terms of constants θc
i > 0 and V c

i ≥ 0.

Enhanced DRPC Algorithm: For all links (a, b), find commodity c∗ab such that:

c∗ab = arg max
c∈{1,...,N}

{
θc
a(U

(c)
a (t) + V c

a )− θc
b(U

(c)
b (t) + V c

b )
}

and define:

W ∗
ab = θ

c∗ab
a (U c∗ab

a (t) + V
c∗ab
a )− θ

c∗ab
b (U c∗ab

b (t) + V
c∗ab
b )

Power allocation and routing is then done as before, solving the optimization problem (4.24)

with respect to these new W ∗
ab values.

The Enhanced DRPC algorithm can be shown to be stabilizing and to offer a delay

bound for any constants θc
i > 0 and V c

i ≥ 0, while supporting the following services.

Priority Service: The weights θc
i of the DRPC algorithm can be used to offer improved

service to priority customers, where a large θc
i value gives high priority to commodity c

packets in node i. Analysis of such a strategy proceeds in a straightforward way by using

the weighted Lyapunov function
∑

i θ
c
i [U

(c)
i ]2.

Shortest Path Service: Define biases V c
i to be the distance (or number of hops) between

node i and node c along the shortest path through the network (where Vii = 0 for all i).

These distances can either be estimated or computed by running a shortest path algorithm.

With these bias values, packets are inclined to move in the direction of their shortest paths—

providing low delay in lightly loaded conditions while still ensuring stability throughout the

entire capacity region.

We note that the combined weight V c
a + U c

a can be used in the same manner as a

routing table, and the unfinished work quantities can be updated each timeslot by having

neighboring nodes transmit their backlog changes over a low bandwidth control channel.

As each wireless link transmits only a single commodity every timeslot, the number of such

backlog increments required to be transmitted over the control channel by any user is on
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the order of the number of neighboring nodes. This is O(N) for networks where all nodes

can reach all other nodes over one hop, but O(1) in systems where attenuation restricts the

range of single hop communication to only a small subset of neighbors.

4.3.6 Approximations for Optimal and Suboptimal Control

Analysis similar to the comparison between the frame based and non-frame based DRPC

algorithms also can be used to show that DRPC stabilizes the system in cases of imperfect

backlog information. Specifically, if unfinished work estimates Ûij are used instead of the

actual unfinished work values, and the difference is bounded so that E
{∣∣∣Ûij − Uij

∣∣∣} < M

for some constant M , then the DRPC policy still provides stability whenever possible, and

average delay grows proportionally to the estimate distance M . Thus, perfect knowledge

of queue backlog is not required for throughput optimality, although such knowledge can

improve delay.

However, throughput optimality cannot be obtained without perfect knowledge of the

channel states. Indeed, simple examples can be constructed where the network controller

needs full knowledge of random link states to take advantage of good channel conditions

while they last. Thus, there is in general a “gap” between the data rates achievable by a

centralized controller with full state information and a distributed controller with partial

knowledge. A similar gap phenomenon is discussed in [63] for wireless downlink problems.

Consider now a sub-optimal controller which allocates power with efforts to approxi-

mately solve the optimization problem (4.24). By scaling the data rates (λic) in the Lya-

punov argument of Theorem 7, it can be shown that if the sub-optimal controller always

comes within a factor γ of the optimal solution to (4.24), then the controller guarantees

stability for data rates up to a factor γ of the capacity region. (This easily follows by multi-

plying the Φ(U(t0)) and β(U(t0)) values in (4.28) by γ and repeating the proof of Theorem

7.) The interpretation of this result is that any effort to allocate power to increase the value

of
∑

a,b µab(P , S(t))W ∗
ab in (4.24) leads to improved data rates.

4.4 Distributed Implementation

The DRPC algorithm of the previous section involves solving a constrained optimization

problem every timeslot, where current channel state and queue backlogs appear as param-
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eters in the optimization. Here we consider decentralized implementations, where users

attempt to maximize the weighted sum of data rates in (4.24) by exchanging information

with their neighbors. The current neighbors of a node i is defined as the set Ωi(t), represent-

ing the nodes to which node i can currently transmit and receive. Theoretically, all nodes

could be neighbors, as the power transmitted from one node may be detected everywhere.

However, to limit implementation complexity, it is practical to restrict neighbors to a fixed

set of nearby nodes with the best channel conditions. We assume that the neighbor sets

Ωi(t) are defined according to some such rule, and that nodes have knowledge of the link

conditions between themselves and their neighbors and are informed of the queue backlogs

of their neighbors via a low bandwidth control channel.

4.4.1 Networks with Independent Channels

Consider a network with independent channels, so that the transmission rate on any given

link (a, b) depends only on the local link parameters: µab(P , S) = µab(Pab, Sab). Assume

that the rate functions µab(Pab, Sab) are concave in the single power variable Pab for every

channel state Sab (representing diminishing returns in data rate for each incremental increase

in power). These assumptions are valid when all links use orthogonal coding schemes,

beamforming, and/or when links are spacially separated such that channel interference is

negligible.

In this case, the optimization problem (4.24) has a simple decoupling property, where

the weighted sum is maximized by separately maximizing each term. This corresponds to

nodes making independent power control and routing decisions based only on their local in-

formation. Indeed, each node n ∈ {1, . . . , N} maximizes
∑

bW
∗
nb(t)µnb(Pnb, Snb(t)) subject

to its power constraint
∑

b Pnb ≤ P tot
n , where the summations are taken over all neighbor-

ing nodes b ∈ Ωn(t). This optimization is a standard problem of concave maximization

subject to a simplex constraint, and can be solved easily in real time with any degree of

accuracy. Its solution proceeds according to the standard water-filling arguments, where

power is allocated to equalize scaled derivatives of the µnb(Pnb, Snb) function for a subset

of links with the best channel conditions (see Chapter 3, Section 3.4.3). Thus, independent

channels enable optimal control to be implemented in a distributed fashion.
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4.4.2 Distributed Approximation for Networks with Interference

Consider a network with rate-power curves described by the log(1+SIR) function given in

(1.1). This network has dependent, interfering channels, and the associated optimization

problem (4.24) is nonlinear, non-convex, and difficult to solve even in a centralized manner.

Here we provide a simple decentralized approximation, where nodes use a portion of each

timeslot to exchange control information with neighbors:

1. At the beginning of a timeslot, each node randomly decides to either transmit at full

power Ptot or remain idle, with probability q for either decision (where 0 ≤ q ≤ 1). A

control signal of power γPtot is transmitted, where γ is some globally known scaling

factor designed to limit power expended by the control signal.

2. Define Q as the set of all transmitting nodes. Each node b measures its total resulting

interference γ
∑

i∈Q αibPtot, and sends this scalar quantity over a control channel to

all neighbors.

3. Using knowledge of the interference, attenuation values, and queue backlogs associated

with all neighboring nodes, each transmitting user a decides to transmit using full

power to the single neighbor b who maximizes the function:

W ∗
ab log

(
1 +

αabPtot

Nb + 1
G2

∑
i6=a,i∈Q αibPtot

)

Note that each transmitting user a has knowledge of the denominator term
∑

i6=a,i∈Q αibPtot

because this can be obtained by subtracting its own signal strength αabPtot from the known

interference value
∑

i∈Q αibPtot. The above algorithm is not optimal, but is designed to

demonstrate a simple distributed implementation. The random transmitter selection in the

above algorithm is similar to the technique used in the Grossglauser-Tse relay algorithm of

[54]. However, rather than transmitting to the nearest receiver, the algorithm chooses the

receiver to improve the backlog-rate metric given in (4.24). In the next section, we show

that this algorithm achieves a stability region that contains the stability region of the relay

algorithm when transmit probability of the relay algorithm is set to q. In particular, in a

fully mobile environment, it achieves a capacity which does not vanish as the number of

nodes is increased.
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4.5 Capacity and Delay Analysis for Ad-Hoc Mobile Net-

works

Here we analyze the throughput and delay of the above distributed DRPC policy in the

situation of an ad-hoc mobile network with N fully mobile users. The steady state location

of each user is uniform over the network area, as in [54], and the transmission model is

described by the rate-power curves of the log(1 + SIR) function given (1.1), for the case

G1 = G2 = 1. Every user i has a specified set of current neighbors Ωi(t) determined by

some arbitrary criterion, although we assume that the non-transmitting user closest to user

i is always within the neighbor set Ωi(t). The distributed DRPC algorithm is designed as

a simple approximation to the centralized DRPC algorithm, and can be viewed as an exact

implementation of DRPC for the following modified channel model: Each user experiences

random channel outages where all outgoing links simultaneously fail with probability 1− q

(precisely corresponding to the probability of not being chosen to transmit). Additionally,

the rate-power function is identically zero for rates between any two users that are not

neighbors, and the power set Π is restricted so that all transmitting users must use full power

Ptot and can transmit to at most one other user during a timeslot.6 The algorithm achieves

capacity for this modified channel model, and hence no other scheme which conforms to such

a model (such as the 2-hop relay algorithm in [54]) offers greater throughput. Furthermore,

the algorithm admits analytical guarantees on both throughput and delay. To see this, we

first present a result from [54] concerning the throughput of the 2-hop relay algorithm.

Define φN as the average transmission rate between a transmitting user and the nearest

non-transmitting user in a network with unit area, N users with uniform location distribu-

tions, and interference properties as given by (1.1) with G1 = G2 = 1.

Fact1. (From [54]) The average rate φN for transmission between nearest non-transmitting

neighbors converges to a positive scalar φ as the network size N increases.7 �

This fact is used in [54] to show that the 2-hop relay algorithm achieves a throughput

of φ/2 for sufficiently large networks, where each user communicates at the same rate to

6It can be shown that, in the case G1 = 1, the optimal solution of
P

ab W ∗
ab log(1 + SIR) (for SIR

defined in (1.1)) has the form where each user transmits to no more than one other user on a given timeslot,
following from convexity of the log(1 + p

n−p
) function.

7Strictly speaking, the analysis in [54] chooses transmit nodes according to a globally known pseudo-
random schedule, so that bqNc users transmit on every slot. It is straightforward to show the result also
holds (for a slightly different value of φ) if transmitters are chosen independently with probability q.

103



exactly one unique destination. The same rate provides a lower bound on the stability

region of the distributed DRPC algorithm, where users can communicate with multiple

destinations at different rates. This is made formal in the following theorem.

Theorem 8. If all users move independently and uniformly over the network area, and

every user considers its nearest non-transmitting user as part of its current neighbor set,

then

(a) The stability region of the distributed algorithm given above contains the set of all

data rates (λij) satisfying:

∑
j λij ≤ φN/2 → φ/2 for all source nodes i ∈ {1, . . . , N} (4.34)∑
i λij ≤ φN/2 → φ/2 for all destination nodes j ∈ {1, . . . , N} (4.35)

(b) The average bit delay Dbit satisfies:

Dbit ≤
4KBKN

ρN (1− ρN )φ2
N

where ρN
M=

maxi,j{
P

b λib,
P

a λaj}
φN/2 , and K, BK are the stochastic parameters of Theorem 7

corresponding to the particular arrival and mobility process of the system (K is defined in

(4.1),(4.2) and B̃ is defined in (4.27)).

Proof. (a) Because the distributed DRPC algorithm achieves capacity over the modified

channel model, from Theorem 1 it suffices to find a link matrix (Gab) within the graph

family Γ̃ for the modified model together with multicommodity flows f (c)
ab which support

the data rates with respect to this link matrix. We emphasize that the link matrix and

flows do not need to be those resulting from the distributed DRPC algorithm, but can be

from any power allocation and routing strategy that conforms to the channel model.

To find a link matrix (Gab), consider the simple strategy of transmitting with full power

to the nearest non-transmitting user. From Fact 1, the average rate of this transmission is

φN . In steady state, the nearest neighbor of a node a is equally likely to be any of the other

N − 1 nodes in the system, so that the long term link rate between any node pair (a, b) is

given by Gab = φN/(N − 1). Hence, the link matrix (Gab) = (φN/(N − 1)) is contained in

Γ̃.
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Define the following flow variables f (c)
ab :

f
(a)
ab = f

(c)
aa = 0 for all a, b, c ∈ {1, . . . , N}

f
(c)
ab = λac

(N−1) for all sources a, commodities c, and all nodes b /∈ {a, c}

f
(b)
ab =

P
k λkb

(N−1) for all nodes a, b such that a 6= b.

The above flows correspond to routing the λac traffic from node a to node c by splitting

it equally among N − 1 parallel paths, consisting of the single hop path a → c and the

N − 2 two-hop paths which use an intermediate relay node b to send data along the path

a→ b→ c.

It is easy to verify that these flows satisfy the non-negativity, flow efficiency, and flow

conservation constraints of (4.4) - (4.6). It suffices to show that the link constraint (4.7) is

satisfied. For all wireless links (a, b), we have:

∑
c

f
(c)
ab = f

(a)
ab + f

(b)
ab +

∑
c/∈{a,b}

f
(c)
ab

= 0 +
∑

k λkb

(N − 1)
+
∑

c/∈{a,b}

λac

N − 1

≤ φN

2(N − 1)
+

φN

2(N − 1)
= Gab (4.36)

where (4.36) follows from the input rate constraints (4.34), (4.35). Hence, the link constraint

is satisfied for all links, and the proof of (a) is complete. Part (b) follows from the delay

expression (4.33) established by Theorem 7, noting that R = φN/2 in this case.

4.5.1 Implementation and Simulation of Centralized and Distributed DRPC

Here we apply the Enhanced DRPC policy to an ad-hoc network with mobility and inter-

channel interference. Consider a square network with N users, with user locations dis-

cretized to an M ×M grid (see Fig. 4-3). The stochastic channel process S(t) is charac-

terized by the following stochastic model of user mobility: Every timeslot, users keep their

locations with probability 1/2, and with probability 1/2 they move one step in either the

North, South, West, or East directions (uniformly distributed over all feasible directions).

Each user is power constrained to Ptot, is restricted to transmitting to only one other user

in a given timeslot, and cannot transmit if it is receiving. Power radiates omnidirectionally,
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and signal attenuation between two nodes a and b is determined by the 4th power of the

distance between them (as in [41]), so that fading coefficients are given by:

αab =

 1/[((xa − xb)2 + (ya − yb)2)2 + 1] if a 6= b

∞ if a = b

where (xa, ya), (xb, yb) represent user locations within the network. Note that the extra

“+1” term in the denominator is inserted to model the reality that attenuation factors αab

are kept below 1 (so that signal power at the receiver is never more than the corresponding

power used at the transmitter). The αaa values are set to infinity to enforce the constraint

that transmitting nodes cannot receive.

Figure 4-3: An ad-hoc network with 10 mobile users. Locations of each user are discretized
to a 5× 5 grid.
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Figure 4-4: A piecewise constant rate curve for the 4 modulation schemes described in the
table. Scaled power requirements are shown, where ∆ represents the minimum distance
between signal points.

Multi-user interference is modeled similarly to the rate-power curve given in (1.1). How-

ever, rather than use the log(1 + SIR) function, we use a rate curve determined by four

different QAM modulation schemes designed for error probabilities less than 10−6. The rate

106



function is thus:

µab(P , α) = f(SIRab(P , α))

where f() is a piecewise constant function of the signal-to-interference ratio defined by the

coding schemes given in Fig. 4-4. The SIRab() function is taken to be the same as that

used in eq. (1.1) with the CDMA gain parameters G1 = G2 = 1.

We consider the Enhanced DRPC algorithm with θc
i = 1, V c

i = 1 for all i 6= c, and

V i
i = 0, and assume the power/noise coefficient is normalized to Ptot/Nb = 20∆2, where

∆ is the minimum distance between signal points in the QAM modulation scheme. The

algorithm is approximated using the distributed implementation described in the previous

section, where each node transmits using full power with probability q = 1/2. As the

network is small, we simply define the neighbor set Ωi(t) for each user i to be the set of all

other nodes in the network (because of attenuation affects, we do not expect performance

to be significantly affected if this neighbor set is restricted to the set of users within one or

two cells of the transmitter). A centralized implementation is also considered, where the

optimization problem (4.24) is implemented using a steepest ascent search on the piecewise

linear relaxation of the f(SIR) curve (see Fig. 4-4). The resulting data rates are then

“floored” according the threshold levels of the piecewise constant curve f(SIR). Note

that the relaxed problem remains non-linear and non-convex (because SIR is non-convex in

the power variables, see (1.1)), and hence the result of the steepest ascent search may be

sub-optimal.

We simulate the centralized and decentralized implementations of DRPC and compare

to the performance offered by the 2-hop relay algorithm presented in [54]. The relay algo-

rithm restricts routes to 2-hop paths, and hence relies on rapid user mobility for delivering

data. We set the sender density parameter of the relay algorithm to qM=1/2. To further

conform with the Grossglauser-Tse model, we assume both the 2-hop relay algorithm and

the distributed DRPC algorithm choose users pseudo-randomly according to this density,

so that there are always N/2 transmitters. Random and i.i.d. transmitter selection yields

similar results. Note that the relay algorithm was developed to demonstrate non-vanishing

capacity for large networks, and was not designed to maximize throughput or achieve low

delay. Thus, it is not completely fair to compare performance with the DRPC algorithms.

However, the comparison illustrates the capacity gains and delay reductions that can be
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achieved in this mobile ad-hoc network setting.
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Figure 4-5: Simulation results for the DRPC algorithm and the relay algorithm as rates are
increased towards (λ1, λ2) = (.585, 2.925).

The relay algorithm was designed for nodes to transmit data at a fixed rate, attainable

whenever the SIR for a given wireless link exceeds a threshold value. However, in order to

make a fair comparison, we allow the relay algorithm to transmit at rates given by the full

f(SIR) curve.

Here we consider a small network with 10 users communicating on a 5× 5 square region

(see Fig. 4-3). Following the scenario of [54], we assume user i desires communication with

only one other user (namely, user (i + 1) mod N). Unit length packets arrive according

to Poisson processes, where 9 of the users receive data at rate λ1, and the remaining user

receives data at rate λ2. In Fig. 4-5 we plot the average network delay from simulation

of the three algorithms when the rates (λ1, λ2) are linearly scaled upwards to the values

(.585, 2.925). From the figure, we see that the centralized DRPC algorithm provides stability

and bounded delays at more than four times the data rates of the 2-hop relay algorithm,

and more than twice the data rate of the decentralized DRPC algorithm. We further note

that the 2-hop relay algorithm relies on full and homogeneous mobility of all users, while the

DRPC algorithms have no such requirement and can be used for heterogeneous networks

with limited mobility.
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4.6 Satellite Constellation Networks

Here we describe an implementation of the DRPC policy for the specific case of control for a

satellite network with optical crosslinks between satellites and RF downlinks from satellite

to ground (Fig. 4-6). The satellite constellation forms a network with a fixed or periodically

varying topology, and the optical crosslinks connecting satellites are reliable and operate

at very high capacity. The satellites connect to ground with multi-beam technology, and

the downlink channels have lower capacity and are susceptible to random variations due to

scintillation and weather conditions.

4.6.1 The Satellite Separation Principle

Consider the system of satellites, crosslinks, and downlinks shown in Fig. 4-6. We again

assume a timeslotted structure for the system, so that data arrives and scheduling is initiated

on timeslot boundaries. There are M satellites, and J ground users. Let (λij) represent the

M × J matrix of arrival rates, where λij represents the rate of data arriving to satellite i

destined for ground location j. We note that each ground user often has a single designated

satellite from which it receives downlink transmissions, as shown in Fig. 4-6. However, we

also consider the case in which the multi-beam patterns of different satellites can overlap,

so that a single ground user can be reached via two or more satellites.

Figure 4-6: A satellite network with optical crosslinks connecting satellites and RF down-
links from satellite to ground.

Each active crosslink can transfer data at a rate of C bits/timeslot. Crosslinks may

become inactive due to periodic topology changes or random link failures. For downlink

communication, each satellite i has a fixed power P i
tot which it allocates to its downlink chan-
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nels. Data rates on each downlink are determined by the time varying channel conditions

and the current power allocation.

Here we address the problem of jointly routing data over the satellite constellation and

allocating power at each downlink. The goal is to support the full throughput matrix (λij)

and thereby stabilize the network. Note that the rate matrix, link failure probability, and

time varying channel statistics are unknown to the network controller. As before, we define

Λ as the capacity region of the network, that is, Λ is the closure of all stabilizable rate matri-

ces (λij). Here we assume that the downlink beams of individual satellites do not interfere

with each other, so that each satellite m has an associated rate-power curve µ
m

(P (m), S(m))

which depends only on the channel states and power allocations of its own downlinks (Fig.

4-6). We call this assumption the satellite independence assumption. Note that such an

assumption is still valid in cases where multiple satellites can transmit to the same ground

user, provided that these different transmissions are orthogonal in time or frequency.

Separation Principle: Under the satellite independence assumption, joint optimal con-

trol can be separated into independent controllers acting on each satellite downlink and a

crosslink controller acting on the satellite constellation.

We note that this result is surprising. For example, a particular satellite must make de-

cisions about whether to emphasize the service of U (a) backlog or U (b) backlog for downlink

transmissions, and one would expect an optimal decision to require knowledge of how much

commodity a traffic and commodity b traffic is entering and congesting other parts of the

constellation. Such knowledge is not necessary, and the decoupled downlink and crosslink

algorithms that achieve stability are described below.

Downlink Algorithm: The downlink algorithm is similar to that given in Chapter 3,

where each satellite stores data in different output queues corresponding to its destination.

Let U (j)
i (t) represent the current backlog in satellite i destined for the jth ground user.

For each satellite i, define Ri as the set of reachable ground users. Every timeslot t,

power is allocated to maximize
∑

r∈Ri
µir(~P , ~S(t))U (r)

i (t) subject to the power constraint∑
r∈Ri

Pr ≤ P i
tot, where ~S(t) is the current channel state vector for downlinks from satellite

i to users r ∈ Ri, and the function µir(~P , ~S) is the link budget curve for the (i, r) downlink
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that describes data rate as a function of the allocated power vector and current channel

state. Note that this allows for possible interchannel interference for downlink channels of

the same satellite.

Crosslink Algorithm: Each satellite keeps internal queues for storing crosslink traffic.

Again let U (c)
i (t) represent the current backlog in satellite i destined for the cth ground user,

and note that this data is necessarily crosslink traffic if c /∈ Ri, while the data could either

be transferred over the crosslinks to a different satellite or could be directly transmitted to

the ground if c ∈ Ri. Throughout the constellation, data destined for a common ground

user c is defined as commodity c data. Every timeslot and for each active link connecting

satellite i to a neighboring satellite j, determine the commodity c which maximizes the

differential backlog U
(c)
i (t) − U

(c)
j (t). If the resulting differential backlog is positive, route

as much of this commodity over the link as possible, up to the link capacity C bits/slot.

If a satellite does not have enough of commodity c data for all of its outgoing crosslink

and downlink transmissions, the commodity is split arbitrarily amongst the outgoing links.

If there is sufficient capacity available for more transmissions over a particular crosslink,

the next commodity which maximizes differential backlog is found and the procedure is

repeated.8

Because the joint algorithm described above is simply an implementation of the DRPC

algorithm applied to this satellite constellation network, it stabilizes the system whenever

possible. The downlink algorithm is distributed in that individual downlinks use only local

channel information and do not require knowledge of channel conditions or traffic congestion

in other parts of the network. The crosslink algorithm is also distributed, although each

satellite requires knowledge of queue backlog levels for neighboring satellites.

The differential backlog policy stabilizes the system by making use of backpressure, where

data finds its way to the destination by moving in the direction of least resistance while

being pushed by newly arriving data. As the routing policy does not require knowledge

of the constellation topology, it is robust to changing topologies and can quickly adapt to

rare events such as link failures. However, the policy suffers from the “infinite random

walk” effect that can occur when the system is very lightly loaded, as a single packet can

8To prevent excessive crosslink exchange for data that has already reached its primary downlink satellite,
it is useful to form unfinshed work values Ũ

(c)
i (t)M

=U
(c)
i (t) + V

(c)
i , where V

(c)
i

M
=V for all commodities c such

that satellite i is not the primary downlink, and V ≥ 0 is a suitable bias value.
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randomly traverse the network and may never find the destination if there are no newly

arriving packets to provide backpressure. This problem can be overcome by biasing data

so that packets are inclined to move along their shortest paths to the destination but can

change course if needed (as described by the Enhanced DRPC policy of Section 4.3.5), or by

restricting routing options so that packets only move along paths which bring them closer

to their destinations. In the next subsection we provide an example where such restricted

routing does not decrease network capacity.

4.6.2 Satellite Constellation Capacity for a Torus Network

Consider a satellite constellation network with a torus topology, as shown in Fig. 4-7.9 The

constellation is composed of
√
M horizontal rings of satellites and

√
M vertical rings, so that

there are M satellites total. Assume that all crosslinks are bi-directional and can support

C bits of data per timeslot in both directions, and that these links never fail. Further

assume that each packet is intended for a particular satellite, but can be delivered over any

downlink of that satellite, so that the matrix of arrival rates (λij) now describes the rate

of data entering satellite i and destined for satellite j (so that individual downlinks of each

satellite are not indexed). For simplicity, assume that the uplink and downlink channel

processes of the network are such that each satellite can exogenously receive a time average

input rate of µup bits per slot (received from the ground), and can deliver a time average

output rate of µdown bits per slot to the ground.
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Figure 4-7: A satellite constellation arranged as an N ×N torus network.

It follows that the capacity region Λ for such a network is limited by the following

9We would like to thank Jun Sun for donating this figure.
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constraints:

∑
i

λij ≤ µdown for all j ∈ {1, . . . ,M} (4.37)∑
j

λij ≤ µup for all i ∈ {1, . . . ,M} (4.38)

However, if the crosslink capacity satisfies C ≥
√

M
2 max[µup, µdown], then the above

constraints completely describe the capacity region Λ of the satellite constellation. Thus,

if the crosslink capacity is suitably larger than the capacity of the uplink or downlink, the

constellation is functionally invisible, and network capacity is limited only by the uplinks

and downlinks.

To see this, note that constraints (4.37) and (4.38) are certainly necessary (otherwise the

uplink or downlink constraints would be violated at some satellite). We prove sufficiency by

appealing to Theorem 5, which implies that it is sufficient to find a set of multi-commodity

flows which successfully route all traffic to its proper destination without violating any link

constraints. First note that (4.37) and (4.38) imply that no uplink or downlink is overloaded.

Now consider the simple 2-stage, shortest path routing strategy for data originating at

satellite i and destined for satellite j: The data is first routed along the vertical ring i in

the direction of the horizontal ring on which j lies (requiring at most
√
M/2 hops). Once

it reaches this ring, it is routed on the horizontal ring in the direction of the destination.

Thus, vertical rings carry only traffic originating from their respective satellites, and hor-

izontal rings carry only traffic destined for their respective satellites. Each vertical link thus

carries flows from at most
√
M/2 source satellites, and hence the maximum sum rate of flow

over any such link is µup

√
M/2. Likewise, the maximum sum rate over any horizontal ring

is µdown

√
M/2. Therefore, if each crosslink can support at least C ≥

√
M
2 max[µup, µdown]

bits per slot, then no link condition is violated, proving the result. This discussion fur-

ther proves that under this example of reliable, high capacity internal links, restricting the

routing options to shortest hop paths does not restrict the network capacity region.
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4.7 Multi-commodity Flows and Convex Duality

The DRPC algorithm stabilizes the network and offers average delay guarantees whenever

the input rate matrix is inside the capacity region of the wireless network. Here we consider

a related problem of computing an offline multi-commodity flow given a known rate matrix

(λij). Classical multi-commodity flow problems for wired networks can be reduced to linear

programs, and fast approximation algorithms are developed in [87]. A distributed algorithm

was first given in [48], and game theory approaches are developed in [78].

Here we consider wireless networks, and note that the problem cannot be distributed

unless channels are independent. A convex optimization problem corresponding to a mul-

ticommodity flow in the wireless network is formulated, and it is shown that a classical

subgradient search method for solving the problem via convex duality theory corresponds

exactly to a deterministic network simulation of the DRPC policy. Notions of duality are

also used in [148] [92] [78] [93] to consider static network optimization, where dual variables

play the role of prices charged by the network to multiple users competing for shared net-

work resources in order to maximize their own utility. In our context, the dual variables

correspond to queue backlogs, rather than network prices. This illustrates a relationship

between static optimization and the dynamic DRPC policy and contributes to a grow-

ing theory of dynamic optimization, suggesting that static algorithms can be modified and

applied in dynamic settings while preserving analytical optimality.

We restrict attention to time invariant systems, so that the rate-power curve is only a

function of power: µ(P , S) = µ(P ). Given a rate matrix (λij), the problem of finding a

multi-commodity flow corresponds to the following convex optimization problem.

Maximize: 1

Subject to:
λic +

∑
a f

(c)
ai ≤

∑
b f

(c)
ib for all nodes i 6= c({

f
(c)
ab

}
, {µab}

)
∈ Θ (4.39)

where: Θ = The set of all variables
({
f

(c)
ab

}
, {µab}

)
such that:

f
(c)
ab ≥ 0 for all a, b, c ∈ {1, . . . , N}

f
(c)
aa = f

(a)
ab = 0 for all a, b, c ∈ {1, . . . , N}(∑

c f
(c)
ab

)
≤ µab for some (µab) ∈ Γ (4.40)
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The maximization function “1” is used as an artifice to pose this multi-commodity flow

problem in the framework of an optimization problem. Note that the set Θ is convex and

compact (it inherits convexity and compactness from the set Γ̃ consisting of all link trans-

mission rate matrices (Gab) entrywise less than or equal to some element of Γ). Moreover,

the objective function “1” and all inequality constraints are linear. The optimization prob-

lem is therefore convex [15], and has a dual formulation, where the optimal solution of the

dual problem exactly corresponds to an optimal solution of the original “primal” problem

(4.39). To form the dual problem, we introduce non-negative Lagrange multipliers {U (c)
i }

for each of the inequality constraints in (4.39), and define the dual function:

L({U (c)
i }) = max“n

f
(c)
ab

o
,{µab}

”
∈Θ

1 +
∑
i6=c

U
(c)
i

(∑
b

f
(c)
ib −

∑
a

f
(c)
ai − λic

) (4.41)

The dual problem to (4.39) is:

Minimize: L
({
U

(c)
i

})
Subject to: U (c)

i ≥ 0 for all i, c ∈ {1, . . . , N} (4.42)

The dual problem is always convex, and the minimizing solution can be obtained us-

ing classical subgradient search methods (where the function −L
({
U

(c)
i

})
is maximized).

Consider a fixed stepsize method with stepsize T = 1. The basic subgradient search rou-

tine starts with an initial set of values U (c)
i (0) for the Lagrange multipliers, and upon each

iteration t = {1, 2, . . .} these values are updated by computing a subgradient η for one time

unit, and, if necessary, projecting the result back onto the set of non-negative values [15]:

U
(c)
i (t+ 1) = max

[
U

(c)
i (t) + η

(c)
i , 0

]
(4.43)

However, it is shown in [15] that a particular subgradient of −L
({
U

(c)
i

})
is:

η =

(∑
a

f
∗(c)
ai −

∑
b

f
∗(c)
ib + λic

)∣∣∣∣∣
(i,c)∈{1,...,N}2

(4.44)

where the {f∗(c)ab } variables are solutions to the maximization in (4.41). Using (4.44) in

(4.43) for all i 6= c, we find
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U
(c)
i (t+ 1) = max

[
U

(c)
i (t) +

∑
a

f
∗(c)
ai −

∑
b

f
∗(c)
ib + λic, 0

]
(4.45)

From the above equation, it is apparent that the Lagrange multipliers {U (c)
i (t)} play the

role of unfinished work in a multi-node queueing system with input rates λic, where U (c)
i (t)

represents the amount of commodity c bits in node i. Likewise, the f∗(c)ab values can be

viewed as the transmission rates allocated to commodity c traffic on the (a, b) link during

the first timestep. Equation (4.45) thus states that the unfinished work at time t + 1 is

equal to the unfinished work at time t plus the net influx of bits into node i. Thus, the

operation of projecting the Lagrangian variables onto the positive orthant acts exactly as

an implementation of the standard queueing equation for backlog at time t+ 1 in terms of

backlog at time t.

It is illuminating to calculate the optimal f∗(c)ab values by performing the maximization

in (4.41). To this end, we need to maximize
∑

i6=c U
(c)
i (t)

(∑
b f

(c)
ib −

∑
a f

(c)
ai

)
subject to

the constraints of (4.40). However, as in the proof of Theorem 3, we can switch the sum to

find: ∑
i6=c

U
(c)
i (t)

(∑
b

f
(c)
ib −

∑
a

f
(c)
ai

)
=
∑
ab

∑
c

f
(c)
ab

[
U (c)

a − U
(c)
b

]

Remarkably, from the right hand side above, it is apparent that the optimal values f∗(c)ab

are identical to the resulting link rates µ(c)
ab (P ) that would be computed if the DRPC algo-

rithm were used to calculate routing and power allocation decisions in a network problem

with unfinished work levels U (c)
i (t). It follows that the DRPC algorithm can be viewed

as a dynamic implementation of a subgradient search method for computing the solution

to an optimization problem using convex duality. This suggests a deeper relationship be-

tween stochastic network control algorithms and subgradient search methods. It would be

interesting to explore how the two interact and build upon each other. For example, there

are several known improvements to classical subgradient search routines. Perhaps such

improvements could reduce the complexity of optimal and sub-optimal dynamic network

controllers. Also note that the optimization problem (4.39), which maximizes the function

“1,” can be adjusted to maximize some other performance criteria, which may offer addi-

tional quality of service guarantees in the corresponding dynamic network control problem.

This observation inspires our approach to the fairness problem, developed in Chapter 5.
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4.8 Chapter Summary

We have formulated a general power allocation problem for a multi-node wireless network

with time varying channels and adaptive transmission rates. The problem was formulated at

the network layer assuming a given (but arbitrary) set of rate-power functions corresponding

to the particular modulation and coding strategy being used at the physical layer. These

rate-power curves are general enough to include hybrid networks with both wireless and

wireline components. The network capacity region was established, and a Dynamic Routing

and Power Control (DRPC) algorithm was developed and shown to stabilize the network

whenever the arrival rate matrix is within the capacity region. Such stability holds for

arbitrary ergodic arrival and channel processes, even if these processes are unknown to the

network controller. Delay bounds were derived and shown to grow asymptotically in N and

ε, representing the size of the network and the distance the arrival rates are to the capacity

region boundary.

The DRPC algorithm was shown to have a decentralized implementation for networks

with independent channels. A simple distributed approximation algorithm was developed

for networks with inter-channel interference. The algorithm was shown to support a larger

set of data rates than the Grossglauser-Tse 2-hop relay algorithm, and explicit throughput

regions and delay bounds were computed.

The DRPC algorithm involves solving a constrained optimization problem during each

timeslot, where queue backlogs and channel conditions occur as parameters in the opti-

mization. Algorithms which make more effort to maximize the optimization metric by

exchanging backlog and channel information were shown to have significant performance

advantages, as illustrated by the example simulations. Furthermore, the dynamic control

algorithm was shown to be fundamentally related to a classical iterative technique for solv-

ing a static convex program, where unification of the two problems is achieved through

the theory of convex duality. We believe that such dynamic optimization contributes to

bridging the gap between theoretical optimization techniques and implementable control

algorithms.
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Chapter Appendix 4.A — Necessary Condition for Network

Stability

Necessary Condition for Network Stability (From Theorem 5): Here we establish that (λij) ∈

Λ is a necessary condition for stability in a wireless network. The proof uses the following

preliminary lemma:

Lemma 11. (Set Integration) Suppose an instantaneous rate matrix µ(t) is integrable and

lies within a set Ω for all time. Then 1
||T ||

∫
τ∈T µ(τ)dτ lies within the convex hull of Ω,

where T is a set of times with measure ||T ||.

Proof. The proof relies on the convex set separation theorem [15] and is proven in Chapter

Appendix 4.B.

Theorem 5a. (Necessary Condition for Stability) The condition (λic) ∈ Λ is necessary

for network stability.

Proof. Consider a system with ergodic inputs with rates (λic), and let process X(c)
i (t) rep-

resent the amount of commodity c bits that exogenously enter the network at node i during

the interval [0, t]. Suppose the system is stabilizable by some routing and power control

policy, perhaps one which bases decisions upon complete knowledge of future arrivals and

channel states. Note that although the policy stabilizes the system, the power allocations

P (t) are not necessarily ergodic, nor are the internal bit streams produced by routing deci-

sions. Let U (c)
i (t) represent the resulting unfinished work function for commodity c in node

i under this stabilizing policy. Further, let F (c)
ab (t) represent the total number of bits from

commodity c transmitted over the (a, b) link during the interval [0, t]. We have for all time:

F
(c)
ab (t) ≥ 0 ∀a, b, c (4.46)

F
(c)
aa (t) = F

(a)
ab (t) = 0 ∀a, b, c (4.47)

X
(c)
i (t)− U

(c)
i (t) =

∑
b F

(c)
ib (t)−

∑
a F

(c)
ai (t) ∀i 6= c (4.48)∑

c F
(c)
ab (t) ≤

∫ t
0 µab(P (τ), S(τ))dτ ∀(a, b) (4.49)

where (4.48) follows because the unfinished work in any node is equal to the difference

between the total bits that have arrived and departed. Inequality (4.49) holds because the
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total bits transferred over any link (a, b) is less than or equal to the offered transmission

rate integrated over the time interval [0, t].

Let TS(t) represent the subintervals of [0, t] during which the channel is in state S, and

let ||TS(t)|| denote the total length of these subintervals. Fix an arbitrarily small value

ε > 0. Because the channel process S(t) is channel convergent on a finite state space, and

because there are a finite number of rate convergent input streams X(c)
i (t), when measured

over any sufficiently large interval [0, t] the time average fraction of time in each channel

state and the empirical average data rate of all inputs are simultaneously within ε of their

limiting values. Furthermore, by the Network Stability Necessary Condition (Lemma 1 of

Chapter 2), there must exist some finite value V such that at arbitrarily large times t̃, the

unfinished work in all queues is simultaneously less than V with probability at least 1/2.

Hence, there exists a time t̃ such that with probability at least 1/2, all of the following

inequalities are satisfied:

U
(c)
i (t̃) ≤ V for all nodes i and commodities c (4.50)

V
t̃
≤ ε (4.51)

Xic(t̃)

t̃
≥ λic − ε for all i 6= c (4.52)

||TS(t̃)||
t̃

≤ πS + ε for all channel states S (4.53)

Now define variables f (c)
ab

M=F
(c)
ab (t̃)/t̃. It is clear from (4.46) and (4.47) that these flow

variables satisfy the non-negativity and flow efficiency constraints (4.4) and (4.5). Using

(4.50)-(4.52) in (4.48), it follows that for all i 6= c:

λic ≤
∑

b

f
(c)
ib −

∑
a

f
(c)
ai + 2ε (4.54)

and hence the flow conservation constraint is arbitrarily close to being satisfied. Applying

inequality (4.49) at time t̃, dividing by t̃, and considering entrywise matrix inequalities, we

have:

(∑
c f

(c)
ab

)
≤
(

1
t̃

∫ t̃
0 µab(P (τ), S(τ))dτ

)
=
∑

S
||TS(t̃)||

t̃
1

||TS(t̃)||

(∫
τ∈TS(t̃) µab(P (τ), S)dτ

)
≤
∑

S
||TS(t̃)||

t̃
(µS

ab) (4.55)
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where the matrices (µS
ab) in (4.55) are elements of Convex Hull{µ(P , S) | P ∈ Π} and exist

by the Set Integration Lemma (Lemma 11). Using (4.53) in (4.55), we find:

(∑
c

f
(c)
ab

)
≤
∑
S

πS(µS
ab) + ε(µmax

ab )Card{S} (4.56)

where Card{S} represents the number of channel states S, and µmax
ab represents the max-

imum transmission rate of the (a, b) link over all channel states and power levels P ∈ Π.

Hence, the right hand side of inequality (4.56) is arbitrarily close to a point in Γ (compare

with (4.7)).

Hence, with probability greater than 1/2, the multicommodity flows f (c)
ab (defined in

terms of the F (c)
ab (t) processes) come arbitrarily close to satisfying the non-negativity, flow

efficiency, flow conservation, and link constraints. It follows that there must exist sample

paths F (c)
ab (t) from which flow variables f (c)

ab can be defined that satisfy (4.54) and (4.56)

(otherwise, the inequalities would occur with probability 0). As the flow efficiency and link

constraints are arbitrarily close to being satisfied, it follows that they can be satisfied if

each nonzero entry of the (λic) rate matrix is reduced by an arbitrarily small amount. This

proves that the input rate matrix (λic) is a limit point of the capacity region Λ. Because Λ

is compact and hence contains its limit points, it follows that (λic) ∈ Λ.
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Chapter Appendix 4.B — Multi-dimensional Integration The-

orem

In this section we prove a multi-dimensional integration theorem (from Lemma 11 of Chapter

Appendix 4.B, used in the development of the necessary condition for network stability).

Let ~µ(t) represent a vector function of time taking values in RN . The sample average

of ~µ(t) taken at times t1, t2, . . . , tm is written 1
m

∑m
i=1 ~µ(ti). If ~µ(t) takes values in a set A,

then this average constitutes a convex combination of points in A, and hence is contained

in the convex hull of A. Intuitively, the same result is true for time average integrals of

~µ(t), because integrals can be represented as limits of finite sums. However, such a limiting

argument cannot be used in general, as the set A may not contain all its limit points. The

following theorem proves the result by using the convex set separation theorem [15], which

states that a convex set and a point not in the set can be separated by a hyperplane.

Theorem 9. (Time Average Integration) If ~µ(t) is integrable and is contained within a set

A for all time, then the time average integral of ~µ(t) over any set of times T with finite

measure ||T || is within the convex hull of A, i.e.:

1
||T ||

∫
t∈T

~µ(t)dt ∈ Conv(A)

Proof. Suppose the result is true when the affine hull10 of A has dimension less than or

equal to k − 1. The result is trivially true when k − 1 = 0, as this implies ~µ(t) is a single

point for all time. We proceed by induction on k.

Assume the affine hull of A has dimension k. By a simple change of coordinates, we can

equivalently treat ~µ(t) as a function taking values in Rk. Let ~p = 1
||T ||

∫
t∈T ~µ(t)dt. If the

point ~p is within the set Conv(A), we are done. If ~p /∈ Conv(A), then by the convex set

separation theorem there must exist a hyperplane H which separates ~p from Conv(A), i.e.,

there exists a vector ~z and a scalar b such that

~z′~p ≤ b

~z′~a ≥ b for all ~a ∈ Conv(A) (4.57)
10The affine hull of a set A is the set ~a + X, where ~a is an arbitrary element of A, and X is the smallest

linear space such that ~a + X contains set A [15]. For example, consider a set of points within RN which all
lie on the same plane, or the same line. Then the affine hull is the 2-dimensional plane, or, respectively, the
1-dimensional line.
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where the hyperplane H consists of all points ~x ∈ Rk such that ~z′~x = b. Thus, we have:

b ≥ ~z′~p

=
1
||T ||

∫
t∈T

~z′~µ(t)dt (4.58)

However, ~µ(t) ∈ Conv(A) for all time, and hence by (4.57) the integrand in (4.58) is

greater than or equal to b for all time. This implies that the set of all times t ∈ T for which

~z′~µ(t) > b must have measure zero. Hence:

~p =
1
||T ||

∫
t∈T

~µ(t)dt

=
1
||T ||

∫
{t∈T |~z′~µ(t)=b}

~µ(t)dt (4.59)

The integral in (4.59) represents the time average of a function contained in the set

A ∩ H, a set of dimension at most k − 1. It follows by the induction hypothesis that

~p ∈ Conv(A ∩H) ⊂ Conv(A), a contradiction.

Let T = [0, x] for some interval size x.

Corollary 6. If the set A is closed, then limx→∞
1
x

∫ x
0 ~µ(t)dt ∈ Conv(A), provided that the

limit converges.

Proof. The limit can be approached arbitrarily closely by time average integrals over finite

intervals. By Theorem 1, each such time average is contained within Conv(A). The limiting

integral is thus a limit point of the closed set Conv(A), and hence is within Conv(A).

Example: The corollary does not hold if the set A is not closed. Indeed, consider the

scalar valued function µ(t) = 1−1/(t+1) contained within the non-closed interval [0, 1) for

all t ≥ 0. Then the time average integral of µ(t) over any finite interval is within [0, 1), but

the limiting average as the interval size x→∞ is equal to 1, which is not in this interval.
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Chapter Appendix 4.C — Structural Properties of Γ and Λ

Here we prove that the graph family Γ is convex, and that the sets Γ̃ and Λ are compact

and convex. The proofs use elementary facts about convexity and compactness of sets [100]

[15].

Recall that:

Γ =
∑
S

πSConvex Hull
{
µ(P , S) | P ∈ Π

}
and that Γ̃ is the set of all rate matrices entrywise less than or equal to some element of Γ.

Claim: The sets Γ and Γ̃ are convex.

Proof. The set Γ is a weighted sum of convex sets, and is therefore convex. To show that Γ̃

is convex, consider two points γ̃1, γ̃2 ∈ Γ̃. By definition, there must exist points γ1, γ2 ∈ Γ

such that γ1 ≥ γ̃1 and γ2 ≥ γ̃2. Thus, for any convex combination q1γ̃1 + q2γ̃2 (where q1

and q2 are nonnegative values summing to 1), we have:

q1γ̃1 + q2γ̃2 ≤ q1γ1 + q2γ2 ∈ Γ

and hence q1γ̃1 + q2γ̃2 ∈ Γ̃.

Claim: Γ̃ is compact, i.e., closed and bounded.

Proof. The fact that Γ̃ is bounded follows from boundedness of the set {µ(P , S) | P ∈ Π}

for each channel state S. To see that the latter is bounded, first suppose that it is not.

Then, there must exist a sequence of power matrices P k ∈ Π such that µ(P k, S) → ∞ as

k → ∞. The infinite sequence of matrices P k are within the compact set Π, and hence

there must be a convergent subsequence s(k) such that P s(k) → P ∗ for some P ∗ ∈ Π. By

upper-semicontinuity, we have: ∞ = limk→∞ µ(P s(k), S) ≤ µ(P ∗, S), a contradiction.

To show that Γ̃ is closed, we first observe that the “tilde” operator commutes through

weighted sums and convex hull operations, that is, the set Γ̃ can be written as Γ̃ =∑
S πSConv(R̃S), where R̃S is defined as the set of all rates entrywise less than or equal

to some point in the set
{
µ(P , S) | P ∈ Π

}
(the proof of this fact is omitted for brevity).

Next, we show that each set R̃S is closed: For any limit point r̃ of R̃S , we have a sequence

of points r̃k ∈ R̃S such that r̃k → r̃. For each k, we have r̃k ≤ µ(P k, S) for some P k ∈ Π.
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The P k values represent an infinite sequence of matrices within the compact set Π, and

hence there must be a convergent subsequence s(k) such that limk→∞ P s(k) = P ∗, where

P ∗ ∈ Π. We thus have:

r̃ = lim
k→∞

r̃s(k) ≤ lim
k→∞

µ(P s(k), S) ≤ µ(P ∗, S)

where the last inequality follows by upper-semicontinuity of the function µ(P , S) with re-

spect to the power matrix P . It follows that r̃ ∈ R̃S , so that R̃S is closed. Because the

convex hull of a closed set is closed, as is the weighted sum of closed sets, it follows that Γ̃

is closed.

Claim: The capacity region Λ is convex and compact.

Proof. The capacity region Λ is the set of all input rate matrices (λic) such that there exist

multi-commodity flow variables {f (c)
ab } satisfying:

f
(c)
ab ≥ 0 ∀a, b, c

f (c)
aa = f

(a)
ab = 0 ∀a, b, c

λic ≤
∑

b

f
(c)
ib −

∑
a

f
(c)
ai ∀i, c such that i 6= c(∑

c

f
(c)
ab

)
∈ Γ̃ ∀a, b

It is clear that given two such rate matrices (λ1
ic) and (λ2

ic), the convex combination of these

matrices satisfies the above constraints for flows which are equal to the convex combination

of the flows for each individual matrix (note that Γ̃ is convex). Thus, Λ is convex.

Boundedness of the set Λ follows by boundedness of the set Γ, so that clearly Λ is

contained in the set of all rate matrices (λic) such that λic ≤ µout
max for all (i, c).

To show closedness, note that the λic and f
(c)
ab variables can be compiled as a stacked

vector ~v, so that the inequalities specifying the capacity region Λ can be written as A~v ∈ Ω

for some matrix A and for a closed set Ω.11 The set of all vectors ~v satisfying this constraint

is the inverse image of a closed set through a linear map, and is hence closed. It follows

that Λ is closed.

11The Ω set is closed because of the (non-strict) inequality constraints and because of the closedness of Γ̃.
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Chapter Appendix 4.D — Graph Family Achievability

He we prove Lemma 8, which shows that power can be allocated according to a stationary

randomized rule to achieve any long-term link transmission rate matrix within the network

graph family Γ.

(Graph Family Achievability) Let (Gab) be a matrix within the graph family Γ (defined

in (4.3)), so that ∑
S

πSGS = (Gab)

for some matrices GS within Convex Hull{µ(P , S) | P ∈ Π}. Then:

(a) A stationary randomized power allocation policy PSTAT (τ) can be implemented

which yields a transmission rate process µSTAT (t)M=µ(PSTAT (t), S(t)) which is entrywise

rate convergent with rate matrix (Gab), and which satisfies the convergence bounds given in

(4.9) and (4.10).

Specifically, every timeslot in which the channel state S is observed, the power matrix

PSTAT (τ) is chosen randomly from a finite set of m allocations {P 1
S , . . . , P

m
S } according to

probabilities {q1S , . . . , qm
S }.

(b) If the set {µ(P , S) | P ∈ Π} is convex for every channel state S, then the power

control algorithm can be implemented by a non-randomized policy, where a fixed power

matrix PS is allocated whenever in channel state S.

Proof. (a) By Caratheodory’s Theorem [15], any point GS in the convex hull of the set

{µ(P , S) | P ∈ Π} can be expressed as a finite combination of matrices:

GS = q
S
1G

S
1 + . . .+ q

S
kG

S
k

where the {qS
i } values are nonnegative numbers that sum to 1 and represent probabilities

for the randomized algorithm, and G
S
i ∈ {µ(P , S) | P ∈ Π} for each i. Choosing power

allocations {PS
1 , . . . , P

S
k } such that µ(PS

i , S) = G
S
i and allocating power according to the

randomized policy ensures E
{
µ(P (τ), S(τ)) | S(τ) = S

}
= GS (where the expectation is

taken over the {qS
i } probabilities). By Lemma 4 of Chapter 2, the resulting rates µab(t) are

rate convergent with rates Gab for each link (a, b). Hence, the sum processes
∑

b µib(t) and∑
a µai(t) are rate convergent with rates

∑
bGib and

∑
aGai, respectively. By Lemma 4 of

Chapter 2 together with the channel convergent bounds of (4.1) and (4.2) for K and δ, it
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follows that∣∣∣∣∣ 1
K

t0+K−1∑
τ=t0

[∑
b

E {µib(τ)}

]
−
∑

b

Gib

∣∣∣∣∣ ≤ µout
max

δ

max{µout
max, µ

in
max}

≤ δ

∣∣∣∣∣ 1
K

t0+K−1∑
τ=t0

[∑
a

E {µai(τ)}

]
−
∑

a

Gai

∣∣∣∣∣ ≤ µin
max

δ

max{µout
max, µ

in
max}

≤ δ

Part (b) follows because eachGS matrix is defined to be within Convex Hull{µ(P , S) | P ∈

Π} and hence must also be within {µ(P , S) | P ∈ Π}. Thus, for each channel state S, there

is a single power matrix PS for which GS = µ(PS , S).
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Chapter Appendix 4.E — Bound on Lyapunov Drift

Here we derive the Lyapunov drift bound of (4.22) used in the proof of Theorem 6 in Section

4.3.2.

Consider the Lyapunov function L(U) =
∑

i6=j [U
(c)
i ]2. For any power allocation policy

which determines rate processes µ(c)
ij (t), we have [from (4.28)]:

E {L(U(t0 +K))− L(U(t0)) | U(t0)} ≤ K2NB+

−2K
∑

i6=c U
(c)
i (t0)E

{∑
b µ̃

(c)
ib −

∑
a µ̃

(c)
ai − Ãic | U(t0)

}
where:

µ̃
(c)
ij

M=
1
K

t0+K−1∑
τ=t0

µ
(c)
ab (τ) (4.60)

Ãic
M=

1
K

t0+K−1∑
τ=t0

Aic(τ) (4.61)

B M=
(
µin

max +Amax

)2 + (µout
max)2

Proof. From (4.21), we have that the K-step dynamics of unfinished work satisfies the

following bound for all i 6= c:

U
(c)
i (t0 +K) ≤ max

(
U

(c)
i (t0)−

∑
b

Kµ̃
(c)
ib , 0

)
+
∑

a

Kµ̃
(c)
ai +KÃic

Squaring both sides and noting that max2(x, 0) ≤ x2, we have:

[U (c)
i (t0 +K)]2 − [U (c)

i (t0)]2 ≤ K2

[
Ã2

ic + 2Ãic

(∑
a µ̃

(c)
ai

)
+
(∑

a µ̃
(c)
ai

)2
]

+K2
(∑

b µ̃
(c)
ib

)2

−2KU (c)
i (t0)

[∑
b µ̃

(c)
ib −

∑
a µ̃

(c)
ai − Ãic

]
(4.62)

An expression for Lyapunov drift is obtained from the above inequality by summing

over all nodes i and commodities c 6= i and taking conditional expectations. The following

inequalities simplify the resulting expression and follow from Jensen’s inequality together

with the fact that the sum of squares of positive numbers is less than or equal to the square
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of the sum [see derivation of Claim 1 below]:

E
{∑

i6=c

(∑
b µ̃

(c)
ib

)2
| U(t0)

}
≤ N

(
µout

max

)2
, E

{∑
i6=c

(∑
a µ̃

(c)
ai

)2
| U(t0)

}
≤ N

(
µin

max

)2
E
{∑

i6=c Ã
2
ic | U(t0)

}
≤ NA2

max , 2E
{∑

i6=c Ãic

(∑
a µ̃

(c)
ai

)
| U(t0)

}
≤ 2N

(
µin

max

)
Amax

Summing (4.62) over i 6= j and using the above inequalities leads to:

E {L(U(t0 +K))− L(U(t0)) | U(t0)} ≤ K2N
((
µout

max

)2 +
(
µin

max

)2 +A2
max + 2

(
µin

max

)
Amax

)
−2K

∑
i6=c U

(c)
i (t0)E

{∑
b µ̃

(c)
ib −

∑
a µ̃

(c)
ai − Ãic | U(t0)

}

Claim 1: (Derivation of bounds used in the proof above)

E
{∑

i6=c

(∑
b µ̃

(c)
ib

)2
| U(t0)

}
≤ N

(
µout

max

)2
, E

{∑
i6=c

(∑
a µ̃

(c)
ai

)2
| U(t0)

}
≤ N

(
µin

max

)2
E
{∑

i6=c Ã
2
ic | U(t0)

}
≤ NA2

max , 2E
{∑

i6=c Ãic

(∑
a µ̃

(c)
ai

)
| U(t0)

}
≤ 2N

(
µin

max

)
Amax

where µ̃(c)
ij and Ãij are defined in (4.61) and (4.60).

Proof. We prove only the first and last inequalities. (The second and third are similar to

the first inequality as well as to the inequalities proved in Chapter Appendix 3.A).

To show that E
{∑

i6=c

(∑
b µ̃

(c)
ib

)2
| U(t0)

}
≤ N

(
µout

max

)2, first note that µ̃(i)
ib = 0 always,

so that the “i 6= c” condition can be neglected. We thus have:

∑
i

∑
c

(∑
b

µ̃
(c)
ib

)2

≤
∑

i

(∑
b

∑
c

µ̃
(c)
ib

)2

(4.63)

=
∑

i

(
1
K

t0+K−1∑
τ=t0

(∑
b

∑
c

µ
(c)
ib (τ)

))2

(4.64)

≤
∑

i

1
K

t0+K−1∑
τ=t0

(∑
b

∑
c

µ
(c)
ib (τ)

)2

(4.65)

≤
∑

i

1
K

t0+K−1∑
τ=t0

(
µout

max

)2 (4.66)

= N
(
µout

max

)2
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where (4.63) follows because the sum of squares of positive numbers is less than or equal to

the square of the sum, and (4.65) follows from Jensen’s inequality (noting that the function

x2 is convex). �

To show that E
{∑

i6=c Ãic

(∑
a µ̃

(c)
ai

)
| U(t0)

}
≤ N

(
µin

max

)
Amax, we note that Ãii = 0

for all i, so that the i 6= c constraint can again be neglected. We thus have:

∑
i6=c

Ãic

(∑
a

µ̃
(c)
ai

)
=

∑
i

∑
c

(
Ãic

)(∑
a

µ̃
(c)
ai

)

≤
∑

i

√√√√∑
c

(Ã2
ic)
∑

c

(∑
a

µ̃
(c)
ai

)2

(4.67)

≤
∑

i

√√√√(∑
c

Ãic

)2(∑
a

∑
c

µ̃
(c)
ai

)2

≤ µin
max

∑
i

(∑
c

Ãic

)

where (4.67) follows by the Cauchy-Schwartz inequality (or “inner-product” inequality) for

sums. Taking conditional expectations and noting that

E

{∑
c

Ãic(τ) |U(t0)

}
≤

√√√√√E


(∑

c

Ãic(τ)

)2

|U(t0)

 ≤ Amax

yields the result.

129



Chapter Appendix 4.F — Performance of FRAME algorithm

Here we prove Lemmas 9 and 10, which establish that the frame based algorithm maximizes

the drift term Φ (U(t0)) over all possible network control strategies, and that the DRPC

algorithm yields a Φ (U(t0)) value which is no more than a fixed distance away from the

maximum.

Recall that:

Φ (U(t0)) M=
1
K

t0+K−1∑
τ=t0

E

∑
i6=c

U
(c)
i (t0)

[∑
b

µ
(c)
ib (τ)−

∑
a

µ
(c)
ai (τ)

]
| U(t0)

 (4.68)

Also note that any power control and routing strategy allocates a power matrix P (τ)

every timeslot subject to P (τ) ∈ Π, and determines transmission rates µ(c)
ab (τ) for each

commodity and each link (a, b) subject to:

∑
c

µ
(c)
ab (τ) ≤ µab(P (τ), S(τ)) (4.69)

The FRAME algorithm acts the same as the DRPC algorithm with the exception that

queue backlog is updated only on frame boundaries t0 = {0,K, 2K, . . .}. Thus, for every

τ ∈ {t0, . . . , t0 +K − 1}, the algorithm FRAME allocates a power matrix PFRAME(τ) to

maximize: ∑
ab

µab(P , S(τ))W ∗
ab(t0)

where:

W ∗
ab(t0) = max[U (c∗ab(t0))

a (t0)− U
(c∗ab(t0))

b (t0), 0]

c∗ab(t0) = arg max
c∈{1,...,N}

{
U (c)

a (t0)− U
(c)
b (t0)

}
and hence yields µ(c)

ab (τ) values satisfying:

µ
(c)FRAME
ab (τ) =

 µab

(
PFRAME(τ), S(τ)

)
if c = c∗ab(t0) and W ∗

ab(t0) > 0

0 otherwise
(4.70)

Claim (Lemma 9): The control algorithm FRAME maximizes Φ (U(t0)) over all pos-
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sible power allocation, routing, and scheduling strategies. That is:

ΦFRAME (U(t0)) ≥ ΦX (U(t0))

for any other strategyX, including strategies that have full knowledge of arrival and channel

statistics.

Proof. First note that U (i)
i (τ) = 0 for all time, and hence the i 6= c condition in the sum

of (4.68) can be removed. Furthermore, by switching the order of summation, we have the

following identity:

∑
i,c

U
(c)
i (t0)

[∑
b

µ
(c)
ib (τ)−

∑
a

µ
(c)
ai (τ)

]
=
∑
ab

∑
c

µ
(c)
ab (τ)

[
U (c)

a (t0)− U
(c)
b (t0)

]
(4.71)

Taking conditional expectations above and summing over τ yields an alternative way to

express Φ (U(t0)):

Φ (U(t0)) =
1
K

t0+K−1∑
τ=t0

E

{∑
ab

∑
c

µ
(c)
ab (τ)

[
U (c)

a (t0)− U
(c)
b (t0)

]
| U(t0)

}
(4.72)

The value of ΦX (U(t0)) is obtained from (4.72) by using the µ(c)
ab (τ) values corresponding

to some policy X, and the value of ΦFRAME (U(t0)) is obtained by using the µ(c)FRAME
ab (τ)

values associated with the frame based control scheme. However, for any general power

allocation and routing scheme using power P (τ) yielding rate values µ(c)
ab (τ), we have for

every slot τ :

∑
ab

∑
c

µ
(c)
ab (τ)

[
U (c)

a (t0)− U
(c)
b (t0)

]
≤

∑
ab

∑
c

µ
(c)
ab (τ)W ∗

ab(t0) (4.73)

≤
∑
ab

µab(P (τ), S(τ))W ∗
ab(t0) (4.74)

≤
∑
ab

µab(PFRAME , S(τ))W ∗
ab(t0) (4.75)

=
∑
ab

∑
c

µ
(c)FRAME
ab (τ)

[
U (c)

a (t0)− U
(c)
b (t0)

]
(4.76)

where (4.73) follows by definition of W ∗
ab(t0) and non-negativity of the µ(c)

ab (τ) values, (4.74)

follows from (4.69), (4.75) holds because, by definition, the FRAME strategy allocates power
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to maximize the quantity in (4.74) among all policies conforming to the power constraints,

and (4.76) holds by definition of µ(c)FRAME
ab (τ) in (4.70).

Taking conditional expectations of (4.76) and summing over τ ∈ {0, 1, . . . ,K−1} demon-

strates that the FRAME algorithm maximizes Φ (U(t0)) over any other power allocation

strategy, proving the claim.

We now compare the algorithms FRAME and DRPC.

Claim (Lemma 10): ΦDRPC (U(t0)) ≥ ΦFRAME (U(t0))− (K − 1)NB̃/2

where

B̃ M=2(µin
max + µout

max)
(
Amax + µin

max + µout
max

)
Proof. Consider an implementation of the DRPC algorithm, and let U(t0) represent the

unfinished work matrix at the start of a frame, and let U(τ) represent the unfinished work

at some time τ during the frame {t0, . . . , t0 + K − 1}. At any such time τ , the DRPC

algorithm selects transmission rates µ(c)
ab (τ) that maximize

∑
a,b,c µ

(c)
ab (τ)[U (c)

a (τ)− U
(c)
b (τ)]

over all other possible control decisions. Hence:

∑
a,b,c

µ
(c)DRPC
ab (τ)

[
U (c)

a (τ)− U
(c)
b (τ)

]
≥
∑
a,b,c

µ
(c)FRAME
ab (τ)

[
U (c)

a (τ)− U
(c)
b (τ)

]

where the values µ(c)FRAME
ab (τ) represent the control decisions that would be made by the

FRAME algorithm at time τ if the backlog matrix at time t0 were U(t0). Using (4.71) to

switch the summation, we have:

∑
i,c

U
(c)
i (τ)

[∑
b

µ
(c)DRPC
ib (τ)−

∑
a

µ
(c)DRPC
ai (τ)

]
≥

∑
i,c

U
(c)
i (τ)

[∑
b

µ
(c)FRAME
ib (τ)−

∑
a

µ
(c)FRAME
ai (τ)

]

Defining ∆(c)
i (τ)M=U

(c)
i (τ)− U

(c)
i (t0) and noting that ∆(c)

i (t0) = 0, it follows that:

∑
i,c

U
(c)
i (t0)

[∑
b

µ
(c)DRPC
ib (τ)−

∑
a

µ
(c)DRPC
ai (τ)

]
+
∑
i,c

∣∣∣∆(c)
i (τ)

∣∣∣ (µin
max + µout

max) ≥

∑
i,c

U
(c)
i (t0)

[∑
b

µ̃
(c)FRAME
ib (τ)−

∑
a

µ̃
(c)FRAME
ai (τ)

]
−
∑
i,c

∣∣∣∆(c)
i (τ)

∣∣∣ (µin
max + µout

max)(4.77)
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where we used the fact that:

∑
i,c

∆(c)
i (τ)

[∑
b

µ
(c)
ib (τ)−

∑
a

µ
(c)
ai (τ)

]
≤
∑
i,c

∣∣∣∆(c)
i

∣∣∣ (µout
max + µin

max)

Summing (4.77) over τ ∈ {t0, . . . , t0 +K − 1} and taking conditional expectations yields:

ΦDRPC (U(t0)) ≥ ΦFRAME (U(t0))−
2
K

t0+K−1∑
τ=t0+1

E

∑
i,c

∣∣∣∆(c)
i (τ)

∣∣∣
(µin

max + µout
max

)

The expected change in unfinished work from time t0 to time τ is at most (µout
max + µin

max +

Amax)(τ − t0) at any node, which leads to

ΦDRPC (U(t0)) ≥ ΦFRAME (U(t0))−
2
K

t0+K−1∑
τ=t0+1

N(τ − t0)(µout
max + µin

max +Amax)
(
µin

max + µout
max

)

Changing variables to vM=τ − t0 and using the fact that
∑K−1

v=1 v = K(K−1)
2 , we have:

ΦDRPC (U(t0)) ≥ ΦFRAME (U(t0))− (K − 1)NB̃/2
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Chapter 5

Network Fairness and Control

Beyond Capacity

In the previous chapter we described the network capacity region Λ and constructed a Dy-

namic Routing and Power Control algorithm (DRPC) for stabilizing the network whenever

the input rate matrix is strictly interior to this region. This situation is illustrated in Fig.

5-1, where the rate matrix λ(1) is shown to be strictly interior to Λ. In this chapter, we

address the problem of network control when the rate matrix is outside of the capacity

region, as illustrated by the λ(2) matrix in Fig. 5-1. In this case, it is not possible to

stabilize the system by serving all of the data, and hence flow control decisions must be

made concerning the amount of data to be served from each stream. Given input streams

with a rate matrix λ = (λic) outside of the capacity region, we must find substreams with

a rate matrix r = (ric) such that:

1. r ∈ Λ (because r must be supportable by the network)

2. ric ≤ λic for all (i, c) (because the ric rate represents a fraction of the total rate λic

entering the network at node i and destined for node c)

The intersection of the capacity region Λ and the set {r | r ≤ λ} is illustrated in Fig. 5-1.

We would like to operate the network so that r is on or near the boundary of this intersec-

tion, with the precise point being chosen according to some notion of fairness. Throughout

this chapter, we assume that each user i has a set of utility functions gic(r) representing a

quantitative measure of the “satisfaction” (or “goodness”) that user i receives from deliv-
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λ(2)

λi

λ(1) Λ

λj

Figure 5-1: A capacity region Λ (illustrated in 2 dimensions) with a rate matrix λ(1) strictly
in the interior. The rate matrix λ(2) is outside of the capacity region.

ering data from source i to destination c at a rate of r bits per slot. We define an optimally

fair rate point to be one which maximizes the sum of utilities over all users. Note that if

gic(r) = θicr, then the optimally fair point maximizes a weighted sum of throughput, while

if gic(r) = log(r) then the optimally fair point leads to proportional fairness [76].

Thus, given a capacity region Λ and an initial set of exogenous rates λ, we have the

following optimization problem:

Maximize :
∑

ic gic(ric) (5.1)

Subject to: r ∈ Λ

r ≤ λ

Assuming that each utility function is monotonically increasing, the solution of the above

optimization is given by r = λ whenever λ ∈ Λ. If λ /∈ Λ, the optimal r vector must have

at least one entry ric strictly less than the corresponding entry λic. Such an optimization

could in principle be performed if the capacity region Λ and the input rates λ were known

in advance,1 and all users could coordinate by sending data according to this optimization.

However, the capacity region depends on the channel dynamics, which are unknown to the

network controllers and to the individual users. Furthermore, the individual users do not

know the data rates of other users, and may not even know their own data rates (as these

are generated by potentially bursty applications).

1Note that a test to determine if λ ∈ Λ can be performed by carrying out a deterministic version of the
DRPC algorithm, as described in Chapter 4.7.
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In this chapter, we develop a dynamic control algorithm that uses only knowledge of

the current network state to deliver data to the network while jointly making optimal

decisions about routing, scheduling, and power allocation. The algorithm operates across

two different layers: The transport layer (where data is generated based on the specific

applications or functions of each node) and the network layer (where data is transferred

from node to node to its destination). At the network layer, routing and power allocation

decisions are made according to the DRPC algorithm of Chapter 4. At the transport layer,

data is delivered to the network according to a simple flow control scheme, where the control

actions of individual users are decoupled from each other and from the routing and power

allocation decisions. The throughput and delay characteristics of the algorithm are similar

to those of DRPC when the exogenous data rates are within the capacity region. If the

rates are not within the capacity region, the algorithm yields a resulting set of data rates

r = (ric) which are arbitrarily close to the optimal solution of (5.1). The distance between

these solutions is shown to decrease like 1/V , where V is a control parameter affecting a

tradeoff in average delay for data that is served by the network.

5.1 Related Work

Recent work on optimization and fair control for wireless systems is found in [139] [20]

[86] [12] [93] [70]. In [86], an optimization problem similar to (5.1) is presented for a static

wireless downlink, and pricing schemes are developed to enable power allocations to converge

to a fair allocation vector. A similar static optimization problem is constructed in [70] for

wireless networks, where geometric programming is used to establish a fair operating point

with respect to various utility metrics. Utility based scheduling is further treated in [12] for

wireless downlinks.

Dynamic server scheduling in a wireless downlink with input rates that exceed the

system capacity is considered in [139]. It is shown that a modified version of the Serve-

the-Longest-Queue policy maximizes throughput in systems with deterministic channel and

traffic characteristics. A fair scheduling algorithm is developed in [20] for a wireless downlink

with randomly varying channels, where it is assumed that every packet arriving to the

downlink is destined for a distinct user with its own channel. Under symmetric conditions

where all channels have identical rate fluctuation statistics relative to their mean, it is
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shown that serving the user with the largest relative fluctuation above its mean provides

each user a fair fraction of the maximum output rate of the downlink. This algorithm

requires knowledge of the mean channel rates observed by each user, and is particularly

sensitive to the symmetric structure of the problem. Indeed, the algorithm deviates from

fair performance in cases of asymmetry, or in cases where a stream of packets are to be

transmitted over the same channel.

Optimization approaches to address fairness and utility maximization for static flow

networks are considered in [78] [76] [92] [69] [121]. In [78] [76], pricing mechanisms are

designed to enable distributed resource allocation in a network. Under this approach, an

appropriate utility maximization problem is constructed and solved via the theory of convex

duality, where the Lagrange multipliers of the dual problem correspond to “shadow prices”

charged by the network. Recent applications of this approach to the area of congestion

control and “Fast TCP” for internet traffic are developed in [91] [114] [67]. In [91], congestion

control algorithms such as TCP Reno and TCP Vegas are shown to have an interpretation

as an approximate primal-dual algorithm in a suitable convex optimization problem, and

improved TCP algorithms based on this interpretation are presented in [67]. A similar

analysis is used in [114] to construct feedback algorithms for congestion control in a network

with fixed routing and linearized dynamics. All of these optimization approaches treat

static networks using fluid flow approximations, so that discrete control decisions (such as

randomly marking a packet in a TCP Reno implementation) can be viewed in the framework

of a deterministic feedback function affecting a fluid rate parameter.

In this chapter, we treat dynamic control for wireless networks with randomly varying

channels and randomly arriving packets. We develop a joint optimal strategy for flow

control, routing, and power allocation. Our problem formulation and analytical approach

is significantly different from all related work in this area, and our results represent a

significant contribution to the theory of dynamic network optimization.

5.2 DRPC with Flow Control

We treat the same network as in Chapter 4 (see Fig. 4-1), where channels dynamically

vary every slot according to a process S(t) with channel probabilities πS . Data streams are

generated by applications running at each node according to arrival processes Aic(t) with
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rates λic. For simplicity of exposition, we assume the channel and arrival processes are i.i.d.

every timeslot.2 The network itself is characterized by rate-power functions µ(P , S) that

are assumed to be upper semi-continuous, but are otherwise arbitrary. The power matrix

P (t) is constrained to be within a compact set Π every timeslot.

5.2.1 The flow control valve

Data generated by applications at each node are not delivered immediately to the output

queues of that node. Rather, all data from a given node first enters a storage reservoir,

as shown in Fig. 5-2. Let Lic(t) represent the current backlog in reservoir (i, c). A valve

controls the amount of data from each commodity that drains from the reservoir into the

network. Let Ric(t) represent the amount of commodity c bits chosen by the control valve

at source node i to be delivered to the network at slot t (where Ric(t) ≤ Lic(t)). Note that

the Ric(t) processes represent the arrival streams received at the network layer.

The backlog Lic(t) in each reservoir evolves according to the following queueing equation:

Lic(t) = Lic(t− 1)−Ric(t− 1) +Aic(t) (5.2)

In particular, the reservoir size at any slot t is always at least as large as the amount of bits

Aic(t) that arrive during this slot. We emphasize that these storage reservoirs are outside

of the network, and in particular the reservoir backlog Lic(t) is distinct from the network

backlog U (c)
i (t), which (as before) represents the unfinished work of commodity c currently

held in network node i.

The repeated use of valve control determines the long run data rates ric allowed into

the network, where ric M= limt→∞
1
t

∑t−1
τ=0Ric(τ). We desire the network itself to be stable,

so that all data delivered to the network eventually reaches its destination. Hence, the

rates (ric) must be within the network capacity region Λ. The reservoirs themselves may

be “unstable,” necessarily growing to infinity in cases where the original input matrix (λic)

is outside of the capacity region. We do not concern ourselves with such instability, and

view the situation of an unstable reservoir as one in which there is always data waiting to

be sent.
2The situation of i.i.d. arrivals and channels provides all of the intuition needed to treat general rate

convergent and channel convergent processes, as made evident by the analysis in Chapter 4. In particular,
system dynamics can be analyzed every K slots, where K is an integer chosen so that empirical averages
over disjoint intervals of size K are nearly i.i.d., where “nearness” is determined by a parameter ε.
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Figure 5-2: A reservoir for storing data from the Aic(t) stream, together with a timeslotted
flow control valve that selects an amount of data to deliver to the network on every timeslot.

We consider the class of all possible valve control policies, coupled with all possible

routing, scheduling, and power allocation policies in the network. This includes all cross-

layer policies which make optimal decisions based on full cooperation and full knowledge

of future events (such as link failures, channel variations, or arrival bursts). We design a

decoupled algorithm which has no knowledge of the future yet yields an overall utility value

which is arbitrarily close to that of any other (possibly anticipatory) policy.

5.2.2 A Cross-Layer Algorithm and Joint Optimality

In order to limit the burstiness of data delivered to the network layer, we define Rmax

as the maximum number of exogenous bits allowed into the network each timeslot at any

particular node i, so that
∑

cRic(t) ≤ Rmax for all t. It is assumed that Rmax is large

enough so that
∑

c λic ≤ Rmax for all i. In practice, the value of Rmax is selected by the

controllers in advance, and can be set either to a known or estimated peak rate on the

inputs, or to a suitable fraction of the reservoir buffer size. In this way, if actual traffic

streams send at a sustained rate of more than Rmax bits per slot, the streams are filtered

by the control valve to produce streams which do conform to the Rmax constraint, and our

analytical claims hold only for this filtered traffic. The Rmax value plays the role of the

Amax bound on exogenous arrivals from the previous chapter.

The following dynamic network control policy is decoupled into three separate algo-

rithms, consisting of a flow control algorithm FLOW together with the DRPC algorithm

for routing and scheduling. Recall that gic(r) represents the utility function for sending

data from source i to destination j at a rate r, and Lic(t) represents the current backlog in
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reservoir (i, c).

Cross-Layer Network Control Algorithm:

• Flow Control — (algorithm FLOW) The flow controller at each node i observes the

current level of queue backlogs U (c)
i (t) in this node, and sets Ric = rc for each com-

modity c, where the rc values are chosen as follows:

Maximize :
∑N

c=1

[
V gic(rc)− 2rcU

(c)
i (t)

]
(5.3)

Subject to:
∑N

c=1 rc ≤ Rmax , 0 ≤ rc ≤ Lic(t) for all c

where V > 0 is a chosen constant that effects the performance of the algorithm.

• Routing and Scheduling — Each node i observes the backlog in all neighboring nodes

j to which it is connected by a link (i, j). Let W (c)
ij = U

(c)
i (t)− U

(c)
j (t) represent the

differential backlog of commodity c data. Define W ∗
ij as the maximum differential

backlog over all commodities c ∈ {1, . . . , N}, and let c∗ij represent the maximizing

commodity. Data of commodity c∗ij is selected to be routed from node i to node j

whenever W ∗
ij > 0 (provided that link (i, j) is allocated non-zero rate by the power

allocation layer).

• Power Allocation — The current channel state S(t) is observed, and power is allo-

cated by choosing a power matrix P (t) to maximize
∑

ij W
∗
ijµij(P , S(t)) subject to

the constraint P ∈ Π.

The flow control algorithm is decentralized, where the control valves for each node

i require knowledge only of the queue backlogs in node i. The routing and scheduling

algorithm acts according to the differential backlog strategy, and is decentralized provided

that each node i knows the backlog levels of its neighbors. The power allocation strategy

of maximizing
∑

ij W
∗
ijµij(P , S(t)) is the most complex part of the algorithm, and cannot

be optimally decentralized except when network links are independent, as described in

Chapter 4.4. However, in cases where a pre-established (and potentially sub-optimal) power
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allocation policy is implemented in a distributed fashion, or in the special case when there

is no power allocation and link rates randomly vary as pure functions of the channel states,

then the combined algorithm is completely decentralized. In such cases, the flow control

and routing layers optimally control the network for the channel conditions as given by the

power control layer.

We note that rate-power curve formulation contains as special cases the problems of

server allocation and hybrid resource allocation in networks with both wireless and wireline

components, as described in Chapters 3 and 4. Thus, the fair control algorithm described

above also applies to these situations.

5.2.3 Algorithm Performance

Here we describe the performance of the cross-layer algorithm of Section 5.2.2. The al-

gorithm implements DRPC at the network layer, and chooses valve controls Ric(t) at the

transport layer according to (5.3). Define:

ric(t) M=
1
t

t−1∑
τ=0

E {Ric(τ)}

ric
M= lim sup

t→∞
ric(t)

The ric(t) value is the resulting traffic rate allowed into the network by valve (i, c) up to

time t, and its limiting value ric represents the rate of long term communication between

nodes i and c provided that the network is stable.3 We compare the utility associated with

the (ric) values with the utility of the operating point (ropt
ic ), where we define (ropt

ic ) as the

optimal solution of the problem (5.1).

Recall that A(c)
i (t) is the arrival stream entering the (i, c) reservoir, and is assumed to

be i.i.d over timeslots with arrival rate λic. For the following performance bound, it is useful

to define the scalar parameter λsym as the largest value such that (λsym) ∈ Λ. That is,

λsym represents the largest rate that is simultaneously supportable by all user pairs (i, c)

under the special case when all users send traffic uniformly to all other users. This turns

out to be an important parameter used in the theorem below, which holds for any set of

heterogeneous rate matrices (λic) inside or outside of the capacity region. We further as-

3In Chapter Appendix 5.B it is shown that limt→∞
1
t

Pt−1
τ=0 E {Ric(τ)} = limt→∞

1
t

Pt−1
τ=0 Ric(τ) whenever

the latter limit exists.
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sume utility functions are bounded and define Gmax
M=maxi,

P
c rc≤Rmax

∑
c gic(rc), that is,

Gmax represents the maximum utility that any user i can achieve by allocating the flow

control variables (rc) subject only to the constraint
∑

c rc ≤ Rmax.

Theorem 10. (Performance of Cross-Layer Control Algorithm) Consider a network with

i.i.d. arrivals and channel states, operating under the cross-layer control algorithm with flow

parameter V > 0. Let (ropt
ic ) represent the optimal solution of the problem (5.1). Suppose

the utility functions gic(r) are continuous, concave, non-negative, and non-decreasing. Then

(a) The network layer is stable, and time average congestion satisfies

∑
ic

U
(c)
i ≤ N(B + V Gmax)

2λsym
(5.4)

where ∑
ic

U
(c)
i

M= lim sup
t→∞

1
t

t−1∑
τ=0

[∑
ic

E
{
U

(c)
i (τ)

}]
B M= (Rmax + µin

max)2 + (µout
max)2

(b) If utility functions are linear, so that gic(r) = θicr for some non-negative weights

{θic}, and if exogenous arrivals are upper-bounded so that
∑

cAic(t) ≤ Rmax for all i and

all t, then:

lim inf
t→∞

∑
ic

θicric(t) ≥
∑
ic

θicr
opt
ic − BN

V
(5.5)

(c) For general concave utilities gic(r), for any x ≥ 0 the time average utility satisfies

lim inf
t→∞

∑
ic

gic(ric(t)) ≥
∑
ic

gic(r
opt
ic − x)q̌ic(x)−

BN

V
(5.6)

where

q̌ic(x)M= lim inf
t→∞

1
t

t−1∑
τ=0

Pr[Lic(τ) ≥ ropt
ic − x]

A simple proof of this theorem is given in Section 5.5.4. However, before presenting the

analysis, in the following sections we consider the implications of this result.
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5.2.4 Performing Arbitrarily Close to the Optimal Operating Point

The cross-layer strategy thus stabilizes the network layer and provides performance guar-

antees on the overall utility that is achieved. For the case of linear utilities, Theorem 10

establishes that:

lim inf
t→∞

∑
ic

θicric(t) ≥
∑
ic

θicr
opt
ic − BN

V

The lim inf is used in the above expression to show that the least possible limiting value

of utility differs from the maximum utility by no more than BN/V , which can be made

arbitrarily small by increasing the flow control parameter V . This comes at the expense

of a potential increase in average network congestion:
∑

ic U
(c)
i ≤ N(B+ V Gmax)/(2λsym).

For the case where arrival rates are outside of the capacity region, this tradeoff is intuitive.

Indeed, in this case, the optimal operating point lies on the boundary of the capacity

region, and the parameter 1/V represents a distance measure between this optimal operating

point and the operating point achieved by the cross-layer control algorithm. However,

for the general case, we note that only the congestion bound grows with V , while actual

congestion in the network may not grow if the arrival rates (λic) are within the capacity

region. Indeed, increasing V to infinity allows all arrivals into the network (eliminating

valve control altogether) but delay does not grow to infinity if these raw data rates are

stabilizable by the network layer.

For the case of general concave utilities, Theorem 10 establishes that for any x ≥ 0, we

have

lim inf
t→∞

∑
ic

gic(ric(t)) ≥
∑
ic

gic(r
opt
ic − x)q̌ic −

BN

V

where q̌ic M= lim inft→∞
1
t

∑t−1
τ=0 Pr[Lic(τ) ≥ ropt

ic − x].

Ideally, we would like to set x = 0 and have q̌ic = 1. It is clear that in unstable situations

where all reservoirs are infinitely backlogged and there is always data waiting to be sent,

we can set x = 0 and have q̌ic = 1 for all (i, c). In this case, we again see that overall

utility is arbitrarily close to the target utility, where the proximity to the optimal solution

is determined by the parameter V .

Note that Lic(t) ≥ Aic(t) for all t, and hence:

Pr[Lic(t) ≥ ropt
ic ] ≥ Pr[Aic(t) ≥ ropt

ic ] ≥ Pr[Aic(t) ≥ λic]
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where the last inequality follows because ropt
ic ≤ λic by definition. Thus, if traffic is regular

so that on every timeslot we have Aic(t) = λic, then we can again set x = 0 and have

Pr[L(t) ≥ ropt
ic ] = 1 every timeslot t, so that q̌ic = 1 for all (i, c). Note that any rate-

convergent data stream can be probabilistically regularized by implementing a preliminary

Z-Slot Smoother. This device accepts an input stream Aic(t) and returns a smoothed stream

Ãic(t), where the new stream is defined by empirical averages of the input over Z-slot

blocks. Specifically, Ãic(t) = 0 for t ∈ {0, 1, . . . , Z − 1}, Ãic(t) = 1
Z

∑Z−1
τ=0 Aic(τ) for

t ∈ {Z, . . . , 2Z − 1}, and in general the value of Ãic(t) at all times during block b + 1 is

equal to the empirical average over block b (hence, all data exits the smoother within 2Z

slots after entry).

Suppose such Z-slot smoothers are placed in front of all inputs, so that processes Ãic(t)

enter the reservoirs. Because ropt
ic ≤ λic for all (i, c), and because all inputs are rate conver-

gent, it follows that for any x > 0, we have:

1 ≥ Pr[Lic(t) ≥ ropt
ic − x] ≥ Pr[Ãic(t) ≥ ropt

ic − x] → 1

where the last term tends to 1 as Z → ∞, because Ãic(t) → λic ≥ ropt
ic . Thus, q̌ic → 1

as Z → ∞. In particular, for i.i.d. inputs feeding into a Z-slot smoother, for all timeslots

t ≥ Z we have for each (i, c):

q̌ic ≥ Pr
[
Ãic(t) ≥ ropt

ic − x
]

= Pr

[
1
Z

Z−1∑
v=0

[Aic(v)− λic] ≥ ropt
ic − λic − x

]

= Pr

[
1√
Z

Z−1∑
v=0

Aic(v)− λic

σic
≥

(ropt
ic − λic − x)

√
Z

σic

]

≈ 1−Q

(
(λic + x− ropt

ic )
√
Z

σic

)
≥ 1−Q

(
x
√
Z

σic

)

where σ2
ic = E

{
Aic(t)2 − λ2

ic

}
is the variance of the random variable Aic(t). The last line

follows by the Central Limit Theorem, where Q() represents the tail of a zero mean, unit

variance Gaussian random variable. Hence, in the nonlinear case, overall utility can be

pushed arbitrarily close to the target utility if the flow control parameter V is sufficiently

large and if the smoother block size Z is also sufficiently large.
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5.3 Maximum Throughput and the Threshold Rule

Consider the case of linear utilities gic(r) defined:

gic(r)M=θicr (5.7)

for some positive weights θic, so that the objective is to maximize the weighted sum of

throughput
∑

i6=j θicric. This same objective has been recently considered in [139] for the

problem of scheduling a single server over a parallel set of ON/OFF queues.

In this case of linear utility, the flow control optimization (5.3) for each user i is as

follows:

Maximize :
∑

c

[
V θicrc − 2U (c)

i (t)rc
]

Subject to: 0 ≤ rc ≤ Lic(t),
∑

c rc ≤ Rmax

The solution of the above optimization has a simple threshold form, where some commodities

receive as much of the Rmax delivery rate as possible, while others receive none. In the

special case where the user at node i desires communication with a single destination node

ci (so that λic = 0 for all c 6= ci), the flow control algorithm reduces to maximizing V θicir−

2U (ci)
i r subject to 0 ≤ r ≤ min[Rmax, Lici(t)], and the solution is the following threshold

rule:

Rici(t) =

 min[Rmax, Lici(t)] if U (ci)
i (t) ≤ V θici

2

0 otherwise

The qualitative structure of this flow control rule is intuitive: When backlog in the

source queue is large, we should refrain from sending new data. The simple threshold

form is qualitatively similar to the “bang-bang” control policies that often arise in classical

control theory problems when the objective function is linear.

More directly, this threshold rule for network flow control is similar to the threshold

scheduling rule developed in [139] for server scheduling in a downlink with ON/OFF chan-

nels and deterministic constraints on the channel states and packet arrivals. Specifically,

the analysis of [139] demonstrates that there exists a threshold T such that serving the

longest queue maximizes throughput, where all queues with backlog greater than T are
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treated as having backlog that is equal to this threshold. Although the structure of the

downlink scheduling problem in [139] is different from our problem structure, as are the an-

alytical techniques and resulting scheduling rules, the objective of maximizing a weighted

sum of throughput is the same, and hence it is interesting that both sets of results yield

threshold-type policies.

5.4 Proportional Fairness and the 1/U Rule

Consider now utility functions of the form:

gic(r) = log(1 + ric) (5.8)

It is shown in [76] that maximizing a sum of such utilities over any convex set Λ leads

to proportional fairness. Specifically, the resulting (ropt
ic ) operating point satisfies:

∑
i6=c

ropt
ic − ric

ropt
ic + 1

≥ 0 (5.9)

where (ric) is any other point within the capacity region Λ.4 In the special case when there

is only one destination ci for each user i, the flow control algorithm reduces to maximizing

V log(1 + r)− 2U (ci)
i (t)r subject to 0 ≤ r ≤ min[Rmax, Lici(t)], which leads to the following

“1/U” flow control function:

Rici(t) =
V

2U (ci)
i (t)

− 1 , if 0 ≤ V

2U
(ci)
i (t)

− 1 ≤ min[Rmax, Lici(t)]

If the unfinished work U (ci)
i (t) is too large for the specified interval, Rici(t) is set to 0, and

if it is too small then Rici(t) is set to the value min[Rmax, Lici(t)].

Here we see that the flow control valve restricts flow according to a continuous function

of the backlog level at the source queue, being less conservative in its admission decisions

when backlog is low and more conservative when backlog is high.

4Strictly speaking, the proportionally fair allocation seeks to maximize
P

ic log(ric), leading toP
i6=c

r
opt
ic −ric

r
opt
ic

≥ 0. However, utility functions of the form log(r) can take negative values and are not

lower bounded. Thus, we use functions of the form log(1 + r), and thereby obtain a proportionally fair
allocation with respect to the quantity (ropt

ic + 1).
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5.5 Performance Analysis

Here we establish the analytical tools used to prove Theorem 10, which describes the per-

formance of the cross-layer control algorithm. We first develop a simple modification of the

Lyapunov Drift Lemma of Chapter 2 (Lemma 2), enabling backlog minimization and utility

maximization to be performed using a single drift analysis.

5.5.1 Lyapunov Drift with Utility Metric

Let L(U) represent a Lyapunov function of unfinished work in a timeslotted system with

unfinished work process U(t). Recall that the only criterion for a Lyapunov function is that

it be non-negative.

Lemma 12. If there is a fixed interval K such that for all timeslots t, the Lyapunov drift

satisfies:

E {L(U(t+K))− L(U(t)) | U(t)} ≤ C(t)− ε
∑
ic

U
(c)
i (t)

for some upper bounded process C(t) and some positive constants ε > 0, V > 0, and further

if E {L(U(t0))} <∞ for all initial timeslots t0 ∈ {0, 1, . . . ,K−1}, then the system is stable,

and

lim sup
t→∞

1
t

t−1∑
τ=0

∑
ic

E
{
U

(c)
i (τ)

}
≤ lim sup

t→∞

1
t

t−1∑
τ=0

E {C(τ)}
ε

lim inf
t→∞

1
t

t−1∑
τ=0

∑
ic

E
{
U

(c)
i (τ)

}
≤ lim inf

t→∞

1
t

t−1∑
τ=0

E {C(τ)}
ε

Proof. The proof of the above lemma is similar to the proof of the Lyapunov drift result of

Lemma 2 (from Chapter 2) and is given in Appendix 5.A.

From this simple lemma we develop the following statement concerning Lyapunov drift

and utility optimization.

Lemma 13. (Lyapunov Drift with Utility Metric) Let L(U) represent a Lyapunov function

for a timeslotted system with unfinished work process U(t). Let R(t) = (Ric(t)) represent

an input process driving the system, and let r∗ = (r∗ic) represent any fixed matrix (to be used

as a fixed operating point with which to compare network utility). Suppose utility functions

gic(r) are non-negative and bounded so that 0 ≤
∑

c gic(Ric(t)) ≤ Gmax for all i and all t.
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If there is a fixed interval K such that for all timeslots t, the Lyapunov drift satisfies:

E {L(U(t+K))− L(U(t)) | U(t)} ≤ C − V
∑

ic gic(r∗ic − x)E {qic(t) |U(t)}

+V
∑

ic E {gic(Ric(t)) |U(t)} − ε
∑

ic U
(c)
i (t)

for some non-negative real constants x ≥ 0, C ≥ 0, V ≥ 0, for a strictly positive value ε > 0,

and for some bounded process qic(t) satisfying 0 ≤ qic(t) ≤ 1, and further if E {L(U(t0))} <

∞ for all initial timeslots t0 ∈ {0, 1, . . . ,K − 1}, then:

(a) The system is stable, and

∑
ic

U
(c)
i ≤ C

ε
+
V

ε
lim sup

t→∞

1
t

t−1∑
τ=0

∑
ic

E {gic(Ric(τ))− gic(r∗ic − x)qic(τ)}

In particular, the following congestion bound holds:

∑
ic

U
(c)
i ≤ C

ε
+
V NGmax

ε
(5.10)

(b) If utility functions are continuous, concave, and non-decreasing, then

lim inf
t→∞

∑
ic

gic(ric(t)) ≥
∑
ic

gic(r∗ic − x)q̌ic −
C

V
(5.11)

where

ric(t) M=
1
t

t−1∑
τ=0

E {Ric(τ)}

q̌ic
M= lim inf

t→∞

1
t

t−1∑
τ=0

E {qic(τ)}

Proof. The proof follows directly from Lemma 12 and is given in Chapter Appendix 5.A.

Note that the performance guarantee on network congestion in part (a) of the above

lemma uses a lim sup, indicating that the greatest possible limiting value of network conges-

tion is upper bounded by the right hand side of (5.10). Likewise, the performance guarantee

on utility in part (b) uses a lim inf to indicate that the least possible limiting value of utility

is greater than or equal to the right hand side of (5.11).

To help interpret the above lemma, we define ric
M= lim supt→∞ ric(t), and assume that
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x = 0 and qic(t) = 1 for all t and all (i, c). Suppose the gic(r) functions are non-decreasing,

continuous, and concave. With these properties, it is not difficult to show the gic(r) functions

satisfy: ∑
ic

gic(ric) ≥ lim sup
t→∞

1
t

t−1∑
τ=0

∑
ic

E {gic(Ric(τ))}

Using this ric notation, it follows that the Lyapunov drift condition of Lemma 13 implies

that:

∑
ic

U
(c)
i ≤ C

ε
+
V

ε

∑
ic

gic(ric)−
V

ε

∑
ic

gic(r∗ic)

The above inequality expresses a fundamental tradeoff between utility optimization and

network congestion for any stochastic network satisfying the drift condition of Lemma 13.

Indeed, the equation above implies the following two bounds on congestion and utility:

∑
ic

U
(c)
i ≤ C

ε
+
V

ε
NGmax

∑
ic

gic(ric) ≥
∑
ic

gic(r∗ic)−
C

V

The use of the valve parameter V is now apparent: The achieved utility differs from the

target utility by no more than C/V , which can be made arbitrarily small by choosing

suitably large values for V . However, increasing the V parameter increases the bound on

average network congestion, which (potentially) causes an increase in network delay.

At first inspection, the drift condition of Lemma 13 may seem esoteric and unlikely to

hold for a general stochastic system. Much to the contrary, we find that, given a stochastic

system whose stability is achieved by minimizing the drift of a quadratic Lyapunov function,

it is often a simple matter to design a control law for the Ric(t) inputs so that the overall

system dynamics satisfy the drift condition of Lemma 13. This is made evident in the

forthcoming analysis.

5.5.2 A Near-Optimal Operating Point (r∗ic)

We compare the utility achieved by the cross-layer control algorithm presented in Section

5.2.2 to the utility of a near-optimal solution (r∗ic) to the optimization problem (5.1). Specif-
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ically, for any ε > 0, we define the set Λε as follows:

Λε
M= {r = (ric) | (ric + ε) ∈ Λ, ric ≥ 0 for all (i, c) } (5.12)

Thus, the set Λε can be viewed as the resulting set of rate matrices within the network

capacity region when an “ε-layer” of the boundary is stripped away. Note that Λε → Λ

as ε → 0. The operating point (r∗ic) is defined as the optimal solution to the following

optimization problem:

Maximize :
∑

ic gic(ric) (5.13)

Subject to: r ∈ Λε

r ≤ λ

This optimization differs from the optimization in (5.1) in that the set Λ is replaced by the

set Λε. The utility at the operating point (r∗ic) increases to the optimal utility given by the

solution of (5.1) as ε→ 0, as described by the following lemma.

Let λsym represent the largest value such that (λsym) ∈ Λ, that is, all user pairs (i, c)

can stably communicate at rate λsym.

Lemma 14. (Deviation from Optimality) Let (ropt
ic ) represent an optimal solution to (5.1).

Suppose the utility functions gic(r) are continuous and differentiable, and let M represent a

bound on the derivative, maximized over the interval 0 ≤ r ≤ Rmax and over all functions

gic(r):

M M= max
(i,c)∈{1,...,N}2,0≤r≤Rmax

dgic(r)
dr

Consider any ε such that 0 < ε ≤ λsym. Then:

∑
i,c

gic(r
opt
ic ) ≥

∑
i,c

gic(r∗ic) ≥
∑
i,c

gic(r
opt
ic )− ε

NMRmax

λsym

Proof. The inequality
∑

i,c gic(r
opt
ic ) ≥

∑
i,c gic(r∗ic) follows because Λε ⊂ Λ, and hence the

maximum utility over the larger set Λ is greater than or equal to the maximum utility over

the smaller set Λε.

To prove the second inequality, note that (ropt
ic ) ∈ Λ and (λsym) ∈ Λ, and hence by

convexity of the capacity region Λ we have (1 − ε
λsym

)(ropt
ic ) + ε

λsym
(λsym) ∈ Λ. It follows
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that (1 − ε
λsym

)(ropt
ic ) ∈ Λε. By definition of (r∗ic) as the utility maximizer of the problem

(5.13), we have: ∑
i,c

gic(r∗ic) ≥
∑
i,c

gic

(
(1− ε

λsym
)ropt

ic

)
However, because derivatives of each utility function are bounded by M , for each (i, c) we

have gic(r
opt
ic − ε

λsym
ropt
ic ) ≥ gic(r

opt
ic )−M ε

λsym
ropt
ic . Hence:

∑
i,c

gic(r∗ic) ≥
∑
i,c

gic(r
opt
ic )−

∑
i,c

M
εropt

ic

λsym

≥
∑
i,c

gic(r
opt
ic )− Mε

λsym

N∑
i=1

Rmax

proving the result.

5.5.3 Achieving (r∗ic)

The operating point (r∗ic) is contained within the set Λε, and hence by definition the matrix

(r∗ic + ε) is within the capacity region Λ. Thus, by the description of the network capacity

region given in Theorem 5, there exists a matrix (Gab) within the network graph family Γ

together with multicommodity flows {f (c)
ab } that satisfy the non-negativity, flow efficiency,

flow conservation, and link constraints of (4.4)-(4.7) with respect to the data rates (r∗ic + ε).

In particular: ∑
b

f
(c)
ib −

∑
a

f
(c)
ai ≥ r∗ic + ε for i 6= c (5.14)

∑
c

f
(c)
ab ≤ (Gab)

From the analysis in Chapter 4, a stationary randomized control algorithm STAT can be

implemented yielding power allocations PSTAT (t) (chosen by only considering the current

channel state). The resulting transmission rates are µ(c)STAT
ab (t), where each µ

(c)STAT
ab (t)

process is rate convergent with rate f (c)
ab [see Lemma 8 together with the description of the

policy STAT in Section 4.3.2]. In the special case of i.i.d. channel states, it is clear that the

resulting transmission rates µ(c)STAT
ab (t) are i.i.d. and satisfy:

E
{
µ

(c)STAT
ab (t)

}
= f

(c)
ab for all a, b, c and all slots t (5.15)
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It follows from (5.15) and (5.14) that

E

{∑
b

µ
(c)STAT
ib (t)−

∑
a

µ
(c)STAT
ai (t)

}
≥ r∗ic + ε for all i 6= c (5.16)

The above inequality is important for evaluating the performance of the stationary allocation

scheme with respect to the target rates r∗ic.

5.5.4 Algorithm Analysis

Here we analyze performance of the cross-layer algorithm of Section 5.2.2 and prove Theorem

10. We first present a result showing that performance is arbitrarily close to the near-optimal

operating point (r∗ic) of the above section.

We assume throughout that utility functions gic(r) are continuous, concave, non-decreasing,

and bounded so that 0 ≤
∑

c gic(rc) ≤ Gmax whenever
∑

c rc ≤ Rmax.5 Fix ε > 0, and let

(r∗ic) represent the solution of the modified optimization problem (5.13), defined in terms

of the set Λε. We have:

Lemma 15. Consider a network operating under the cross-layer control algorithm with flow

parameter V > 0, and let (r∗ic) ∈ Λε represent an optimal solution of the problem (5.13). If

arrivals and channel states are i.i.d. over timeslots, then

(a) The network layer is stable, and time average congestion satisfies

∑
ic

U
(c)
i ≤ BN + V NGmax

2ε
(5.17)

where B M=(Rmax + µin
max)2 + (µout

max)2.

(b) If utility functions are linear, so that gic(r) = θicr for some non-negative weights

{θic}, and if
∑

cAic(t) ≤ Rmax for all c and t, then

lim inf
t→∞

∑
ic

θicric(t) ≥
∑
ic

θicr
∗
ic −

BN

V
(5.18)

5Generalizations for utility functions lacking in one or all of these properties can be developed, but are
not required here.
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(c) For general concave utilities gic(r), for any x ≥ 0 the time average utility satisfies

lim inf
t→∞

∑
ic

gic(ric(t)) ≥
∑
ic

gic(r∗ic − x)q̌ic(x)−
BN

V
(5.19)

where q̌ic(x)M= lim inft→∞
1
t

∑t−1
τ=0 Pr[Lic(τ) ≥ r∗ic − x].

The above result is similar to the statement of Theorem 10 with the exception that we

compare to the operating point (r∗ic) rather than (ropt
ic ).

Proof. To prove (a), define the Lyapunov function L(U) =
∑

i,c[U
(c)
i ]2. Let ∆(U(t)) rep-

resent the Lyapunov drift between slots t and t + 1 (it suffices to consider 1-step analysis

because arrival and channel states are assumed to be i.i.d. every slot). Note by (4.28) that

for any network control algorithm, this drift satisfies:

∆(U(t)) M= E {L(U(t+ 1))− L(U(t)) | U(t)}

≤ BN − 2Φ (U(t)) + 2
∑
i,c

U
(c)
i (t)E {Ric(t) | U(t)} (5.20)

where

Φ (U(t)) M=
∑
i6=c

U
(c)
i (t)E

{∑
b

µ
(c)
ib (t)−

∑
a

µ
(c)
ai (t) | U(t)

}

The value of Φ (U(t)) represents the component of drift that is affected by the power al-

location and routing algorithms. To represent the effects of the flow control algorithm, we

define the following quantity:

Ψ(U(t))M=E

∑
i6=c

[
V

2
gic(Ric(t))− U

(c)
i (t)Ric(t)

]
| U(t)


Adding and subtracting 2Ψ(U(t)) in the right hand side of (5.20), we have:

∆(U(t)) ≤ BN + V
∑
i6=c

E {gic(Ric(t)) | U(t)} − 2Φ (U(t))− 2Ψ(U(t)) (5.21)

Let ΦDRPC(U(t)) and ΨFLOW (U(t)) represent the network and flow control terms when

the DRPC algorithm is used at the network layer, and the FLOW algorithm is used at

the transport layer. At this point, it should be intuitively clear that the FLOW algorithm
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was designed to maximize ΨFLOW (U(t)) at all timeslots t, while the DRPC algorithm was

designed to maximize ΦDRPC(U(t)) at all timeslots t. We now show that the above drift

condition can be expressed in the same form as the drift condition of Lemma 13. The proof

relies on the following simple claims, proven at the end of this subsection.

Claim 5.1: For all t, the DRPC algorithm satisfies:

ΦDRPC(U(t)) ≥
∑
i6=c

U
(c)
i (t)(r∗ic + ε) (5.22)

Claim 5.2: If utilities are linear so that gic(r) = θicr, and if
∑

cAic(t) ≤ Rmax for all t

and all i, then for all timeslots t the FLOW algorithm satisfies:

ΨFLOW (U(t)) ≥
∑
i6=c

V

2
θicr

∗
ic −

∑
i6=c

U
(c)
i (t)r∗ic (5.23)

Using the results of the claims by plugging (5.23) and (5.22) into (5.21) yields:

∆(U(t)) ≤ BN − V
∑
i6=c

θicr
∗
ic + V

∑
i6=c

E {θicRic(t) | U(t)} − 2
∑
i6=c

U
(c)
i (t)ε

The above inequality is the drift condition we are looking for, and the results of (a) and (b)

follow by direct application of Lemma 13 (defining C M=BN and qic(t)M=1, xM=0).

Claim 5.3: For general concave utilities gic(r), at every timeslot t and for any value

x ≥ 0, the FLOW algorithm satisfies:

ΨFLOW (U(t)) ≥
∑
i6=c

V

2
gic(r∗ic − x)Pr[Lic(t) ≥ r∗ic − x | U(t)]−

∑
i6=c

U
(c)
i (t)r∗ic (5.24)

Plugging (5.24) and (5.22) into (5.21) in the same manner as before yields the following

expression for Lyapunov drift for this case of general utilities:

∆(U(t)) ≤ BN + V
∑

i6=c E {gic(Ric(t)) | U(t)}

−2
∑

i6=c U
(c)
i (t)ε− V

∑
i6=c gic(r∗ic − x)Pr[Lic(t) ≥ r∗ic − x | U(t)]

Using this expression in Lemma 13 (defining C M=BN , and qic(t)M=1[Lic(t)≥r∗ic−x]) proves the

result.
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We now prove the claims used in the above lemma.

Claim 5.1: For all t, the DRPC algorithm satisfies:

ΦDRPC(U(t)) ≥
∑
i6=c

U
(c)
i (t)(r∗ic + ε)

Proof. From the results of Chapter 4 (Lemma 9) applied to the special case of i.i.d. channels,

we know that:6

ΦDRPC(U(t)) ≥ ΦSTAT (U(t))

where ΦSTAT (U(t)) =
∑

i6=c U
(c)
i (t)E

{∑
b µ

(c)STAT
ib (t)−

∑
a µ

(c)STAT
ai (t) |U(t)

}
. Using this

together with (5.16) yields the result.

Claim 5.2: If utilities are linear so that gic(r) = θicr, and if
∑

cAic(t) ≤ Rmax for all t

and all i, then for all timeslots t the FLOW algorithm satisfies:

ΨFLOW (U(t)) ≥
∑
i6=c

V

2
θicr

∗
ic −

∑
i6=c

U
(c)
i (t)r∗ic

Proof. Every timeslot t, the FLOW algorithm maximizes
∑

c

[
V
2 θicrc − U

(c)
i (t)rc

]
for each

user i over the region
∑

c rc ≤ Rmax, 0 ≤ rc ≤ Lic(t). Because
∑

cAic(t) ≤ Rmax and

Aic(t) ≤ Lic(t) (as the reservoir level is always at least the amount of new arrivals), the

point (rc) = (γicAic(t)) is within this maximization region for any γic values such that

0 ≤ γic ≤ 1. Define γic
M=r∗ic/λic and note that, by definition, 0 ≤ γic ≤ 1 for all (i, c).

Hence:

∑
c

[
V

2
θicRic(t)− U

(c)
i (t)Ric(t)

]
≥
∑

c

[
V

2
θicγicAic(t)− U

(c)
i (t)γicAic(t)

]

Taking expectations and using the fact that E {Aic(t)} = λic (which follows because arrivals

are i.i.d. every slot), we have:

E

{∑
c

[
V

2
θicRic(t)− U

(c)
i (t)Ric(t)

]
| U(t)

}
≥
∑

c

[
V

2
θicr

∗
ic − r∗icU

(c)
i (t)

]

Summing over i 6= c proves the claim.
6Recall from Chapter 4 that ΦDRPC(U(t)) = ΦFRAME(U(t)) for i.i.d. arrivals and channel states.
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Claim 5.3: For all slots t and for all values x ≥ 0, the FLOW algorithm satisfies:

ΨFLOW (U(t)) ≥
∑
i6=c

V

2
gic(r∗ic − x)Pr[Lic(t) ≥ r∗ic − x | U(t)]−

∑
i6=c

U
(c)
i (t)r∗ic

(where gic(r∗ic − x) is defined to be zero whenever r∗ic − x < 0).

Proof. The FLOW algorithm maximizes
∑

c

[
V
2 gic(rc)− U

(c)
i (t)rc

]
for each user i over the

optimization region
∑

c rc ≤ Rmax, 0 ≤ rc ≤ Lic(t). Let Ω represent this optimization

region, and define the following values (yic):

yic
M=

 r∗ic − x if 0 ≤ r∗ic − x ≤ Lic(t)

0 otherwise

Note that
∑

c r
∗
ic ≤ Rmax for each i, and hence the same is true for the yic values. Further-

more, 0 ≤ yic ≤ Lic(t) for all (i, c), and hence the (yic) vector is within the optimization

region Ω for each i. Comparing with the (Ric(t)) vector, it follows that:

∑
c

[
V

2
gic(Ric(t))− U

(c)
i (t)Ric(t)

]
≥
∑

c

[
V

2
gic(yic)− U

(c)
i (t)yic

]
(5.25)

Define the indicator function 1[Lic(t)≥r∗ic−x] to take the value 1 whenever Lic(t) ≥ (r∗ic − x),

and 0 otherwise. Without loss of generality, we assume r∗ic − x ≥ 0 for all (i, c) (otherwise,

we simply restrict the summation on the right hand side of the following inequality to (i, c)

pairs for which this property holds). From (5.25) and the definition of yic, we have:

∑
c

[
V

2
gic(Ric(t))− U

(c)
i (t)Ric(t)

]
≥

∑
c

[
V

2
gic(r∗ic − x)− U

(c)
i (t)(r∗ic − x)

]
1[Lic(t)≥r∗ic−x]

≥
∑

c

[
V

2
gic(r∗ic − x)1[Lic(t)≥r∗ic−x] − U

(c)
i (t)r∗ic

]

Taking conditional expectations of the above inequality, it follows that:

E

{∑
c

[
V

2
gic(Ric(t))− U

(c)
i (t)Ric(t)

]
| U(t)

}
≥

∑
c

[
V
2 gic(r∗ic − x)Pr[Lic(t) ≥ r∗ic − x | U(t)]− U

(c)
i (t)r∗ic

]
Summing over all i 6= c proves the claim.
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5.5.5 Optimizing the Bound

Here we complete the proof of Theorem 10 by optimizing the performance bounds given

in Lemma 15. Under the conditions of the lemma, we know that the cross-layer control

algorithm satisfies the following congestion bound:

∑
ic

U
(c)
i ≤ BN + V NGmax

2ε
(5.26)

where B M=(Rmax + µin
max)2 + (µout

max)2.

Furthermore, for any x ≥ 0, the resulting utility under the cross-layer algorithm satisfies:

lim inf
t→∞

∑
ic

gic(ric(t)) ≥
∑
ic

gic(r∗ic − x)q̌ic −
BN

V
(5.27)

where (r∗ic) ∈ Λε is the optimal solution of (5.13). Both of these performance bounds hold for

a particular ε > 0. However, note that the chosen value of ε only influences the performance

bounds but does not influence the cross-layer algorithm or change any sample path that

the algorithm traverses. Hence, improved bounds can be obtained by optimizing over all

valid choices of ε, and the optimized choice of this value need not be the same for the utility

bound and the congestion bound. Indeed, for the congestion bound (5.26), it is clear that

we should make ε as large as possible, subject to the constraint that there exists a matrix

(r∗ic) such that (r∗ic)+ (ε) ∈ Λ. We choose ε = λsym, where λsym is defined as the symmetric

capacity of the network, that is, λsym is the largest rate that is simultaneously supportable

over all input streams (i, c) (so that (λsym) ∈ Λ). This choice of ε is valid, as it corresponds

to (r∗ic) = (0) (and hence Λε = {0}). The new congestion bound is thus:

∑
ic

U
(c)
i ≤ BN + V NGmax

2λsym
(5.28)

To optimize the utility bound (5.27), note that this bound is written in terms of r∗ic but

does not contain the value ε. Thus, we can shrink ε to zero, allowing r∗ic to tend to the value

ropt
ic as described in Lemma 14. Because the gic(r) functions are continuous, we can push

the limits through the functions, and we have the following optimized utility bound:

lim inf
t→∞

∑
ic

gic(ric(t)) ≥
∑
ic

gic(r
opt
ic − x)q̌ic −BN/V
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The utility bound for linear utility functions can likewise be optimized, yielding:

lim inf
t→∞

∑
ic

θicric(t) ≥
∑
ic

θicr
opt
ic − BN

V
(5.29)

These bounds complete the proof of Theorem 10.

5.6 Mechanism Design, Network Pricing, and Nash Equilib-

rium

Throughout this chapter we have been considering flow control schemes for maximizing a

sum of user utilities, with the implicit assumption that such schemes can be programmed

into the communication software of individual users. However, non-compliant “rogue” users

can always change their delivery protocol in an effort to improve their own data rates,

potentially at the expense of other users. To avoid this behavior, we seek to design a pricing

mechanism for charging users according to how much data they send to the network.

Let each user utility function gic(r) be non-negative, concave, and increasing, taking

values in units of dollars, representing the amount user i is willing to pay for service of its

commodity c data at rate r. We define the social optimum operating point (ropt
ic ) to be the

point that maximizes the sum of utilities
∑

i6=c gic(ric) subject to (ric) ∈ Λ. We assume that

each user is “infinitely backlogged”, and hence always has data to send. In this scenario, if

each user were to conform to the FLOW strategy, then for each i the Ric(t) values would

be determined by Ric(t) = rc, where the rc values solve:

Maximize :
∑

c

[
V gic(rc)− 2rcU

(c)
i (t)

]
(5.30)

Subject to:
∑

c rc ≤ Rmax

and the resulting congestion and utility bounds would be given as follows:

∑
ic

U
(c)
i ≤ N(B + V Gmax)

2λsym
(5.31)

lim inf
t→∞

∑
ic

gic(ric(t)) ≥
∑
ic

gic(r
opt
ic )− BN

V
(5.32)

and hence choosing a suitably large flow control parameter V maintains network stability
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while yielding an overall utility which is arbitrarily close to the social optimum.

Now note that the optimization problem (5.30) is equivalent to the following optimiza-

tion:

Maximize :
∑

c

[
gic(rc)−

2U
(c)
i (t)
V rc

]
(5.33)

Subject to:
∑

c rc ≤ Rmax

The above form of the optimization immediately suggests the following pricing mech-

anism: Every timeslot, the network charges user i the following per-unit price for sending

new commodity c data into the network:

PRICEic(t) =
2U (c)

i (t)
V

dollars/bit (5.34)

We note that this pricing strategy is independent of the particular gic(r) functions,

and so the network does not require knowledge of the user utilities. If every timeslot users

greedily maximize their own net benefit, equal to utility minus cost, then they naturally send

data in conformance with the optimization (5.33). It follows that in a general time varying

network with greedy users, backlog-proportional pricing achieves the social optimum, in the

sense that the performance bounds (5.31) and (5.32) are satisfied.

It is interesting to consider the impact of a user who decides to delay gratification by

sending at a rate different from that of the greedy optimization (5.33), with the hopes of

achieving an overall better utility for himself or herself in the long run. We note that as the

greedy strategy (5.33) yields a sum utility that is arbitrarily close to the social optimum, any

potential improvement for an individual user is necessarily detrimental to others. This gives

rise to the question of Nash equilibrium: Does the strategy (5.33), or a suitable variant,

impose a Nash equilibrium on the system, making any change in strategy harmful to the

individual user? The answer to this question is not clear. However, we note that it would

be difficult for users to anticipate the consequences of changing from the greedy strategy

to some other strategy, as the network topology and the future time variations in channel

states are likely unknown.
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5.7 Chapter Summary

In this chapter we have developed a cross-layer control strategy that operates for arbitrary

input rates, regardless of whether these rates are inside or outside of the network capacity

region. The strategy is decoupled into three separate algorithms, respectively treating flow

control, routing, and power allocation. The flow control algorithm is implemented in a

distributed fashion, where independent flow controllers act for each input stream and base

decisions only on the current backlog at the source queue of that input, without requiring

knowledge of the network topology, arrival rates, or channel conditions. The routing algo-

rithm is also distributed, where routing decisions at a particular node are based only on the

differential backlog between itself and its neighbors. The power allocation strategy requires

full channel state information throughout the network, but can be optimally distributed

in cases where channels are independent, and sub-optimally distributed using the simple

schemes developed in Chapter 4.

The resulting throughput of the combined algorithm (with optimal power control) is

arbitrarily close to the optimally fair operating point that could be achieved with full coop-

eration among users and with full knowledge of future arrivals and channels of the network.

Distance to the optimal operating point decreases like 1/V , where V is a parameter affecting

a tradeoff in average delay experienced by data admitted into the network. Furthermore,

the same result holds when power allocation is restricted to a specified scheme, so that

the flow control and routing algorithms achieve optimal performance subject to any given

power allocation layer running underneath them.

Analysis was performed by developing a Lyapunov drift theorem enabling utility opti-

mization. This builds upon the results of Chapter 4 and contributes to a theory of dynamic

network optimization.
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Chapter Appendix 5.A — Lyapunov Drift with Utility Metric

Here we prove Lemmas 12 and 13.

Lemma 12: If there is a fixed interval K such that for all timeslots t, the Lyapunov drift

satisfies:

E {L(U(t+K))− L(U(t)) | U(t)} ≤ C(t)− ε
∑
ic

U
(c)
i (t) (5.35)

for some upper bounded process C(t) and some positive constants ε > 0, V > 0, and further

if E {L(U(t0))} <∞ for all initial timeslots t0 ∈ {0, 1, . . . ,K−1}, then the system is stable,

and

lim sup
t→∞

1
t

t−1∑
τ=0

∑
ic

E
{
U

(c)
i (τ)

}
≤ lim sup

t→∞

1
t

t−1∑
τ=0

E {C(τ)}
ε

(5.36)

lim inf
t→∞

1
t

t−1∑
τ=0

∑
ic

E
{
U

(c)
i (τ)

}
≤ lim inf

t→∞

1
t

t−1∑
τ=0

E {C(τ)}
ε

(5.37)

Proof. Let t = t0 +mK, where t0 ∈ {0, . . . ,K − 1}. Taking expectations of (5.35) over the

distribution of U(t) and summing from m = 0 to m = M − 1 yields:

E {L(U(t0 +MK))}−E {L(U(t0))} ≤
M−1∑
m=0

E {C(t0 +mK)}−ε
M−1∑
m=0

∑
ic

E
{
U

(c)
i (t0 +mK)

}

Shifting terms and using non-negativity of the Lyapunov function, we have:

ε
M−1∑
m=0

∑
ic

E
{
U

(c)
i (t0 +mK)

}
− E {L(U(t0))} ≤

M−1∑
m=0

E {C(t0 +mK)}

Summing over t0 ∈ {0, . . . ,K − 1} and dividing by MK yields:

ε
1

MK

MK−1∑
τ=0

∑
ic

E
{
U

(c)
i (τ)

}
− 1
MK

K−1∑
t0=0

E {L(U(t0))} ≤
1

MK

MK−1∑
τ=0

E {C(τ)} (5.38)

Taking the lim sup of both sides as M → ∞ yields (5.36), while taking a lim inf yields

(5.37). Stability follows from (5.36) by the same proof as given in Lemma 2 in Chapter

2.

162



Lemma 13: Let L(U) represent a Lyapunov function for a timeslotted system with

unfinished work process U(t). Let R(t) = (Ric(t)) represent an input process driving the

system, and let r∗ = (r∗ic) represent any fixed matrix (to be used as a fixed operating point

with which to compare network utility). Then for any bounded utility functions gic(r)

(satisfying 0 ≤
∑

c gic(Ric(t)) ≤ Gmax), if there is a fixed interval K such that for all

timeslots t, the Lyapunov drift satisfies:

E {L(U(t+K))− L(U(t)) | U(t)} ≤ C − V
∑

ic gic(r∗ic − x)E {qic(t) |U(t)}

+V
∑

ic E {gic(Ric(t)) |U(t)} − ε
∑

ic U
(c)
i (t) (5.39)

for some non-negative constants C ≥ 0, V ≥ 0, x ≥ 0, some positive value ε > 0, and for

some bounded process qic(t) satisfying 0 ≤ qic(t) ≤ 1, and further if E {L(U(t0))} <∞ for

all initial timeslots t0 ∈ {0, 1, . . . ,K − 1}, then:

(a) The system is stable, and

∑
ic

U
(c)
i ≤ C

ε
+
V

ε
lim sup

t→∞

1
t

t−1∑
τ=0

∑
ic

E {gic(Ric(τ))− gic(r∗ic − x)qic(τ)}

(b) If utility functions are continuous, concave, and non-decreasing, then

lim inf
t→∞

∑
ic

gic(ric(t)) ≥
∑
ic

gic(r∗ic − x)q̌ic −
C

V
(5.40)

where

ric(t) M=
1
t

t−1∑
τ=0

E {Ric(τ)}

q̌ic
M= lim inf

t→∞

1
t

t−1∑
τ=0

E {qic(τ)}

Proof. Defining C(t)M=C−V
∑

ic gic(r∗ic−x)E {qic(t) |U(t)}+V
∑

ic E {gic(Ric(t)) |U(t)} and

using the lim sup statement of Lemma 12 proves (a).

To prove (b), we keep the same definition of C(t). Using (5.38) from Lemma 12 and
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noting that unfinished work is non-negative, we have:

− 1
MK

K−1∑
t0=0

E {L(U(t0))} ≤
1

MK

MK−1∑
τ=0

E {C(τ)}

Inserting the definition of C(t) into the above inequality yields:

V
∑

ic gic(r∗ic − x)
[

1
MK

∑MK−1
τ=0 E {qic(τ)}

]
− 1

MK

∑K−1
t0=0 L(U(t0)) ≤

C + V
∑

ic

[
1

MK

∑MK−1
τ=0 E {gic(Ric(τ))}

]
(5.41)

However, because each gic(r) function is concave, we have by Jensen’s inequality:

1
MK

MK−1∑
τ=0

E {gic(Ric(τ))} ≤ gic(ric(MK))

Using this in the right hand side of (5.41) and taking a lim inf of the resulting expression

yields:

lim inf
M→∞

V
∑
ic

gic(r∗ic − x)

[
1

MK

MK−1∑
τ=0

E {qic(τ)}

]
≤ C + lim inf

M→∞
V
∑
ic

gic(ric(MK)) (5.42)

We modify the left hand side of the above inequality by noting that the lim inf of a sum of

functions is greater than or equal to the sum of the lim infs. It follows that

V
∑
ic

gic(r∗ic − x)q̌ic ≤ C + lim inf
M→∞

V
∑
ic

gic(ric(MK))

Dividing by V proves the result.7

7To address a minor technicality, we note that it is not difficult to prove lim infM→∞
P

ic gic(ric(MK)) =
lim inft→∞

P
ic gic(ric(t)). This follows because the gic(r) functions are continuous, and because for any

fixed integer v, we have |ric(t)− ric(t− v)| → 0 as t →∞.
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Chapter Appendix 5.B — Convergence of the Ric(t) values

Here we describe conditions under which the quantities 1
t

∑t−1
τ=0 E {Ric(τ)} and 1

t

∑t−1
τ=0Ric(τ)

converge as t→∞, which may be of mathematical interest to some readers (see also Chap-

ter Appendix 2.A). Suppose the Ric(t) values are determined by the cross-layer control

strategy.

Lemma 16. If for all (i, c), 1
t

∑t−1
τ=0Ric(τ) converges to a value ric with probability 1 as

t→∞, then

(a) limt→∞
1
t

∑t−1
τ=0 E {Ric(τ)} = ric

(b) (ric) ∈ Λ

That is, the expectations converge to the same limiting matrix, and this matrix is inside the

network capacity region.

Proof. To prove (a), note that 0 ≤ Ric(t) ≤ Rmax, and hence for any ε > 0, we have for all

t:

E

{
1
t

t−1∑
τ=0

Ric(τ)

}
≤ (ric + ε)Pr

[
1
t

∑t−1
τ=0Ric(τ) ≤ ric + ε

]
+

Rmax

(
1− Pr

[
1
t

∑t−1
τ=0Ric(τ) ≤ ric + ε

])
Taking a limit as t→∞ and noting that Pr

[
1
t

∑t−1
τ=0Ric(τ) ≤ ric + ε

]
→ 1 yields:

lim
t→∞

1
t

t−1∑
τ=0

E {Ric(τ)} ≤ ric + ε

This inequality holds for any ε > 0. Taking a limit as ε→ 0 yields:

lim
t→∞

1
t

t−1∑
τ=0

E {Ric(τ)} ≤ ric

The reverse inequality can be proved similarly, establishing (a).

To prove (b), we note that (ric) represents the input rate matrix to the network. As the

network is always stable under the cross-layer control algorithm, it follows that (ric) ∈ Λ.

The above lemma shows that we can work with either the actual Ric(t) values, or with

their expectations, provided that 1
t

∑t−1
τ=0Ric(τ) converges. We can artificially ensure such
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convergence by using renewal theory and implementing the following additional action in

the cross-layer control algorithm: Every timeslot, the controller independently flips a biased

coin which lands on heads with probability p. If heads occurs, all contents of all storage

reservoirs and network queues are deleted—marking a renewal time.

It is not difficult to see that for any p > 0, the network is stable and the duration between

renewal events is geometrically distributed with mean 1/p. It follows that 1
t

∑t−1
τ=0Ric(τ)

converges with probability 1 for any p > 0. Further, the rate of throwing away data due to

the coin flips can be made arbitrarily small by choosing a suitably small probability p. It is

intuitively clear that the network performance for p > 0 converges to the performance of the

original cross-layer control algorithm (which operates with p = 0) as p→ 0. Hence, arguing

heuristically, we expect the quantity 1
t

∑t−1
τ=0Ric(τ) to also converge with probability 1 when

p = 0.

Note that a distributed implementation of the coin flip is to have controllers at individual

nodes i empty their own reservoirs and queues with probability p. In this case, the controllers

at all nodes simultaneously flip heads with probability pN . This distributed coin-flip policy

is also stable for any p > 0, and yields convergent data rates. An alternate policy is to

only delete data from the storage reservoirs, and we conjecture that this policy has similar

stability properties. We note that such policies correspond to the practical control action

of throwing away any “ancient” data that has been sitting in a storage reservoir for days

or weeks.
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Chapter 6

Capacity and Delay Tradeoffs for

Ad-Hoc Mobile Networks

In Chapters 3 and 4 the notion of a network layer capacity region was developed, and power

allocation and routing strategies were constructed to achieve this capacity region for satellite

downlinks and general multi-node wireless networks. In this chapter, we focus attention on

ad-hoc wireless networks with mobility. A simple cell-partitioned model for the network is

developed for which simple and exact expressions for network capacity and delay can be

derived. We then explore strategies for improving delay by sending redundant copies of

each packet, and a fundamental rate-delay tradeoff curve is established. This represents a

new dimension in networks research. The material contained in this chapter is significantly

different from the material in Chapters 3 and 4, and this chapter can be read independently.

6.1 The Cell Partitioned Network Model

We consider the effects of transmitting redundant packets along independent paths of an

ad-hoc wireless network with mobility. Such redundancy improves delay at the cost of

increasing overall network congestion. We show that redundancy cannot increase network

capacity, but can significantly improve delay performance, yielding delay reductions by

several orders of magnitude when data rates are sufficiently less than capacity.

We use the following cell partitioned network model: The network is partitioned into C

non-overlapping cells of equal size (see Fig. 6-1). There are N mobile users independently

roaming from cell to cell over the network, and time is slotted so that users remain in their
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current cells for a timeslot, and potentially move to a new cell at the end of the slot. If

two users are within the same cell during a timeslot, one can transfer a single packet to

the other. Each cell can support exactly one packet transfer per timeslot, and users within

different cells cannot communicate during the slot. Multi-hop packet transfer proceeds as

users change cells and exchange data. The cell partitioning reduces scheduling complexity

and facilitates analysis. Similar cell partitioning has recently been considered by Cruz et.

al in [34].

Rate O(1)

O(N)

D
el

ay

Figure 6-1: A cell-partitioned ad-hoc wireless network with C cells and N mobile users.

We consider the following simplified mobility model: Every timeslot, users choose a

new cell location independently and identically distributed over all cells in the network.

Such a mobility model is of course an over-simplification. Indeed, actual mobility is better

described by Markovian dynamics, where users choose new locations every timeslot from

the set of cells adjacent to their current cell. However, analysis under the simplified i.i.d.

mobility model provides a meaningful bound on performance in the limit of infinite mobility.

With this assumption, the network topology dramatically changes every timeslot, so that

network behavior cannot be predicted and fixed routing algorithms cannot be used. Rather,

because information about the current and future locations of users is unknown, one must

rely on robust scheduling algorithms. Furthermore, recall from Corollary 5 that the network

capacity under an i.i.d. mobility model is identical to the capacity region of a network with

non-i.i.d. mobility with the same steady state distribution. Likewise, the delay theory of

Chapter 4 shows that delay analysis for non-i.i.d. mobility models can be obtained directly

from the i.i.d. analysis. Thus, our capacity results hold also for cases where mobility is

described by simple Markovian random walks, considered in Section 6.8. Delay analysis for

non-i.i.d. mobility is also presented, and simulation results demonstrate that performance

is qualitatively similar to the i.i.d. case.
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We compute an exact expression for the per-user transmission capacity of the network

(for any number of users N ≥ 3), and show that this capacity cannot be increased by

using redundant packet transfers. When no redundancy is used, a modified version of the

Grossglauser-Tse 2-hop relay algorithm in [53] is presented and shown to achieve capacity.

The queueing delay in the network is explicitly computed and shown to be O(N)/(µ− λi)

(where µ is the per-user network capacity, and λi is the rate at which user i transfers packets

intended for its destination). Furthermore, it is shown that no scheduling algorithm can

improve upon O(N) delay performance unless redundancy is used.

We then consider modifying the 2-hop relay algorithm to allow redundant packet trans-

missions. It is shown that no scheme which restricts packets to two hops can achieve a better

delay than O(
√
N). A scheduling protocol that employs redundant packet transmissions is

developed and shown to achieve this delay bound when all users communicate at a reduced

data rate of O(1/
√
N). A multi-hop protocol is then developed to achieve O(log(N)) delay

by further sacrificing throughput. The necessary condition delay/rate ≥ O(N) is estab-

lished for any routing and scheduling algorithm, and the 2-hop relay algorithms are shown

to meet this bound with equality while the multi-hop algorithm deviates from optimality

by no more than a logarithmic factor.

Previous work on the capacity of ad-hoc wireless networks is found in [34] [111] [54] [57]

[58] [8] [55] [116] [140] [106] [150]. Gupta and Kumar present asymptotic results for static

networks in [57], [58], where it is shown that per-user network capacity is O(1/
√
N), and

hence vanishes as the number of users N increases. The effect of mobility on the capacity of

ad-hoc wireless networks was first explicitly developed in [54], where a 2-hop relay algorithm

was developed and shown to support constant per-user throughput which does not vanish

as the size of the network grows. These works do not consider the associated network delay,

and analysis of the fundamental queueing delay bounds for general networks remains an

important open question.

In [8] it is shown that for a network with a mixture of stationary users and mobile relay

nodes, delay can be improved by exploiting velocity information and relaying packets to

nodes moving in the direction of their destination. Routing for fully mobile networks using

table updates is considered in [55]. Schemes for improving delay via diversity coding and

multi-path routing are considered in [116], [140], although this work does not consider delays

due to path sharing, queueing, or stochastic arrivals. Delay improvement via redundant
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packet transfers is considered in [106]. This idea is related to the notion of content replication

considered for static peer-to-peer systems in [31] and for mobile networks in [150]. Our i.i.d.

mobility model is similar to that used in [150], where mobile infostations are used to store

content for users requesting file access. Mobile infostations are also used for monitoring

animal population and roaming patterns in [127].

The contributions of this chapter are threefold: First, we demonstrate network capacity

and delay analysis which considers the full effects of queueing, and show that delay grows as

O(N) when no redundancy is used. Second, we establish a fundamental delay/rate tradeoff

curve that bounds performance of any routing and scheduling algorithm. Third, we develop

three different protocols which achieve optimal or near optimal performance in different

rate regimes.

In the next section, we establish the capacity of the cell partitioned network and analyze

the delay of the capacity achieving relay algorithm. In Section 6.3 we develop delay bounds

for transmission schemes with redundancy, and in Sections 6.4 and 6.5 we provide scheduling

protocols which achieve these bounds. In Section 6.6 we prove necessity of delay/rate ≥

O(N), and show that the given protocols operate on the boundary of this rate-delay tradeoff

curve. Simulations and Markovian mobility models are considered in Sections 6.7 and 6.8.

6.2 Capacity, Delay, and the 2-Hop Relay Algorithm

Consider a cell partitioned network such as that of Fig. 6-1. The shape and layout of cell

regions is arbitrary, although we assume that cells have identical area, do not overlap, and

completely cover the network area. We define:

• N = Number of Mobile Users

• C = Number of Cells

• d = N/C = User/Cell density

Users move independently according to the full-mobility model, where the steady state

location of each user is uniform over all cells.

Let λi represent the exogenous arrival rate of packets to user i (in units of packets/slot).

Packets are assumed to arrive as a Bernoulli process, so that with probability λi a single

packet arrives during the current slot, and otherwise no packet arrives. Other stochastic
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inputs with the same time average arrival rate can be treated similarly, and the arrival

model does not affect the region of rates the network can support (see Chapter 4, Corollary

5).

We assume packets from source i must be delivered to a unique destination j. In

particular we assume the number of users N is even and consider the one-to-one pairing:

1 ↔ 2, 3 ↔ 4, . . ., (N − 1) ↔ N ; so that user 1 communicates with user 2 and user 2

communicates with user 1, user 3 communicates with user 4 and user 4 communicates with

user 3, and so on. Other source-destination scenarios can be treated similarly (see Section

6.2.2).

Packets are transmitted and routed through the network according to some scheduling

algorithm. The algorithm chooses which packets to transmit on each timeslot without

violating the physical constraints of the cell partitioned network or the following additional

causality constraint : A user cannot transmit a packet that it has never received. Note that

once a packet has been received by a user, it can be stored in memory and transmitted again

and again if so desired. We assume that packets are equipped with header information so

that they can be individually distinguished for scheduling purposes.

A scheduling algorithm is stable if the λi rates are satisfied for all users so that queues

do not grow to infinity and average delays are bounded. Assuming that all users receive

packets at the same data rate (so that λi = λ for all i), the capacity of the network is the

maximum rate λ that the network can stably support. Note that this is a purely network

layer notion of capacity, where optimization is over all possible routing and scheduling

protocols. Below we compute the network capacity, assuming users change cells in an i.i.d.

fashion every timeslot. In Chapter 4 it is shown that the capacity region depends only on

the steady state user location distribution. Hence, any Markovian model of user mobility

which in steady state distributes users independently and uniformly over the network yields

the same expression for capacity. A simple example of such a Markovian model is considered

in Section 6.8.

Theorem 11. The capacity of the network is:

µ =
p+ q

2d
(6.1)
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where

p = 1−
(
1− 1

C

)N − N
C

(
1− 1

C

)N−1 (6.2)

q = 1−
(
1− 1

C2

)N/2 (6.3)

and hence the network can stably support users simultaneously communicating at any rate

λ < µ.

Note that p represents the probability of finding at least two users in a particular cell,

and q represents the probability of finding a source-destination pair within a cell.

Proof. The proof of the above theorem involves proving that λ ≤ µ is necessary for network

stability, and that λ < µ is sufficient. Sufficiency is established in Subsection 6.2.3, where a

stabilizing algorithm is provided and exact expressions for average delay are derived. Here

we prove necessity.

Consider any stabilizing scheduling strategy, perhaps one which uses full knowledge of

future events. Let Xh(T ) represent the total number of packets transferred over the network

from sources to destinations in h hops during the interval [0, T ]. Fix ε > 0. For network

stability, there must be arbitrarily large values T such that the sum output rate is within ε

of the total input rate: ∑∞
h=1Xh(T )

T
≥ Nλ− ε (6.4)

If this were not the case, the total number of packets in the network would grow to

infinity and hence the network would be unstable. The total number of packet transmissions

in the network during the first T slots is at least
∑∞

h=1 hXh(T ). This value must be less

than or equal to the total number of transmission opportunities Y (T ), and hence:

∞∑
h=1

hXh(T ) ≤ Y (T ) (6.5)

where Y (T ) represents the total number of cells containing at least 2 users in a particular

timeslot, summed over all timeslots 1, 2, . . . , T . By the law of large numbers, it is clear that
1
T Y (T ) → Cp as T →∞, where p is the steady state probability that there are two or more

users within a particular cell, and is given by (6.2).
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From (6.4) and (6.5), it follows that

1
T
Y (T ) ≥ 1

T
X1(T ) +

2
T

∞∑
h=2

Xh(T ) ≥ 1
T
X1(T ) + 2

(
(Nλ− ε)− 1

T
X1(T )

)

and hence

λ ≤
1
T Y (T ) + 1

TX1(T ) + 2ε
2N

(6.6)

It follows that maximizing λ subject to (6.6) involves placing as much rate as possible

on the single hop paths. However, the time average rate 1
TX1(T ) of 1-hop communication

between source-destination pairs is bounded. Indeed, the probability q that a particular cell

contains a source-destination pair during a timeslot can be written as 1 minus the probability

that no such pair is present. For the source-destination matching 1 ↔ 2, 3 ↔ 4, . . ., this

probability is given as the value q specified in (6.3). Let Z(T ) represent the total number

of cells containing source-destination pairs, summed over all timeslots 1, 2, . . . , T . Again by

the law of large numbers, it follows that 1
T Z(T ) → Cq. Furthermore, it is clear that the

number of packets delivered on one hop paths is less than or equal to the number of such

opportunities:
1
T
X1(T ) ≤ 1

T
Z(T ) (6.7)

Combining constraints (6.6) and (6.7) and taking limits as T →∞, we have:

λ ≤ Cp+ Cq + 2ε
2N

(6.8)

The necessary condition follows by using the user/cell density definition d = N/C, and

noting that ε can be chosen to be arbitrarily small.

Taking limits as N → ∞, we find the network capacity tends to the fixed value (1 −

e−d − de−d)/(2d). This value tends to zero as d tends either to zero or infinity. Indeed, if

d is too large, there will be many users in each cell, most of which will be idle as a single

transmitter and receiver are selected. However, if d is too small, the probability of two users

being in a given cell vanishes. Hence, for nonzero capacity, the ratio d = N/C should be

fixed as both N and C scale up. The optimal user/cell density d∗ and the corresponding

capacity µ∗ are: d∗ = 1.7933, µ∗ = 0.1492 (see Fig. 6-2). Thus, large cell partitioned

networks cannot support more than 0.1492 packets/slot, but can achieve arbitrarily close
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to this data rate by scaling the number of cells C with N to maintain a constant user/cell

density d∗.
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Figure 6-2: A plot of the limiting capacity (1−e−d−de−d)/(2d) as a function of the user/cell
density d.

This µ∗ capacity value is close to the maximum throughput estimate of 0.14 packets/slot

for the O(1) throughput strategy given by Grossglauser and Tse in [53], where the 0.14

number is obtained by a numerical optimization over a transmit probability θ. In the

Grossglauser-Tse strategy, transmitting users send to their nearest neighbors to obtain a

high signal to interference ratio on each transmission. The proximity of their optimal

throughput to the value of µ∗ suggests that when the transmit probability is optimized, the

nearest-neighbor transmission policy behaves similarly to a cell-partitioned network. The

same value µ∗ arises when users send independent data to a finite collection of other users

according to a rate matrix (λij). In this case, µ∗ represents the maximum sum rate into or

out of any user provided that no user sends or receives more than any other, as described

in Section 6.2.2.

6.2.1 Feedback Does not Increase Capacity

We note that the optimal throughput µ of Theorem 11 cannot be improved even if all

users have perfect knowledge of future events (see proof of Theorem 11). Thus, control

strategies which utilize redundant packet transfers, enable multiple users to overhear the

same transmission, or allow for perfect feedback to all users when a given packet has been

successfully received, cannot increase capacity.

Corollary 7. The use of redundant packet transfers, multi-user reception, or perfect feed-

back, cannot increase network capacity.
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Proof. The capacity region given in Theorem 11 considers all possible strategies, including

those which have perfect knowledge of future events. Hence, with full knowledge of the

future, any strategy employing redundant packet transfers, multi-user reception, or perfect

feedback can be transformed into a policy which does not use these features simply by

removing the feedback mechanism (all feedback information would be a-priori known) and

deleting all redundant versions of packets, so that only packets which first reach their

destination are transmitted. Thus, such features cannot expand the region of stabilizable

rates.

However, the capacity region can be achieved without feedback, redundancy, or perfect

knowledge of the future (as described in the next section) and hence these features do not

impact capacity.

6.2.2 Heterogeneous Demands

Here we consider communication with heterogeneous rates (λij), where λij represents the

rate user i receives exogenous data intended for user j. Define the symmetric capacity region

as the region of all stabilizable data rates such that no user is transmitting or receiving at a

higher total data rate than any other. Let K represent the maximum number of destination

users to which a source transmits (i.e., for each user i, at most K of the λij terms are

nonzero).

Theorem 12. The symmetric capacity region of the network has the form:

∑
j

λij ≤ (1− e−d − de−d)
2d

+O(K/N) ∀i (6.9)

∑
i

λij ≤ (1− e−d − de−d)
2d

+O(K/N) ∀j (6.10)

Proof. This proof is similar to the proof of Theorem 11 and is given in Chapter Appendix

6.B.

We note that the stability proof in Chapter Appendix 6.B involves finding a set of

multi-commodity flows which support the data rates, and these flows are similar to the 2-

hop routing scheme described in the proof of Theorem 8 in Chapter 4. This scheme can be

directly implemented as a stabilizing algorithm by randomly and uniformly routing all data

from sources to relay nodes on the first hop, and then routing from relays to destinations on
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the second hop. Such a traffic uniformization scheme is conceptually related to the 2-stage

switch scheduling algorithm developed for N ×N packet switches in [79], where packets are

randomly assigned to output ports at the first stage so that traffic is uniform at the second

stage.

Further note that the DRPC algorithm of Chapter 4 will also stabilize the network

whenever the input rates are within the capacity region. In this case, DRPC is implemented

by choosing the commodity and the transmitter-receiver pair in each cell which maximizes

differential backlog. In the next section we develop an alternative strategy which is simpler

to implement and yields an exact delay analysis. To simplify the discussion, throughout

the rest of this chapter we assume that each user communicates with rate λ to a unique

destination according to the pairing 1 ↔ 2, 3 ↔ 4, etc., so that K = 1 and the exact

capacity result µ = (p+ q)/(2d) of Theorem 11 applies for all network sizes N .

6.2.3 Delay Analysis and the 2-Hop Relay Algorithm

In this section, we consider a modified version of the Grossglauser-Tse relay algorithm of

[53], and show the algorithm is capacity achieving with a bounded average delay. The al-

gorithm restricts packets to 2-hop paths, where on the first hop a packet is transmitted to

any available user. This user will act as a “relay” for the packet. The packet is stored in

the buffer of the relay until an opportunity arises for it to be transmitted by the relay to its

destination. Note that the notion of relaying is vitally important, as it allows throughput

to be limited only by the rate at which a source encounters other users, rather than by the

rate at which a source encounters its destination.

Cell Partitioned Relay Algorithm: Every timeslot and for each cell containing at least two

users:

1. If there exists a source-destination pair within the cell, randomly choose such a pair

(uniformly over all such pairs in the cell). If the source contains a new packet intended

for that destination, transmit. Else remain idle.

2. If there is no source-destination pair in the cell, designate a random user within the

cell as sender. Independently choose another user as receiver among the remaining

users within the cell. With equal probability, randomly choose one of the two options:
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• Send a Relay packet to its Destination: If the designated transmitter has a packet

destined for the designated receiver, send that packet to the receiver. Else remain

idle.

• Send a New Relay Packet: If the designated transmitter has a new packet (one

that has never before been transmitted), relay that packet to the designated

receiver. Else remain idle.

Because packets that have already been relayed are restricted from being transmitted

to any user other than their destination, the above algorithm restricts all routes to 2-hop

paths. The algorithm schedules packet transfer opportunities without considering queue

backlog. Performance can be improved by allowing alternative scheduling opportunities in

the case when no packet is available for the chosen transmission. However, the randomized

nature of the algorithm admits a nice decoupling between sessions (see Fig. 6-3), where

individual users see the network only as a source, destination, and intermediate relays, and

transmissions of packets for other sources are reflected simply as random ON/OFF service

opportunities.

λ destµ

Ν−2

1

source

2d(N-2)
(p-q)

2d(N-2)
(p-q)

Figure 6-3: A decoupled diagram of the network as seen by the packets transmitted from
a single user to the corresponding destination. Service opportunities at the first stage are
Bernoulli with rate µ. Service at the second stage (relay) queues is Bernoulli with rate
(p− q)/(2d(N − 2)).

Theorem 13. Consider a cell partitioned network (with N users and C cells) under the

2-hop relay algorithm, and assume that users change cells i.i.d. and uniformly over each

cell every timeslot. If the exogenous input stream to user i is a Bernoulli stream of rate λi

(where λi < µ), then the total network delay Wi for user i traffic satisfies:

E {Wi} =
N − 1− λi

µ− λi
(6.11)
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where the capacity µ is defined in (6.1).

Proof. The proof uses reversibility of the first stage queue, and is provided in Chapter

Appendix 6.A.

Note that the decoupling property of the cell partitioned relay algorithm admits a de-

coupled delay bound, so that the waiting time for user i packets depends only on the rate

of the input stream for user i, and does not depend on the rate of other streams—even if

the rate of these streams is greater than capacity. It follows that the network is stable with

bounded delays whenever all input streams are less than capacity, i.e., when λi < µ for all

users i. Thus, the relay algorithm achieves the capacity bound given in (6.1) of Theorem

1. It is perhaps counter-intuitive that the algorithm achieves capacity, as it often forces

cells to remain idle even when choosing an alternate sender would allow for a packet to be

delivered to its destination. The intuition is that all cases of idleness arise because a queue

is empty, an event that becomes increasingly unlikely as load approaches capacity.

The form of the delay expression is worth noting. First note the classic 1/(µ − λi)

behavior, representing the asymptotic growth in delay as data rates are pushed towards the

capacity boundary. Second, note that for a fixed loading value ρi = λi/µ, delay is O(N),

growing linearly in the size of the network.

The exact delay analysis is enabled by the Bernoulli input assumption. If inputs are

assumed to be Poisson, the delay theory of Chapter 2 can be used to develop a delay bound,

and the bound for Poisson inputs is not considerably different from the exact expression

for Bernoulli inputs given in (6.11). These results can also be extended to the case when

the mobility model conforms to a Markovian random walk (see analytical discussion and

simulation results in Sections 6.7 and 6.8).

6.3 Sending a Single Packet

In the previous subsection we showed that the cell partitioned relay algorithm yields an

average delay of O(N/(µ − λi)). Inspection of (6.11) shows that this O(N) characteristic

cannot be removed by decreasing the data rate λ. The following questions emerge: Can

another scheduling algorithm be constructed which improves delay? What is the minimum

delay the network can guarantee, and for what data rates is this delay obtainable? More

generally, for a given data rate λ (assumed to be less than the system capacity µ), we ask:
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What is the optimal delay bound, and what algorithm achieves this? In this section we

present several fundamental bounds on delay performance, which establishes initial steps to-

wards addressing these general questions. We assume throughout that the user/cell density

d is a fixed value independent of N , and use d = d∗ = 1.7933 in all numerical examples.

6.3.1 Scheduling Without Redundancy

Suppose that no redundancy is used: that is, packets are not duplicated and are held by

at most one user of the network at any given time. Thus, a packet that is transmitted to

another user is deleted from the memory storage of the transmitting user. Note that this is

the traditional approach to data networking, and that the 2-hop relay algorithm is in this

class.

Theorem 14. Algorithms which do not use redundancy cannot achieve an average delay of

less than O(N).

Proof. The minimum delay of any packet is computed by considering the situation where

the network is empty and user 1 sends a single packet to user 2. It is easy to verify that

relaying the packet cannot help, and hence the delay distribution is geometric with mean

C = N/d.

Hence, the relay algorithm not only achieves capacity, but achieves the optimal O(N)

delay performance among all strategies which do not use redundancy. Other policies which

do not use redundancy can perhaps improve upon the delay coefficient, but cannot change

the O(N) characteristic.

6.3.2 Scheduling With Redundancy

Although redundancy cannot increase capacity, it can considerably improve delay. Clearly,

the time required for a packet to reach the destination can be reduced by repeatedly trans-

mitting this packet to many users of the network—improving the chances that some user

holding an original or duplicate version of the packet reaches the destination. Consider any

network algorithm (which may or may not use redundant packet transfers) that restricts

packets to 2-hop paths.

Theorem 15. No algorithm (with or without redundancy) which restricts packets to 2-hop

paths can provide an average delay better than O(
√
N).
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Again consider the sending of a single packet from its source to its destination. Clearly

the optimal scheme is to have the source send duplicate versions of the packet to new relays

whenever possible, and for the packet to be relayed to the destination as soon as either the

source or a duplicate-carrying relay enters the same cell as the destination.

Let TN represent the time required to reach the destination under this optimal policy

for sending a single packet. In the following lemma, we bound the limiting behavior1 of

E {TN}, proving Theorem 15.

Lemma 17. e−d ≤ limN→∞
E{TN}√

N
≤ 2

1−e−d

Proof. Lemma 1 (a) Lower Bound: To prove the lower bound, note that during timeslots

{1, 2, . . . ,
√
N}, there are fewer than

√
N users holding the packet. Hence, Pr[TN >

√
N ] ≥

(1− 1/C)
√

N
√

N (where (1− 1/C)
√

N is the probability that nobody within a group of
√
N

particular users enters the cell of the destination during a given timeslot). Recall that the

user/cell density d is defined dM=N/C. Thus:

E {TN} ≥ E
{
TN |TN >

√
N
}
Pr[TN >

√
N ]

≥
√
N

(
1− d

N

)N

→ e−d
√
N

(b) Upper Bound: To prove the upper bound, note that E {TN} ≤ S1 + S2, where S1

represents the expected number of slots required to send out duplicates of the packet to
√
N different users, and S2 represents the expected time until one user within a group of

√
N users containing the packet reaches the cell of the destination. The probability of the

source meeting a new user is at least 1 − (1− 1/C)N−
√

N for every timeslot where fewer

than
√
N users have packets, and hence the average time to reach a new user is less than or

equal to the inverse of this quantity (i.e, the average time of a geometric variable). Hence:

S1 ≤
√
N

1− (1− 1/C)N−
√

N
→

√
N

1− e−d

To compute S2, note that P (success), the probability that one of the
√
N users reaches

the destination during a slot, is given by the probability there is at least one other user in the

same cell as the destination multiplied by the conditional probability that a packet-carrying

1Using the inequality e
−d2
N−d e−d ≤

`
1− d

N

´N ≤ e−d, explicit bounds of the form α
√

N ≤ E {TN} ≤ β
√

N
can also be derived.

180



user is present given there is at least one other user in the cell. The former probability is

1− (1− 1/C)N−1, and the latter is at least
√
N/N :

P (success) ≥ 1− (1− 1/C)N−1

√
N

→ 1− e−d

√
N

(6.12)

Hence, S2 ≤
√

N
1−e−d . Summing S1 and S2 proves the result.

An exact expression for the minimum delay E {TN} is presented in Chapter Appendix

6.C by using a recursive formula. In Fig. 6-4 we plot the exact expression as a function of

N together with the upper and lower bounds of Lemma 17 for the case d = d∗ = 1.7933.
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Figure 6-4: The exact minimum delay of a 2-hop scheduling scheme versus the number
of users N at the optimal user/cell density d∗, together with the upper and lower bounds
of Lemma 17. Curves are plotted on a log− log scale and have slope 1/2, illustrating the
O(
√
N) behavior.

6.3.3 Multi-User Reception

To increase the packet replication speed throughout the network, it is useful to allow a

transmitted packet to be received by all other users in the same cell as the transmitter, not

just the single intended recipient. This feature cannot increase capacity, but can consid-

erably improve delay by enabling multiple duplicates to be injected into the network with

just a single transmission. However, the O(
√
N) result of Theorem 15 cannot be overcome

by introducing multi-user reception (see Chapter Appendix 6.D). For the remainder of this

paper, we assume multi-user reception is available.

181



6.4 Scheduling for Delay Improvement

In the previous section an O(
√
N) delay bound was developed for redundant scheduling by

considering a single packet for a single destination. Two complications arise when designing

a general scheduling protocol using redundancy: (1) All sessions must use the network

simultaneously, and (2) Remnant versions of a packet that has already been delivered to its

destination create excess congestion and must somehow be removed.

Here we show that the properties of the 2-hop relay algorithm make it naturally suited

to treat the multi-user problem. The second complication of excess packets is overcome by

the following in-cell feedback protocol, in which a receiving node tells its transmitter which

packet it is looking for before transmission begins. We assume all packets are labeled with

send numbers SN , and the in-cell feedback is in the form of a request number RN delivered

by the destination to the transmitter just before transmission. In the following protocol,

each packet is retransmitted
√
N times to distinct relay users.

In-Cell Feedback Scheme with
√
N Redundancy: In every cell with at least two users, a

random sender and a random receiver are selected, with uniform probability over all users

in the cell. With probability 1/2, the sender is scheduled to operate in either ‘source-to-

relay’ mode, or ‘relay-to-destination’ mode, described as follows:

1. Source-to-Relay Mode: The sender transmits packet SN , and does so upon every

transmission opportunity until
√
N replicas have been delivered to distinct users, or

until the sender transmits SN directly to the destination. After such a time, the send

number is incremented to SN + 1. If the sender does not have a new packet to send,

remain idle.

2. Relay-to-Destination Mode: When a user is scheduled to transmit a relay packet to

its destination, the following handshake is performed:

• The receiver delivers its current RN number for the packet it desires.

• The transmitter deletes all packets in its buffer destined for this receiver which

have SN numbers lower than RN .

• The transmitter sends packet RN to the receiver. If the transmitter does not

have the requested packet RN , it remains idle for that slot.
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Notice that the destination receives all packets in order, and that no packet is ever

transmitted twice to its destination.

Theorem 16. The In-Cell Feedback Scheme achieves the O(
√
N) delay bound, with user

data rates of O(1/
√
N).

More precisely, if all users receive exogenous data for their destinations according to a

Poisson process of rate λi, the network can stably support rates λi < µ̃, for the reduced

network throughput µ̃ given by:

µ̃ =
γN

(
1− e−d

)
4(2 + d)

√
N

(6.13)

where γN is a sequence that converges to 1 as N → ∞. Furthermore, average end-to-end

delay E {Wi} satisfies:

E {Wi} ≤
1
2

+
1/µ̃

1− ρi

where ρi
M=λi/µ̃.

To prove the result, first note that when a new packet reaches the head of the line

at its source queue, the time required for the packet to reach its destination is at most

TN = S1 +S2, where S1 represents the time required for the source to send out
√
N replicas

of the packet, and S2 represents the time required to reach the destination given that
√
N

users have the packet. Bounds on the expectations of S1 and S2 which are independent of

the initial state of the network can be computed similarly to the proof of Lemma 17. The

multi-user environment here simply acts to scale up these expectations by a constant factor

due to collisions with other users (compare the upper bound of Lemma 17 with that given

in (6.14) below). This factor does not scale with N because the average number of users in

any cell is the finite number d. Indeed, in Chapter Appendix 6.E it is shown that:

E {TN} ≤
4(2 + d)

√
N

γN (1− e−d)
(6.14)

where γN is a function that converges to 1 as N →∞.

Note that the random variable TN satisfies the sub-memoryless property: The residual

time of TN given that a fixed number of slots have already passed (without TN expiring) is

stochastically less than the original time TN .2 This is because the topology of the network is

independent from slot to slot, and hence starting out with several duplicate packets already
2This is often called the “New Better than Used” property, see [119].
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in the network yields statistically smaller delay than if no such initial duplicates are present.

The RN/SN handshake ensures that newer packets do not interfere with older packets,

but that replication of the next packet waiting at the source queue begins on or before

completion of the TN “service time” for the current packet SN . Packets thus view the

network as a single queue to which they arrive and are served sequentially. Although actual

service times may not be i.i.d., they are all independently bounded by E {TN}, as are

residual service times seen by a randomly arriving packet. This is sufficient to establish

the following lemma, the proof of which is similar to the derivation of the standard P-K

formula for average delay in an M/G/1 queue.

Lemma 18. Suppose inputs to a single server queue are Poisson with sub-memoryless

service times that are independently bounded by a value E {TN}. If the arrival rate is λ,

where λ < 1/E {TN}, then average delay satisfies:

E {W} ≤ 1
2

+
E {TN}
1− ρ

(6.15)

where ρM=λE {TN}. The expression on the right hand side of the above inequality is the

standard expression for delay in an M/M/1 queue with i.i.d. service times TN that are

restricted to start on slot boundaries.

Proof. Consider a single packet arriving from a Poisson stream, and let Wq represent the

time this packet spends waiting in the queue before reaching the server. We have:

Wq =
Nq∑
i=1

Xi +R (6.16)

where Nq is the number of packets already in the queue, {Xi} are the service times of

these packets, and R represents the residual time until either the packet currently in the

server finishes its service, or (if the system is empty) the start of a new timeslot. Note

that E {R} ≤ ρactualE {TN} + (1 − ρactual)1
2 , where ρactual represents the probability that

the system is busy with a packet already in service. From Little’s Theorem we have that

ρactual = λE {X}, where E {X} represents the average service time of a generic packet.

Because E {X} ≤ E {TN}, it follows that ρactual ≤ ρ. Because E {TN} ≥ 1/2, we can

further increase the upper bound on E {R} by replacing ρactual with ρ, yielding E {R} ≤

184



ρE {TN}+ (1− ρ)1
2 . Taking expectations of (6.16) thus yields:

E {Wq} = ENq

 Nq∑
i=1

E {Xi |Nq }

+ E {R}

≤ ENq

 Nq∑
i=1

E {TN}

+ ρE {TN}+ (1− ρ)
1
2

= E {Nq}E {TN}+ ρE {TN}+ (1− ρ)
1
2

= λE {Wq}E {TN}+ ρE {TN}+ (1− ρ)
1
2

(6.17)

where (6.17) follows from Little’s Theorem. We thus have:

E {Wq} ≤
ρE {TN}

1− ρ
+

1
2

Noting that the total waiting time E {W} satisfies E {W} ≤ E {Wq} + E {TN} yields the

result.

Defining µ̃M=1/E {TN} and using (6.14) proves Theorem 16.

6.5 Multi-Hop Scheduling and Logarithmic Delay

To further improve delay, we can remove the 2-hop restriction and consider schemes which

allow for multi-hop paths. Here, a simple flooding protocol is developed and shown to

achieve O(log(N)) delay at the expense of further reducing throughput.

To achieve O(log(N)) delay, consider the situation in which a single packet is delivered

over an empty network. At first, only the source user contains the packet. The packet

is transmitted and received by all other users in the same cell as the source. In the next

timeslot, the source as well as all of the new users containing the packet transmit in their

respective cells, and so on. If all duplicate-carrying users enter distinct cells every timeslot,

and each of these users delivers the packet to exactly one new user, then the number of

users containing the packet grows geometrically according to the sequence {1, 2, 4, 8, 16, . . .}.

The actual growth pattern may deviate from this geometric sequence somewhat, due to

multiple users entering the same cell, or to users entering cells that are devoid of other

users. However, it can be shown that the expected growth is geometric provided that the
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number of packet-holding users is less than N/2.

Define the total time to reach all users as TN = S1 + S2, where S1 and S2 respectively

represent the time required to send the packet to at least N/2 users, and the time required

to deliver the packet to the remaining users given that at least N/2 users initially hold the

packet.

Lemma 19. Under the above algorithm of flooding the network with a single packet, for

any network size N ≥ max{d, 2}, the expected time E {TN} for the packet to reach every

user satisfies E {TN} ≤ E {S1}+ E {S2}, where:

E {S1} ≤
log(N) (1 + d/2)
log(2)(1− e−d/2)

E {S2} ≤ 1 +
2
d
(1 + log(N/2)) (6.18)

Proof. The proof is given in Chapter Appendix 6.F.

6.5.1 Fair Packet Flooding Protocol

Thus, O(log(N)) delay is achievable when sending a single packet over an empty network.

To enable O(log(N)) delay in the general case where all sessions are active and share the

network resources, we construct a flooding protocol in which the oldest packet that has

not been delivered to all users is selected to dominate network resources. We assume that

packets are sequenced with SN numbers as before. Additionally, packets are stamped with

the timeslot t in which they arrived.

Fair Packet Flooding Protocol: Every timeslot and in each cell, users perform the fol-

lowing: Among all packets contained in at least one user of the cell but which have never

been received by some other user in the same cell, choose the packet p which arrived earliest

(i.e., it has the smallest timestamp tp). If there are ties, choose the packet from the session

i which maximizes (tp + i) mod N . Transmit this packet to all other users in the cell. If

no such packet exists, remain idle.

The above protocol is “fair” in that in case of ties, session i packets are given top priority

every N timeslots. Other schemes for choosing which packet to dominate the network could

also be considered. Delay under the above protocol can be understood by comparing the

network to a single queue with N input streams of rates λ1, λ2, . . . , λN which share a single
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server with service times TN . Note that the TN service time is also sub-memoryless. Thus,

from Lemma 18, we have:

Theorem 17. For Poisson inputs with rates λi for each source i, the network under the

fair flooding protocol is stable whenever
∑

i λi < 1/E {TN}, with average end-to-end delay

satisfying:

E {W} ≤ 1
2

+
E {TN}
1− ρ

(6.19)

where ρM=
∑

i λiE {TN}, and E {TN} = E {S1} + E {S2}. Note that O(log(N)) bounds on

E {S1} and E {S2} are given in Lemma 19. Thus, when all sources have identical input

rates λ, stability and logarithmic delay is achieved when λ = O( 1
N log(N)). �

Note that the flooding algorithm easily allows for multicast sessions, where data of

rate λ is delivered from each source to all other users. One might expect that delay can

be improved if we only design for unicast. However, it is shown in Chapter Appendix

6.G that logarithmic delay is the best possible for any strategy at any data rate. Hence,

communication for unicast or multicast is the same in the logarithmic delay regime. In the

next section, we address the following question: Is it possible to increase data rates via

some other protocol while maintaining the same average delay guarantees?

6.6 Fundamental Delay/Rate Tradeoffs

Considering the capacity achieving 2-hop relay algorithm, the 2-hop algorithm with
√
N re-

dundancy, and the packet flooding protocol, we have the following achievable delay/capacity

performance tradeoffs.

scheme capacity delay

no redundancy O(1) O(N)

redundancy 2-hop O(1/
√
N) O(

√
N)

redundancy multi-hop O( 1
N log(N)) O(log(N))

A simple observation reveals that delay/rate ≥ O(N) for each of these three protocols.

In this section, we establish that this is in fact a necessary condition. Thus, performance

of each given protocol falls on or near the boundary of a fundamental rate-delay curve (see

Fig. 6-1).
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Consider a network with N users, and suppose all users receive packets at the same

rate λ. A control protocol which makes decisions about scheduling, routing, and packet

retransmissions is used to stabilize the network and deliver all packets to their destinations

while maintaining an average end-to-end delay less than some threshold W .

Theorem 18. W
λ ≥ O(N) is a necessary condition for any conceivable routing and schedul-

ing protocol which stabilizes the network with input rates λ while maintaining bounded av-

erage end-to-end delay W .

In particular, we have:
W

λ
≥ N − d

4d
(1− log(2))

where log() denotes the natural logarithm.

Proof. Suppose the input rate of each of theN sessions is λ, and there exists some stabilizing

scheduling strategy which ensures an end-to-end delay of W . In general, the end-to-end

delay of packets from individual sessions could be different, and we defineW i as the resulting

average delay of packets from session i. We thus have:

W =
1
N

∑
i

W i (6.20)

Let Ri represent the average redundancy associated with packets from session i. That

is, Ri is the number of users who receive a copy of an individual packet during the course

of the network control operation, averaged over all packets from session i. Note that all

packets are eventually received by the destination, so that Ri ≥ 1. Additional redundancy

could be introduced by multi-hop routing, or by any packet replication effort that is used to

achieve stability and/or improve delay. The average number of successful packet receptions

per timeslot is thus given by the quantity λ
∑N

i=1Ri. Because each of the N users can

receive at most 1 packet per timeslot, we have:

λ

N∑
i=1

Ri ≤ N (6.21)

Now consider a single packet p which enters the network from session i. This packet has

an average delay of W i and an average redundancy of Ri. Let random variables Wi and Ri
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represent the actual delay and redundancy for this packet. We have:

W i ≥ E
{
Wi | Ri ≤ 2Ri

}
Pr[R ≤ 2Ri]

≥ E
{
Wi | Ri ≤ 2Ri

} 1
2

(6.22)

where (6.22) follows because Pr[Ri ≤ 2Ri] ≥ 1
2 for any non-negative random variable Ri.

Note that the smallest possible delay for packet p is the time required for one of its

carriers to enter the same cell as the destination. Consider now a virtual system in which

there are 2Ri users initially holding packet p, and let Z represent the time required for

one of these users to enter the same cell as the destination. Every timeslot the “success

probability” for this system is φM=1 − (1 − 1
C )2Ri , so that E {Z} = 1/φ. Although there

are more users holding packet p in this system, the expectation of Z does not necessarily

bound E
{
Wi | R ≤ 2Ri

}
because conditioning on the event {Ri ≤ 2Ri} might skew the

probabilities associated with the user mobility process. However, because the event {Ri ≤

2Ri} occurs with probability at least 1/2, we obtain the following bound:

E
{
Wi | Ri ≤ 2Ri

}
≥ inf

Θ
E {Z | Θ}

where the conditional expectation is minimized over all conceivable events Θ which occur

with probability greater than or equal to 1/2.

We now stochastically couple the Z variable to an exponential variable Z̃ with rate

γ M= log(1/(1−φ)). The variable Z̃ is stochastically less than Z because Pr[Z̃ > ω] ≤ Pr[Z >

ω] for all ω (see [119] for a discussion of stochastic coupling and stochastic inequalities).

It follows that E
{
Wi | Ri ≤ 2Ri

}
≥ infΘ E

{
Z̃ | Θ

}
, and the minimizing event Θ is clearly

the event {Z̃ ≤ ω}, where ω is the smallest value such that Pr[Z̃ ≤ ω] ≥ 1
2 . Thus,

Pr[Z̃ > ω] = e−γω = 1/2, and hence ω = log(2)
γ . Conditioning on this event, we have:

E
{
Z̃ | Z̃ ≤ ω

}
=

E
{
Z̃
}
− E

{
Z̃ | Z̃ > ω

}
Pr[Z̃ > ω]

Pr[Z̃ ≤ 1/2]

=
1
γ − (ω + 1

γ )1
2

1/2
=

1− log(2)
γ

(6.23)

From the definitions of γ and φ, we have γ = log
(
1/(1− 1

C )2Ri

)
= 2Ri log(1 + 1

C−1).
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Because log(1 + x) ≤ x for any x, we have γ ≤ 2Ri/(C − 1). Using this bound together

with (6.23) and (6.22), we have:

W i ≥
1− log(2)

2γ
≥ (C − 1)(1− log(2))

4Ri

Summing this inequality over all i, we have:

W =
1
N

N∑
i=1

W i ≥ (C − 1) (1− log(2))
4

1
N

N∑
i=1

1
Ri

≥ (C − 1) (1− log(2))

4 1
N

∑N
i=1Ri

(6.24)

where (6.24) follows from Jensen’s inequality, noting that the function 1/R is convex. Com-

bining (6.24) and (6.21), we have:

W ≥ (C − 1) (1− log(2))λ
4

=
(N − d) (1− log(2))λ

4d

Hence, the delay/rate characteristics necessarily satisfy the inequality W
λ ≥ O(N), proving

the theorem.

The fact that delay/rate ≥ O(N) establishes a fundamental performance tradeoff, il-

lustrating that no scheduling and routing algorithm can simultaneously yield low delay and

high throughput. The O(N) and O(
√
N) scheduling algorithms provided here meet this

bound with equality, and the O(log(N)) algorithm lies above the bound by a factor of

O(log2(N)) (see table above). Note that the “redundancy 2-hop” entry in the table demon-

strates that a cell partitioned mobile network can emulate the delay/capacity performance

of a Gupta-Kumar static network [58], [57]. It is interesting to explore whether this result

generalizes to other mobility models.

6.7 Non-i.i.d. Mobility Models

The analysis developed here for the i.i.d. mobility model can be used to bound the per-

formance of a system with a Markovian mobility model. Instead of performing control

actions on the network every slot, we decompose the network into a set of K parallel sub-

networks. Packets are considered to be of ‘type-k’ if they arrive during a timeslot t such
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that t mod K = k. On such timeslots, only control actions on type-k packets take place.

The value of K is chosen suitably large to ensure that the user location distribution after

K slots is within a constant factor of its steady state value. Specifically, if K is chosen such

that, regardless of the initial configuration of users, the probability that two given users are

in the same cell after K slots is at least 1
2C , then delay under the three schemes is bounded

by O(KN), O(K
√
N), and O(K log(N)), respectively. The O(KN) result for the 2-hop

relay algorithm (with no redundancy) follows by using Lemma 2 in a drift argument similar

to that already given in Theorem 8 in Chapter 4. The O(K
√
N), and O(K log(N)) bounds

follow by literally repeating the same arguments used for the
√
N redundancy algorithm

and the Fair-Flooding algorithm on a K slot basis.

However, it is possible that alternative scheduling schemes could yield lower delay. In-

deed, in the next section it is shown through simulation that applying the 2-hop relay

algorithm and the
√
N redundancy algorithm exactly as before (without the K-subchannel

decomposition) yields similar performance for both i.i.d. and non-i.i.d. mobility.

6.8 Simulation Results

Here we compare the average delay obtained through both analysis and simulation as the

network is scaled. We consider a network with cells given by an M ×M grid as shown in

Fig. 6-1. The number of cells C is equal to M2 (where M is varied between 3 and 15 for

simulations), and the number of users N is chosen as the even integer for which N/C most

accurately approximates the optimal user/cell density value d∗ = 1.7933.

In Fig. 6-5, plots of average end-to-end delay versus the number of users N are provided

for the 2-hop relay algorithm and the O(
√
N) redundancy algorithm for both an i.i.d. and

a non-i.i.d. mobility model. In the i.i.d. mobility model, users choose new cells uniformly

over all cells in the network. In the non-i.i.d. model, each user chooses a new cell every

timeslot according to the following Markovian dynamics: With probability α the user stays

in the same cell, and else it moves to an adjacent cell to the North, South, East, or West,

with each direction equally likely. In the case where a user is on the edge of the network and

is selected to move in an infeasible direction, it stays in its place. Using standard random

walk theory it is easy to verify that, in steady state, such a Markov model leaves users

independently and uniformly distributed over all cells, as the stationary equation for the
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Markov chain is satisfied when all cell locations have equal probability [77] [120] [49].3 In

particular, if πi represents the steady state probability of a particular cell i, we have:

πi = πiα+ πa
(1− α)

4
+ πb

(1− α)
4

+ πc
(1− α)

4
+ πd

(1− α)
4

where πa, πb, πc, πd represent steady state probabilities for other cells, possibly including cell

i. In the case when cell i is an interior cell, it has four distinct neighbors a, b, c, d. In the

case when it is an edge cell with three neighbors a, b, c, we set d = i (so that cell i is its own

neighbor). In the case when cell i is a corner cell with 2 neighbors a and b, we set c = d = i.

Clearly these steady state equations are satisfied when the πi probabilities are set to 1/C

for all i.4 Therefore, the network capacity µ is the same for both the i.i.d. mobility model

and the non-i.i.d. mobility model, and is given by µ = (p+q)/(2d) as described in Theorem

11. In the simulation results we set the α parameter of the non-i.i.d. model to α = 1/2.

For the capacity achieving 2-hop relay algorithm, the data rate λ into each user is fixed

at 80% of the network capacity µ (given in Theorem 1), so that ρ = λ/µ = 0.8. The top

three curves for average delay in Fig. 6-5 respectively represent the exact analytical delay

for i.i.d. mobility, the simulated performance of the i.i.d. mobility model, and the simulated

performance of the Markovian mobility model. Note that the simulation curve for the i.i.d.

mobility model is almost indistinguishable from the analytical curve E {W} = N−1−λ
µ−λ . The

curves are plotted on a log log scale and have a slope of 1, indicating O(N) delay. The

delay curve for Markovian mobility is situated slightly above the curve for i.i.d. mobility,

and also has a slope of 1. This suggests that for Markovian mobility, delay is increased by

a constant multiplicative factor but remains O(N).

Results for the
√
N redundancy protocol are also shown in the figure. Data rates λ

are set to the value λ = 0.8µ̃, where µ̃ is given in (6.13). Note that, unlike the network

capacity µ, the throughput µ̃ decreases as O(1/
√
N). The analytical upper and lower

bounds on delay for i.i.d. mobility are shown in the figure, each having a slope of 1/2

indicating O(
√
N) growth (note that the lower bound represents the delay of sending just

3Another easy proof of this fact is to note that the steady state Markov equations for this chain are
identical to the steady state equations for the Markov chain describing a random walk on an M ×M torus
(see Fig. 4-7), where transitions beyond the edge of the network are wrapped around to the appropriate cell
on the opposite side.

4Similar results hold when the random walk has a different behavior at the edges. In particular, if the
direction is chosen uniformly over all feasible directions, then the interior cells will have equal probability
but the edge cells will have a different probability.
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Figure 6-5: Average delay versus the number of users N for the 2-hop relay algorithm and
the

√
N redundancy algorithm.

a single packet). The simulation performance for i.i.d. mobility is shown in the figure

and is situated between the upper and lower bounds. The upper bound is larger than the

simulated curve by approximately a factor of 10, suggesting that tighter bounds could be

obtained through a more detailed analysis. The slope of the simulation curve varies between

5/8 and 1/2. However, because delay is upper and lower bounded by functions of O(
√
N),

the average slope would converge to 1/2 if the graph were extended. Simulation of the

Markovian mobility model is also provided, and the curve again lies slightly above the i.i.d.

mobility curve. This suggests that delay under the Markovian model is close to O(
√
N).

Experiments to simulate the performance of the O(log(N)) scheme were not performed.

However, for this case, we would expect a discrepancy between the i.i.d. mobility model and

the non-i.i.d. mobility model. Indeed, although the i.i.d. mobility model yields logarithmic

delay, the delay under a Markovian mobility model would likely be closer to O(
√
N) due to

the time required for a user to travel from one side of the network to the other.

6.9 Chapter Summary

The results of this chapter for the first time present a multi-hop, multi-user system for

which a relatively complete network theory can be developed. Exact expressions for net-

work capacity were derived, and a fundamental rate-delay curve was established, represent-
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ing performance bounds on throughput and end-to-end network delay for any conceivable

routing and scheduling policy.

Delay analysis for the network was facilitated using a simple i.i.d. user mobility model.

Under this model, an exact expression for end-to-end delay which includes the full ef-

fects of queueing was established for the capacity achieving 2-hop relay algorithm. Two

other protocols which (necessarily) use redundant packet transfers were provided and shown

to improve delay at the expense of reducing throughput. The rate-delay performance of

these schemes was shown to lie on the boundary of the fundamental performance curve

delay/rate ≥ O(N). Analysis of general mobility models can be understood in terms of

this i.i.d. analysis, where delay bounds can be scaled by the factor K, representing the

number of slots required between sampling points for samples of user locations to look

nearly i.i.d.. Furthermore, simulation results suggest that O(
√
N) delay can be achieved for

networks with Markovian mobility, as the delay for such systems closely follows the delay

curve for a system with i.i.d. mobility.

This inspires a rich set of questions concerning the fundamental limits of data networks.

We believe that the condition delay/rate ≥ O(N) is necessary for general classes of mobile

wireless networks, and that the (rate, delay) =
(
O(1/

√
N), O(

√
N)
)

operating point is

always achievable. Such conjectures can perhaps be established using analytical techniques

similar to those created here.
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Chapter Appendix 6.A — Exact Delay Analysis of the 2-Hop

Relay Algorithm

Proof of Delay Bound in Theorem 3: The exact end-to-end network delay under the 2-hop

relay algorithm with Bernoulli inputs and i.i.d. mobility is E {Wi} = N−1−λi
µ−λi

.

Proof. A decoupled view of the network as perceived by a single user i is illustrated in Fig.

2. Because of the i.i.d. mobility, the source user can be represented as a Bernoulli/Bernoulli

queue, where every timeslot a new packet arrives with probability λ, and a service oppor-

tunity arises with some fixed probability µ. We first show that µ = p+q
2d . The Bernoulli

nature of the server process implies that the transmission probability µ is equal to the time

average rate of transmission opportunities of source i.5 Hence, we have µ = r1+r2, where r1

represents the rate at which the source is scheduled to transmit directly to the destination,

and r2 represents the rate at which it is scheduled to transmit to one of its relay users.

The cell partitioned relay algorithm schedules transmissions into and out of the relay nodes

with equal probability, and hence r2 is also equal to the rate at which the relay nodes are

scheduled to transmit to the destination. The total rate of transmission opportunities over

the network is thus N(r1 + 2r2). A transmission opportunity occurs in any given cell with

probability p, and hence:

Cp = N(r1 + 2r2) (6.25)

Recall that q is the probability that a given cell contains a source-destination pair. Be-

cause the cell partitioned relay algorithm schedules the single-hop ‘source-to-destination’

transmissions whenever possible, the rate r1 satisfies:

Cq = Nr1 (6.26)

It follows from (6.26) that r1 = q/d, and hence by (6.25) we infer that r2 = p−q
2d . The total

rate of transmissions out of the source node is thus given by µ = r1 + r2 = p+q
2d .

The source is thus a Bernoulli/Bernoulli queue with input rate λ and server probability

µ, having an expected number of packets given by Lsource = ρ(1−λ)
1−ρ , where ρM=λ/µ [38]. This

queue is reversible ([49], [38]), and so the output process is also a Bernoulli stream of rate

5A transmission opportunity arises when a user is selected to transmit to another user, and corresponds
to a service opportunity in the Bernoulli/Bernoulli queue. Such opportunities arise with probability µ every
timeslot, independent of whether or not there is a packet waiting in the queue.
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λ.

A given packet from this output process is transmitted to the first relay node with

probability r2
µ(N−2) (because with probability r2/µ the packet is intended for a relay node,

and each of the N − 2 relay nodes are equally likely). Hence, every timeslot this relay

independently receives a packet with probability λ̃ = λr2
µ(N−2) . The relay node is scheduled

for a potential packet transmission to the destination with probability µ̃ = r2
(N−2) (because

a ‘relay-to-destination’ opportunity arises with probability r2, and arises from exactly one

of the N −2 relay nodes with equal probability). However, packet arrivals and transmission

opportunities are mutually exclusive events in the relay node. It follows that the discrete

time Markov Chain for queue occupancy in the relay node can be written as a simple birth-

death chain which is identical to the chain of a continuous time M/M/1 queue with input

rate λ̃ and service rate µ̃ (where λ̃/µ̃ = ρ). This holds for each relay node, and the resulting

occupancy at any relay is thus: Lrelay = ρ
1−ρ . From Little’s Theorem, the total network

delay is W i =
[
Lsource + (N − 2)Lrelay

]
/λ, which proves the theorem.
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Chapter Appendix 6.B — Heterogeneous Data Rates

Proof of Theorem 12: Here we prove that for heterogeneous data rates (λij) such that there

are at most K nonzero λij entries in each row i, the symmetric capacity region satisfies:

∑
j

λij ≤ (1− e−d − de−d)
2d

+O(K/N) ∀i

∑
i

λij ≤ (1− e−d − de−d)
2d

+O(K/N) ∀j

Before proving the theorem, we first note that whenever N > d, we have:

e
−d2

N−d e−d ≤
(

1− d

N

)N

≤ e−d

which can be proven by taking the logarithm of the above inequality and using the fact that

log(1 + x) ≤ x whenever x > −1.6 The difference between the upper and lower bounds is

thus e−d

(
1− e

−d2

N−d

)
. Using the Taylor expansion e

−d2

N−d = 1 + −d2

N−d +O(1/N2) reveals that

this difference is O(1/N), and hence (1− d
N )N = e−d +O(1/N).

Proof. (Necessity) The proof that the above inequalities are necessary conditions for sta-

bility is similar to the proof of Theorem 11, where the equation (6.4) is replaced by:

1
T

∞∑
h=1

Xh(T ) ≥
∑

i

∑
j

λij − ε

Repeating the same argument as in Theorem 11, it follows that [compare with (6.8)]:

1
N

∑
i

∑
j

λij ≤
Cp+ Cq̃ + 2ε

2N
=

p

2d
+

q̃

2d
+

ε

N

where p is the probability that at least two users are within a cell (given in (6.2)), and q̃ is the

probability that there exists a source-destination pair within the cell. Note that q̃ may be

different from the value of q given in (6.3) because of the different sets of source-destination

pairs. However, because each user i has at most K destination nodes to consider, the union

bound implies that the probability of any particular user entering a given cell along with

at least one of its destinations is less than or equal to 1
C

K
C , so that q̃ ≤ N

C
K
C = O(K/N).

6Note that −d
N−d

≤ − log
“
1 + d

N−d

”
= log

`
1− d

N

´
≤ −d

N
.
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The probability p that at least two users are within a cell satisfies:

p = 1−
(

1− d

N

)N

− d

(
1− d

N

)N−1

= 1− e−d − de−d +O(1/N)

Hence, 1
N

∑
i

∑
j λij ≤ 1−e−d−de−d

2d + O(K/N). This together with the fact that no user

sends or receives more than any other proves the result.

For sufficiency, we consider a 2-hop routing scheme, where data is routed uniformly over

all relay nodes on the first hop regardless of its destination. We note that such a traffic

uniformization scheme is conceptually similar to the 2-stage switch scheduling algorithm

developed for N×N packet switches in [79], where packets are randomly assigned to output

ports at the first stage so that traffic is uniform at the second stage.

Proof. (Sufficiency) From the Network Capacity Theorem developed in [102] [111], we know

that it is sufficient to describe a transmission strategy yielding long term node-to-node

packet exchange rates µij together with a set of multi-commodity flows which route all

data to their destinations without exceeding these rates on any link (i, j). Consider the

strategy of choosing a transmitter and receiver in each cell completely randomly over all

user pairs. As the expected number of packet transfer opportunities over the network is Cp

opportunities per slot, the total rate of opportunities between any two links is µij = Cp
N(N−1) .

Suppose now the rate of exogenous data arriving to any node i is identically λ (for some

data rate λ), as is the sum rate of data entering the network destined for any node j, so

that
∑

i λij =
∑

j λij = λ for all i, j. (Any smaller rate matrix which does not sum to

λ in every row and column can be increased to a matrix which does have this property).

Consider the 2-hop routing scheme were exogenous packets at a source are routed randomly

and uniformly to any available relay node, and these packets are then transferred from

relay to destination. Because on the first hop the algorithm routes data independently of

its destination, the incoming traffic to the relay nodes is uniformly distributed, so that each

relay receives data destined for node j at a rate λ/(N − 1) for all destinations j.

The total rate of traffic flowing over any link from i to j is thus 2λ/(N − 1) (where a

stream of total rate λ/(N−1) flows from i to j due to packets from source i being relayed to j,

and data of rate λ/(N−1) flows from i to j due to traffic being relayed from i to destination
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j). This traffic satisfies the link constraint provided that 2λ/(N − 1) ≤ µij = Cp
N(N−1) , or

equivalently that λ ≤ p
2d . Thus, any rate matrices (λij) satisfying

∑
i λij ≤ p

2d for all j and∑
j λij ≤ p

2d for all i are within the capacity region, where p
2d = 1−e−d−de−d

2d +O(1/N).
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Chapter Appendix 6.C — Minimum Delay for 2-Hop Routing

Here we derive a recursive formula for the minimum average delay for sending a single

packet from source to destination in the case when routing is restricted to 2-hop paths.

We assume that multi-user reception is not available, so that at most one user per cell can

receive a packet during a single timeslot.

The minimum delay algorithm transfers the packet to its destination whenever the source

or a duplicate-carrying relay is in the same cell as the destination, and otherwise schedules

the source to deliver a duplicate version of the packet to a new user whenever possible.

Let E {TN} represent the expected time for the packet to reach the destination. The value

of E {TN} can be computed recursively by defining variables X1, X2, . . . , XN−1, where Xk

represents the expected time for the packet to reach its destination given that k users are

carrying duplicates of the packet. The probability that a particular user does not move to

the same cell as the destination during a timeslot is (1 − 1/C). Therefore, the probability

that at least one user among a group of k users does reach the destination is 1− (1−1/C)k.

Note that because all paths are restricted to 2 hops, the number of users holding a duplicate

version of the packet increases by at most one every slot. This number stays the same if the

source user does not visit anyone new, and if (independently) all k − 1 other users holding

the packet do not visit the destination. Considering the Markov nature of the problem, we

have the following transition probabilities for each state k ∈ {1, . . . , N − 2}:

Pr[k → end] = 1−
(

1− 1
C

)k

Pr[k → k] =
(

1− 1
C

)N−k (
1− 1

C

)k−1

=
(

1− 1
C

)N−1

Pr[k → k + 1] = 1− Pr[k → end]− Pr[k → k]

In state k = N − 1, the remaining time to finish is a geometric variable with probability

1−
(
1− 1

C

)N−1. The values of Xi can thus be computed recursively as follows:

XN−1 =
1

1− (1− 1/C)N−1

Xk = 1 +Xk(1− 1/C)N−1 +Xk+1

[
(1− 1/C)k − (1− 1/C)N−1

]
and E {TN} = X1.
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Chapter Appendix 6.D — Multi-User Reception

Here we show that multi-user reception cannot overcome the
√
N lower bound on delay for

2-hop routing. Specifically, we show that the delay E {TN} for any algorithm which restricts

packets to 2-hop paths satisfies:

lim
N→∞

E {TN}√
N

≥ e−d2

Proof. Consider sending a single packet to its destination over an empty network. Let

Kt represent the total number of users who have the packet at the beginning of slot t.

Because scheduling restricts transfers to 2-hop paths, the number of users holding the

packet increases every timeslot by at most the number of users in the same cell as the

source (which is d− 1/C on average). Hence, we have for all t ≥ 1:

E {Kt} ≤ td (6.27)

Note that during slots {1, 2, . . . , t} there are at most Kt users holding the packet, and

hence during each of these slots the probability that no packet-holding user enters the cell

of the destination is at least (1− 1
C )Kt . Thus:

Pr[TN > t | Kt] ≥
(

1− 1
C

)tKt

=
(

1− d

N

)tKt

(6.28)

We thus have:

E {TN} ≥ tPr[TN > t]

= tEKt {Pr[TN > t | Kt]}

≥ tEKt

{(
1− d

N

)tKt
}

(6.29)

≥ t

(
1− d

N

)tE{Kt}
(6.30)

≥ t

(
1− d

N

)t2d

(6.31)
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where inequality (6.29) follows from (6.28), inequality (6.30) holds by Jensen’s inequality

(noticing that the function βx is convex in x for any β > 0), and (6.31) follows from

(6.27). This holds for all integers t. Choosing t =
√
N yields E {TN} ≥

√
N
(
1− d

N

)Nd →

e−d2√
N .
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Chapter Appendix 6.E — Delay of
√

N Redundancy Algo-

rithm

Here we prove eq. (6.14), establishing an O(
√
N) bound on the service time E {TN} for the

partial feedback scheme with
√
N redundancy. The proof requires the following preliminary

lemma.

Lemma 20. Consider N users which independently choose to enter one of C cells, and

recall that d = N/C represents the expected number of users per cell. Let J represent the

number of users contained in a given cell. We have:7

E {J |J ≥ 1} ≤ 1 + d

Proof. Let Ii represent an indicator variable taking the value 1 if the ith user of the subset

is in the cell, and 0 otherwise. Define K as the lowest indexed user within the cell, where

we let K = N + 1 if no users are present. Thus, J =
∑N

i=K Ii. We have:

E {J | J ≥ 1} = 1 + EK

{
N∑

i=K+1

E {Ii|K,J ≥ 1}

∣∣∣∣∣ J ≥ 1

}

= 1 + EK

{
N∑

i=K+1

E {Ii | K}

∣∣∣∣∣ J ≥ 1

}
(6.32)

≤ 1 + EK

{
N∑

i=1

E {Ii | K}

∣∣∣∣∣ J ≥ 1

}

= = 1 + EK

{
N∑

i=1

1
C

∣∣∣∣∣ J ≥ 1

}
= 1 + d (6.33)

where (6.32) follows because the condition J ≥ 1 can be inferred by knowledge of K, and

(6.33) follows because E {Ii | K} = 1/C for all users i.

To prove the
√
N bound on E {TN}, recall that TN = S1 + S2, where S1 represents

the time required for the source to send out
√
N replicas of the packet (while competing

with other sessions for network resources), and S2 represents the time required to reach the

destination given that
√
N users have the packet.

7An exact value of E {J | J ≥ 1} = E {J} /Pr[J ≥ 1] can easily be computed and leads to tighter but
more complicated delay bounds.
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Lemma 21.

E {S1} ,E {S2} ≤
4 + 2d

γN (1− e−d)

√
N

where γN is a sequence that converges to 1 as N →∞.

Proof. The E {S1} bound: Let S1 represent the time required for the source to deliver a

duplicate packet to
√
N distinct users. For the duration of S1, there are at least N −

√
N

users who do not have the packet, and hence every timeslot the probability that at least

one of these users visits the cell of the source is at least 1− (1− 1
C )N−

√
N . Given this event,

the probability that the source is chosen by the partial feedback algorithm to transmit is

expressed by the product α1α2, representing probabilities for the following conditionally

independent events: α1 is the probability that the source is selected from all other users in

the cell to be the transmitting user, and α2 represents the probability that this source is

chosen to operate in ‘source-to-relay’ mode. Let random variable J represent the number

of additional users in the cell of the source (excluding the source user itself). The value of

α1 is thus α1 = E {1/(J + 1) | J ≥ 1}. By Jensen’s inequality, we have:

α1 ≥ 1/E {1 + J | J ≥ 1}

≥ 1/(2 + d)

where the last inequality follows because E {J | J ≥ 1} ≤ 1 + d (as proven in Lemma 20).

The probability α2 that the source operates in ‘source-to-relay’ mode is 1/2. Thus,

every timeslot during the interval S1, the source delivers a replica packet to a new user with

probability of at least φ, where

φ ≥
(

1− (1− 1
C

)N−
√

N

)
1

2(2 + d)

→ 1− e−d

4 + 2d

The average time until a replica is transmitted to a new user is thus a geometric variable

with mean less than or equal to 1/φ. It is possible that two or more replicas are delivered

in a single timeslot. However, in the worst case,
√
N of these times are required, so that

the average time E {S1} is upper bounded by
√
N/φ.
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Proof. The E {S2} bound: To prove the bound on E {S2}, note that every timeslot in which

there are at least
√
N users with replicas of the packet, the probability that one of these

users transmits the packet to the destination is given by the chain of probabilities θ0θ1θ2θ3.

The θi values represent probabilities for the following conditionally independent events:

θ0 represents the probability that there is at least one other user in the same cell as the

destination (and is given by θ0 = 1−(1−1/C)N−1 → 1−e−d), θ1 represents the probability

that the destination is selected as the receiver (where, similar to the α1 computation, we

have θ1 ≥ 1/(2 + d)), θ2 represents the probability that the sender operates in ‘relay-to-

destination’ mode (where θ2 = 1/2), and θ3 represents the probability that the sender is

one of the
√
N users who have a replica of the packet intended for the destination (where

θ3 =
√
N/(N − 1) ≥ 1/

√
N). Thus, every timeslot, the probability that the S2 time comes

to completion is at least (1−e−d)

(4+2d)
√

N
. The value of E {S2} is thus less than or equal to the

inverse of this quantity.
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Chapter Appendix 6.F — Logarithmic Delay for Flooding

Protocol

Here we prove Lemma 19: Under the algorithm of flooding the network with a single packet,

for any network size N ≥ max{d, 2}, the expected time E {TN} for the packet to reach every

user satisfies E {TN} ≤ E {S1}+ E {S2}, where:

E {S1} ≤
log(N) (1 + d/2)
log(2)(1− e−d/2)

E {S2} ≤ 1 +
2
d
(1 + log(N/2))

Proof. (The E {S2} Bound) Let M represent the number of users who do not initially have

the packet (so that M ≤ N/2), and label these M users {u1, u2, . . . , uM}. Let Xi represent

the number of timeslots it takes for the non-packet holding user ui to reach a cell containing

a user who possesses a packet. Because of the multi-user reception feature, user ui must

receive the packet at this time. The random variable Xi is geometric, in that a ‘success’

happens on any given timeslot with probability ψ ≥ 1− (1− 1
C )N/2. Thus, we have for all

N :

ψ ≥ 1− e−d/2 (6.34)

All times Xi are independent and identically distributed, and hence the random variable

S2 is equal to the maximum value of at most M = bN/2c i.i.d. variables. Hence, E {S2} ≤

E {max{X1, X2, . . . , XM}}. To obtain a simple bound on this time, we consider new random

variables {Y1, Y2, . . . , YM} which are i.i.d. and exponentially distributed with rate λ =

log(1/(1 − ψ)). Notice that the random variable 1 + Yi is stochastically greater than Xi,

because the complementary distribution functions satisfy Pr[1 + Yi > t] ≥ Pr[Xi > t] for

all real numbers t (see [119] for a treatment of stochastic dominance for random variables).

It follows that:

E {S2} ≤ E {max{X1, X2, . . . , XM}}

≤ 1 + E {max{Y1, Y2, . . . , YM}}

The expected maximum of M i.i.d. exponential variables of rate λ is equal to the

expectation of the sum of intervals I1+I2+. . .+IM , where Ii represents the duration of time
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between the (i− 1)th and ith completion time. The interval I1 is the first completion time

of M independently racing exponential variables, and hence I1 is exponentially distributed

with rate Mλ. Furthermore, I2 is the first completion time of M − 1 racing exponential

variables, I3 is the first completion time of M − 2 racing exponentials, and so on. It follows

that:

E {I1 + I2 + . . .+ IM} =
1
λ

M∑
m=1

1
m

Hence, E {S2} ≤ 1 + 1
λ

∑M
m=1

1
m , which is upper bounded by 1 + 1

λ(1 + log(M)). Hence:

E {S2} ≤ 1 +
1 + log(M)

log(1/(1− ψ))
≤ 1 +

1 + log(N/2)
log(ed/2)

Proof. (The E {S1} bound) We compute a bound on E {S1} by noting that E {S1} ≤ E
{
S̃1

}
,

where S̃1 is the time to reach at least N/2 users when the multi-user reception feature is

turned off, and any transmitted packet is received by at most 1 other user within a cell. It

turns out that the variable S̃1 is easier to work with, as the number of users holding the

packet can at most double every timeslot. Let Kt represent the number of users containing

a duplicate version of the packet at timeslot t ∈ 1, 2, . . . (suppose only the source user has

the packet at time 0, so that K0 = 1). Let u1, u2, . . . , uKt represent the users containing

the packet at time t. Each of these users ui delivers the packet to ai new users on the next

timeslot, where ai is a binary random variable taking a value of either 0 or 1. Whenever there

are at least N/2 users which do not currently hold the packet, we have that E {ai} ≥ θ1θ2,

where θ1 = 1− (1− 1
C )N/2 represents a lower bound on the probability that at least one of

the new users enters the cell of user ui, and θ2 represents a lower bound on the probability

that user i is selected to transmit its replica among all other packet-holding users within the

cell. Define J as the total number of other packet-holding users in the cell (not including

user i). It follows that:

θ2 = E
{

1
1 + J

}
(6.35)

≥ 1
1 + E {J}

(6.36)

≥ 1
1 + d/2

(6.37)
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where (6.36) follows by Jensen’s inequality and convexity of the function 1/(1 + x), and

(6.37) follows because there are no more than N/2 packet holding users, and hence E {J} ≤
N
2C = d/2. Thus:

E {ai} ≥
1− (1− 1

C )N/2

1 + d/2

≥ 1− e−d/2

1 + d/2
(6.38)

where (6.38) follows because (1− d
N )N ≤ e−d for all N ≥ d > 0.

Let Zt = Kt/Kt−1 be a random variable representing the multiplicative factor by which

the number of packet-holding users grows after one timeslot. (Note that 1 ≤ Zt ≤ 2). It

clearly holds that:

Zt+1 =
Kt + a1 + a2 + . . .+ aKt

Kt

The ai random variables are not independent, although they are identical. Thus, for any

timeslot t in which fewer than N/2 users have packets:

E {Zt+1 | Kt} =
Kt +KtE {a1}

Kt

= 1 + E {a1}

≥ 1 +
1− e−d/2

1 + d/2
(6.39)

Now consider the stopping time S̃1 where at t = S̃1 − 1 there are fewer than N/2 users

with packets, but at time t = S̃1 the N/2 threshold is either met or crossed. Note that S̃1 is

similar to a stopping time variable, treated in [49], [119], although the event {S̃1 ≥ t} is not

independent of Zt. The number of users KS̃1
containing the packet at time t = S̃1 satisfies:

N ≥ KS̃1
= Z1Z2 . . . ZS̃1

and hence

log(N) ≥ log(Z1) + log(Z2) + . . .+ log(ZS̃1
)

Define the indicator random variable It to be 1 if S̃1 ≥ t, and 0 otherwise. Taking expecta-

tions of the above inequality, we find:
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log(N) ≥ E


S̃1∑
t=1

log(Zt)


= E

{ ∞∑
t=1

log(Zt)It

}

= E

{ ∞∑
t=1

E {log(Zt)It | Kt−1}

}

= E

{ ∞∑
t=1

ItE {log(Zt) | Kt−1}

}

where the last inequality follows because the variableKt−1 completely determines the binary

value of It. Recall that 1 ≤ Zt ≤ 2, and hence log(Zt) ≥ log(2)(Zt− 1) (as the lower bound

values are points along the chord of the concave function log(Z) over the interval 1 ≤ Z ≤ 2).

We thus have:

log(N)
log(2)

≥ E

{ ∞∑
t=1

ItE {(Zt − 1) |Kt−1 }

}

≥

(
1− e−d/2

1 + d/2

)
E

{ ∞∑
t=1

It

}
(6.40)

=

(
1− e−d/2

1 + d/2

)
E
{
S̃1

}

where (6.40) follows from (6.39). Thus, E {S1} ≤ E
{
S̃1

}
≤ log(N)(1+d/2)

log(2)(1−e−d/2)
.

209



Chapter Appendix 6.G — Minimum Delay for Multi-Hop

Routing is Logarithmic

Lemma 22. Starting with a single packet contained in one user in an empty network of size

N , the flooding algorithm of delivering the packet to its destination by having every duplicate-

carrying user transmit to other users whenever possible has an average delay E {TN} which

is logarithmic. In particular

lim
N→∞

E {TN}
log(N)

≥ 1
log(1 + d)

This bound holds even if multi-user reception is available.

Proof. As in the proof of Lemma 19, define Kt as the number of users holding the packet

at time t (where K0 = 1), and let Zt = Kt/Kt−1 represent the growth factor after one

timeslot. We have:

Zt+1 =
Kt + a1 + a2 + . . .+ aKt

Kt

where ai represents the number of new users to which the ith packet-holding user transmits

during a timeslot. We clearly have E {ai} ≤ d during any timeslot, and hence:

E {Zt+1 | Kt} =
Kt +KtE {a1}

Kt
≤ 1 + d

Because Kt = Z1Z2 · · ·Zt, it follows by recursion that:

E {Kt} ≤ (1 + d)t (6.41)

Note that during slots {1, 2, . . . , t} there are at most Kt users holding the packet, so the

probability that none of these users enters the cell of the destination on such a timeslot is

greater than or equal to
(
1− 1

C

)Kt . Hence, the proof given in Chapter Appendix 6.D for

the
√
N bound for 2-hop routing can be followed exactly up to (6.30). In particular, we
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have [compare with (6.28)-(6.30)]:

E {TN} ≥ tPr[TN > t]

= tEKt{Pr[TN > t | Kt]}

≥ tEKt

{(
1− d

N

)tKt
}

≥ t

(
1− d

N

)tE{Kt}

Using (6.41) in the above inequality, we have:

E {TN} ≥ t

(
1− d

N

)t(1+d)t

(6.42)

The above inequality holds for all integers t ≥ 0. For convenience, we choose t to

represent a base (1 + d) logarithm: tM= log1+d(αNβ), where β is any number less than 1,

and α is chosen within the bounds 1 ≤ α ≤ (d+ 1) so that t is an integer. Using this value

of t in (6.42), we have:

E {TN} ≥
(log(α) + β log(N))

log(1 + d)

[(
1− d

N

)N
]αNβ log(αNβ)

N log(1+d)

Note that
(
1− d

N

)N → e−d as N → ∞, and its exponent αNβ log(αNβ)
N log(1+d) converges to 0

whenever β < 1. It follows that
[(

1− d
N

)N]αNβ log(αNβ)
N log(1+d) → 1, and hence:

lim
N→∞

E {TN}
log(N)

≥ β

log(1 + d)

for any β < 1. The bound can be optimized by taking a limit as β → 1, yielding the

result.
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Chapter 7

Conclusions

We have developed dynamic control algorithms for networks with time varying channel

conditions, random inputs, and adaptive transmission rates. A general network model

was constructed in terms of arbitrary rate-power curves. This model allows for a simple

separation of network layer and physical layer concepts while enabling the network controller

to take full advantage of the physical properties of each data link. A wide variety of

networks can be treated according to this framework, including satellite networks with

optical crosslinks and RF downlinks, wireless ad-hoc networks, computer networks, and

hybrid networks with both wireless and wireline components.

Special attention was given to satellite networks, and it was shown that dynamic power

allocation can significantly improve the throughput and delay performance of such systems.

A separation principle was developed, demonstrating that the crosslink and downlink layers

of satellite networks can in principle be optimized individually while maintaining global

optimality.

We have also considered ad-hoc wireless networks with mobility. Distributed control

algorithms for these systems were developed to achieve high throughput and low delay, as

established both analytically and through simulations. Fundamental rate-delay tradeoffs

were explored.

Our approach to data networking considers the full effects of queueing. To meet this

purpose, a variety of queueing theoretic tools were constructed, contributing to a theory of

queueing analysis for time varying systems. These tools were used both in the analysis of

network performance as well as in the design of our network controllers. Indeed, knowledge
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of the queueing states of the system was used to design robust network controllers which do

not require knowledge of channel statistics or traffic rates from other users. These controllers

can be implemented in a decentralized fashion whenever channels are independent.

Our discussion of real time implementations in Chapter 3 and the performance gap

between centralized and distributed network control in Chapter 4 touches on another di-

mension of networks research, that of the fundamental tradeoffs between performance and

implementation complexity (see [109] [113] for a more direct treatment of the subject). This

research builds upon an emerging theory of data networks, with the goal of describing the

capacity and delay limits in networks with constrained resources and abilities, as well as

specifying the control algorithms which achieve these limits.
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