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Capacity and Delay Tradeoffs for
Ad-Hoc Mobile Networks
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Abstract— We consider the throughput/delay tradeoffs for
scheduling data transmissions in a mobile ad-hoc network. To
reduce delays in the network, each user sends redundant packets
along multiple paths to the destination. Assuming the network
has a cell partitioned structure and users move according to a
simplified independent and identically distributed (i.i.d.) mobility
model, we compute the exact network capacity and the exact end-
to-end queueing delay when no redundancy is used. The capacity
achieving algorithm is a modified version of the Grossglauser-Tse
2-hop relay algorithm and provides O(N) delay (where N is the
number of users). We then show that redundancy cannot increase
capacity, but can significantly improve delay. The following
necessary tradeoff is established: delay/rate ≥ O(N). Two
protocols that use redundancy and operate near the boundary of
this curve are developed, with delays of O(

√
N) and O(log(N)),

respectively. Networks with non-i.i.d. mobility are also considered
and shown through simulation to closely match the performance
of i.i.d. systems in the O(

√
N) delay regime.

Index Terms— fundamental limits, queueing analysis, stochas-
tic systems, wireless networks

I. INTRODUCTION

In this paper we consider the effects of transmitting re-
dundant packets through multiple paths of an ad-hoc wireless
network with mobility. Such redundancy improves delay at
the expense of increasing overall network congestion. We
show that redundancy cannot increase network capacity, but
can significantly improve delay performance, yielding delay
reductions by several orders of magnitude when data rates are
sufficiently less than capacity.

We use the following cell partitioned network model: The
network is partitioned into C non-overlapping cells of equal
size (see Fig. 1). There are N mobile users independently
roaming from cell to cell over the network, and time is slotted
so that users remain in their current cells for a timeslot, and
potentially move to a new cell at the end of the slot. If two
users are within the same cell during a timeslot, one can
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Fig. 1. A cell-partitioned ad-hoc wireless network with C cells and N mobile
users.

transfer a single packet to the other. Each cell can support
exactly one packet transfer per timeslot, and users within
different cells cannot communicate during the slot. Multi-hop
packet transfer proceeds as users change cells and exchange
data. The cell partitioning reduces scheduling complexity and
facilitates analysis. Similar cell partitioning has recently been
considered by Cruz et. al in [4].

We consider the following simplified mobility model: Every
timeslot, users choose a new cell location independently and
identically distributed over all cells in the network. Such a
mobility model is, of course, an over-simplification. Indeed,
actual mobility is better described by Markovian dynamics,
where users choose new locations every timeslot from the set
of cells adjacent to their current cell. However, analysis under
the simplified independent and identically distributed (i.i.d.)
mobility model provides a meaningful bound on performance
in the limit of infinite mobility. With this assumption, the
network topology dramatically changes every timeslot, so
that network behavior cannot be predicted and fixed routing
algorithms cannot be used. Rather, because information about
the current and future locations of users is unknown, one
must rely on robust scheduling algorithms. Furthermore, it is
shown in [1] [5] that network capacity depends only on the
steady-state channel distribution, and hence the capacity region
under an i.i.d. mobility model is identical to the capacity of
a network with non-i.i.d. mobility with the same steady state
distribution (see Corollary 5 on page 88 of [1]). Thus, our
capacity results hold also for cases where mobility is described
by simple Markovian random walks, considered in Sections
VII and VIII. Delay analysis for non-i.i.d. mobility is also
presented, and simulations demonstrate that throughput and
delay performance is qualitatively similar to the i.i.d. case.

We compute an exact expression for the per-user trans-
mission capacity of the network (for any number of users
N ≥ 3), and show that this capacity cannot be increased
by using redundant packet transfers. When no redundancy is
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used, a modified version of the Grossglauser-Tse 2-hop relay
algorithm in [6] is presented and shown to achieve capacity.
The queueing delay in the network is explicitly computed
and shown to be O(N)/(µ − λi) (where µ is the per-user
network capacity, and λi is the rate at which user i transfers
packets intended for its destination). Furthermore, it is shown
that no scheduling algorithm can improve upon O(N) delay
performance unless redundancy is used.

We then consider modifying the 2-hop relay algorithm to
allow redundant packet transmissions. It is shown that no
scheme which restricts packets to two hops can achieve a
better delay than O(

√
N). A scheduling protocol that employs

redundant packet transmissions is developed and shown to
achieve this delay bound when all users communicate at a
reduced data rate of O(1/

√
N). A multi-hop protocol is then

developed to achieve O(log(N)) delay by further sacrificing
throughput. Finally, the necessary condition delay/rate ≥
O(N) is established for any routing and scheduling algorithm,
and the 2-hop relay algorithms are shown to meet this bound
with equality while the multi-hop algorithm deviates from
optimality by no more than a logarithmic factor.

Previous work on the capacity of ad-hoc wireless net-
works is found in [1]-[12], [14]. Gupta and Kumar present
asymptotic results for static networks in [7], [8], where it is
shown that per-user network capacity is O(1/

√
N), and hence

vanishes as the number of users N increases. The effect of
mobility on the capacity of ad-hoc wireless networks was first
explicitly developed in [6], where a 2-hop relay algorithm was
developed and shown to support constant per-user throughput
which does not vanish as the size of the network grows.
These works do not consider the associated network delay,
and analysis of the fundamental queueing delay bounds for
general networks remains an important open question.

In [9] it is shown that for a network with a mixture of
stationary users and mobile relay nodes, delay can be improved
by exploiting velocity information and relaying packets to
nodes moving in the direction of their destination. Routing
for fully mobile networks using table updates is considered
in [10]. Schemes for improving delay via diversity coding
and multi-path routing are considered in [11], [12], although
these do not consider delays due to path sharing, queueing, or
stochastic arrivals. Delay improvement via redundant packet
transfers is considered in [3]. This idea is related to the
notion of content replication considered for static peer-to-peer
systems in [13] and for mobile networks in [14]. Our i.i.d.
mobility model is similar to that used in [14], where mobile
infostations are used to store content for users requesting file
access. Throughput and delay tradeoffs were perhaps first con-
sidered in [15], where delay of multi-hop routing is reduced
by increasing the coverage radius of each transmission, at the
expense of reducing the number of simultaneous transmissions
the network can support. Similar radial scaling techniques
have recently appeared in [16] [17] [18]. While our work was
developed prior to the work in [16] [17] [18] and does not
directly consider radial scaling, for completeness we include
a detailed comparison with these approaches at the end of
Section VI.

In this paper, we analyze the capacity and delay of cell

partitioned networks and consider the full effects of queueing.
Our contributions are threefold: First, we develop an expres-
sion for network capacity and compute the exact delay of
a capacity achieving strategy. Second, we demonstrate that
redundant packet transfers can significantly reduce delay at the
cost of reducing throughput. Third, we establish a fundamental
delay/rate tradeoff curve that bounds performance of any
routing and scheduling algorithm. Protocols for three different
rate regimes are developed and shown to operate on or near
the boundary of this curve.

A. Concerning the Cell-Partitioned Network Assumptions

The cell partitioned model is used to enable a simple and
insightful network analysis, and not necessarily to propose
a practical communication scheme. While a direct imple-
mentation of a cell partitioned network simplifies scheduling
decisions by enabling control actions to be independently
distributed over each cell, extra management is required to
maintain the cell structure and to coordinate communication
between mobile users. First, mobile users must determine their
own cell locations. This might be accomplished through satel-
lite positioning signals, assuming each user is equipped with a
GPS receiver. Alternatively, location might be determined by
triangulating against pre-established ground beacons. These
ground beacons could additionally act as control stations
that handle control signaling between users. We assume that
control information for each cell is passed over reserved
bandwidth channels.

The cell partitioned network model restricts communication
to one transmission per cell per timeslot. This restriction alle-
viates the interference problems associated with two users si-
multaneously transmitting in the same cell. However, this does
not solve the inter-cell interference problem, as a transmitter
in one cell may be very close to a receiver in its neighboring
cell. Such interference can be mitigated by requiring users
in neighboring cells to transmit over orthogonal frequency
bands. It is well known that for rectilinear cell partitionings
as in Fig. 1, only four separate frequency bands are needed
to ensure that no neighboring cells use the same frequency,
and this number can be reduced to three if cells are arranged
in a hexagonal pattern. Additional frequency bands can be
added to increase the frequency reuse distance, at the cost of
reducing the bit rate of each user-to-user transmission. From
a theoretical perspective, we note that the capacity expression
derived for cell partitioned networks in Section II is very close
to the maximum throughput estimates of the Grossglauser-
Tse relay strategy, which uses a nearest neighbor transmission
policy for networks with full interference and no bandwidth
subdivision. Thus, cell partitioned networks can serve as useful
theoretical models for analyzing more complex systems, and
the protocols we develop for cell partitioned networks can be
applied to these other settings.

Throughout this paper, we assume that the number of cells
is of the same order as the number of users, so that the
user/cell density d is constrained to be O(1) (independent of
N ). This is a necessary constraint in cases when the network
area is increased while maintaining the same average number
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of users per unit area and the same transmission power (and
hence, transmission radius) for each user. In the opposite case
when the network area is fixed but the number of users N
grows large (increasing the number of users per unit area),
it is possible to consider cell densities that increase with N ,
although the d = O(1) constraint can still be imposed by
appropriately scaling the cell size. Note that in this case, it
would be possible to maintain a cell size for which the user/cell
density increases to infinity with N . However, this would
require the coordination of an increasingly large number of
users in each cell, and it would necessarily shrink network
capacity to zero with growing N (as shown in the next
section). It could, however, provide an alternate means of
improving network delay, as described in [16] [17] [18].
Indeed, in the extreme case where there is only one cell
containing all nodes, it is clear that any user could reach any
other user in just a single hop. A detailed comparison of our
results with those of [16] [17] [18] is given in Section VI.

B. Paper Outline

In the next section, we establish the capacity of the cell
partitioned network and analyze the delay of the capacity
achieving relay algorithm. In Section III we develop delay
bounds for transmission schemes with redundancy, and in Sec-
tion IV we provide scheduling protocols which achieve these
bounds. In Section V we prove necessity of delay/rate ≥
O(N), and show that the given protocols operate on the
boundary of this rate-delay tradeoff curve. Simulations and
Markovian mobility models are considered in Sections VI and
VII.

II. CAPACITY, DELAY, AND THE 2-HOP RELAY
ALGORITHM

Consider a cell partitioned network such as that of Fig. 1.
The shape and layout of cell regions is arbitrary, although
we assume that cells have identical area, do not overlap, and
completely cover the network area. We define:

• N = Number of Mobile Users
• C = Number of Cells
• d = N/C = User/Cell density
Users move independently according to the full-mobility

model, where the steady state location of each user is uniform
over all cells.

Let λi represent the exogenous arrival rate of packets to user
i (in units of packets/slot). Packets are assumed to arrive as a
Bernoulli process, so that with probability λi a single packet
arrives during the current slot, and otherwise no packet arrives.
Other stochastic inputs with the same time average arrival rate
can be treated similarly, and the arrival model does not affect
the region of rates the network can support (see [1]).

We assume packets from source i must be delivered to a
unique destination j. In particular we assume the number of
users N is even and consider the one-to-one pairing: 1 ↔ 2,
3 ↔ 4, . . ., (N − 1) ↔ N ; so that user 1 communicates
with user 2 and user 2 communicates with user 1, user 3
communicates with user 4 and user 4 communicates with user

3, and so on. Other source-destination scenarios can be treated
similarly (see Section II-B).

Packets are transmitted and routed through the network ac-
cording to some scheduling algorithm. The algorithm chooses
which packets to transmit on each timeslot without violating
the physical constraints of the cell partitioned network or
the following additional causality constraint: A user cannot
transmit a packet that it has never received. Note that once a
packet has been received by a user, it can be stored in memory
and transmitted again and again if so desired. We assume that
packets are equipped with header information so that they can
be individually distinguished for scheduling purposes.

A scheduling algorithm is stable if the λi rates are satisfied
for all users so that queues do not grow to infinity and average
delays are bounded. Assuming that all users receive packets
at the same data rate (so that λi = λ for all i), the capacity
of the network is the maximum rate λ that the network can
stably support. Note that this is a purely network layer notion
of capacity, where optimization is over all possible routing
and scheduling protocols. Below we compute the network
capacity, assuming users change cells in an i.i.d. fashion every
timeslot. In [1] [5] it is shown that the capacity region depends
only on the steady state user location distribution. Hence,
any Markovian model of user mobility which in steady state
distributes users independently and uniformly over the network
yields the same expression for capacity. A simple example of
such a Markovian model is considered in Section VIII.

Theorem 1: The capacity of the network is:

µ =
p+ q

2d
(1)

where

p = 1−
(
1− 1

C

)N − N
C

(
1− 1

C

)N−1
(2)

q = 1−
(
1− 1

C2

)N/2
(3)

and hence the network can stably support users simultaneously
communicating at any rate λ < µ.

Note that p represents the probability of finding at least two
users in a particular cell, and q represents the probability of
finding a source-destination pair within a cell. The proof of the
above theorem involves proving that λ ≤ µ is necessary for
network stability, and that λ < µ is sufficient. Sufficiency is
established in Subsection II-C, where a stabilizing algorithm is
provided and exact expressions for average delay are derived.
A formal proof of necessity is given in Appendix A. Here we
provide an abbreviated argument to gain intuition:

Intuitive Explanation: Suppose all users send at rate λ, so
that Nλ represents the sum rate of new packets entering the
network. Each of these packets must be transmitted over the
network at least once, and are transmitted two or more times if
they reach their destinations via a relay node. The maximum
rate of single-hop transfers between sources and destinations
is Cq (the average number of cells containing a source-
destination pair on a given timeslot). All other transmission
opportunities must serve packets that take two or more hops
to the destination, and the rate of such transmissions is at
most Cp−Cq (where Cp is the average number of cells that
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Fig. 2. A plot of the limiting capacity (1−e−d−de−d)/(2d) as a function
of the user/cell density d.

can support a packet transfer during a given timeslot). Hence:
Nλ ≤ Cq + Cp−Cq

2 , yielding the necessary condition. �

Taking limits as N → ∞, we find the network capacity
tends to the fixed value (1 − e−d − de−d)/(2d). This value
tends to zero as d tends either to zero or infinity. Indeed, if d is
too large, there will be many users in each cell, most of which
will be idle as a single transmitter and receiver are selected.
However, if d is too small, the probability of at least two users
being in a given cell vanishes. Hence, for nonzero capacity, the
ratio d = N/C should be fixed as both N and C scale up. The
optimal user/cell density d∗ and the corresponding capacity µ∗

are: d∗ = 1.7933, µ∗ = 0.1492 (see Fig. 2). Thus, when the
number of users N is large, the maximum throughput of a
cell partitioned network is close to its limiting maximum of
0.1492 packets/slot. Throughputs arbitrarily close to this value
can be achieved by scaling the number of cells C with N to
maintain a constant user/cell density d∗.

This µ∗ capacity value is close to the maximum throughput
estimate of 0.14 packets/slot for the O(1) throughput strategy
given by Grossglauser and Tse in [6], where the 0.14 number is
obtained by a numerical optimization over a transmit probabil-
ity θ. In the Grossglauser-Tse strategy, transmitting users send
to their nearest neighbors to obtain a high signal to interference
ratio on each transmission. The proximity of their optimal
throughput to the value of µ∗ suggests that when the transmit
probability is optimized, the nearest-neighbor transmission
policy behaves similarly to a cell-partitioned network. The
same value µ∗ arises when users send independent data to
a finite collection of other users according to a rate matrix
(λij). In this case, µ∗ represents the maximum sum rate into
or out of any user provided that no user sends or receives more
than any other, as described in Section II-B.

A. Feedback Does not Increase Capacity

We note that the optimal throughput µ of Theorem 1
cannot be improved even if all users have perfect knowledge
of future events (see proof of Theorem 1). Thus, control
strategies which utilize redundant packet transfers, enable
multiple users to overhear the same transmission, or allow
for perfect feedback to all users when a given packet has been
successfully received, cannot increase capacity.

Corollary 1: The use of redundant packet transfers, multi-
user reception, or perfect feedback cannot increase network
capacity.

Proof: The capacity region given in Theorem 1 considers
all possible strategies, including those which have perfect
knowledge of future events. Hence, with full knowledge of
the future, any strategy employing redundant packet transfers,
multi-user reception, or perfect feedback can be transformed
into a policy which does not use these features simply by
removing the feedback mechanism (all feedback information
would be a-priori known) and deleting all redundant versions
of packets, so that only packets which first reach their desti-
nation are transmitted. Thus, such features cannot expand the
region of stabilizable rates.

However, the capacity region can be achieved without
feedback, redundancy, or perfect knowledge of the future (as
described in the next section) and hence these features do not
impact capacity.

B. Heterogeneous Demands

Before proceeding with our delay results, we consider the
case of communication with heterogeneous rates (λij), where
λij represents the rate user i receives exogenous data intended
for user j. Define the symmetric capacity region as the region
of all stabilizable data rates such that no user is transmitting
or receiving at a higher total data rate than any other. Let K
represent the maximum number of destination users to which
a source transmits (i.e., for each user i, at most K of the λij

terms are nonzero).
Theorem 2: The symmetric capacity region of the network

has the form:∑
j

λij ≤ (1− e−d − de−d)
2d

+O(K/N) ∀i (4)

∑
i

λij ≤ (1− e−d − de−d)
2d

+O(K/N) ∀j (5)

Proof: This proof is similar to the proof of Theorem 1, and
the differences are given in Appendix C.

In the next section we present a capacity achieving strategy
together with an exact delay analysis. To simplify the discus-
sion, throughout the rest of this paper we assume that each user
communicates with rate λ to a unique destination according
to the pairing 1 ↔ 2, 3 ↔ 4, etc., so that K = 1 and the exact
capacity result µ = (p+ q)/(2d) of Theorem 1 applies for all
network sizes N .

C. Delay Analysis and the 2-Hop Relay Algorithm

In this section, we consider a modified version of the
Grossglauser-Tse relay algorithm of [6], and show the
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algorithm is capacity achieving with a bounded average
delay. The algorithm restricts packets to 2-hop paths, where
on the first hop a packet is transmitted to any available user.
This user will act as a ‘relay’ for the packet. The packet is
stored in the buffer of the relay until an opportunity arises
for it to be transmitted by the relay to its destination. Note
that the notion of relaying is vitally important, as it allows
throughput to be limited only by the rate at which a source
encounters other users, rather than by the rate at which a
source encounters its destination.

Cell Partitioned Relay Algorithm: Every timeslot and for each
cell containing at least two users:

1) If there exists a source-destination pair within the cell,
randomly choose such a pair (uniformly over all such
pairs in the cell). If the source contains a new packet
intended for that destination, transmit. Else remain idle.

2) If there is no source-destination pair in the cell, designate
a random user within the cell as sender. Independently
choose another user as receiver among the remaining
users within the cell. With equal probability, randomly
choose one of the two options:
• Send a Relay packet to its Destination: If the des-

ignated transmitter has a packet destined for the
designated receiver, send that packet to the receiver.
Else remain idle.

• Send a New Relay Packet: If the designated trans-
mitter has a new packet (one that has never before
been transmitted), relay that packet to the designated
receiver. Else remain idle.

Since packets that have already been relayed are restricted
from being transmitted to any user other than their destina-
tion, the above algorithm restricts all routes to 2-hop paths.
The algorithm schedules packet transfer opportunities without
considering queue backlog. Performance can be improved by
allowing alternative scheduling opportunities in the case when
no packet is available for the chosen transmission. However,
the randomized nature of the algorithm admits a nice decou-
pling between sessions (see Fig. 3), where individual users see
the network only as a source, destination, and intermediate
relays, and transmissions of packets for other sources are
reflected simply as random ON/OFF service opportunities.

Theorem 3: Consider a cell partitioned network (with N
users and C cells) under the 2-hop relay algorithm, and assume
that users change cells i.i.d. and uniformly over each cell
every timeslot. If the exogenous input stream to user i is a
Bernoulli stream of rate λi (where λi < µ), then the total
network delay Wi for user i traffic satisfies:

E {Wi} =
N − 1− λi

µ− λi
(6)

where the capacity µ is defined in (1).
Proof: The proof uses reversibility of the first stage queue,

and is provided in Appendix B.
Note that the decoupling property of the cell partitioned

relay algorithm admits a decoupled delay bound, so that the
waiting time for user i packets depends only on the rate
of the input stream for user i, and does not depend on the

rate of other streams—even if the rate of these streams is
greater than capacity. It follows that the network is stable
with bounded delays whenever all input streams are less than
capacity, i.e., when λi < µ for all users i. Thus, the relay
algorithm achieves the capacity bound given in (1) of Theorem
1. It is perhaps counter-intuitive that the algorithm achieves
capacity, as it often forces cells to remain idle even when
choosing an alternate sender would allow for a packet to be
delivered to its destination. The intuition is that all cases of
idleness arise because a queue is empty, an event that becomes
increasingly unlikely as load approaches capacity.

The form of the delay expression is worth noting. First note
the classic 1/(µ − λi) behavior, representing the asymptotic
growth in delay as data rates are pushed towards the capacity
boundary. Second, note that for a fixed loading value ρi =
λi/µ, delay is O(N), growing linearly in the size of the
network.

The exact delay analysis is enabled by the Bernoulli input
assumption. If inputs are assumed to be Poisson, the delay
theory of [1] [5] can be used to develop a delay bound, and
the bound for Poisson inputs is not considerably different from
the exact expression for Bernoulli inputs given in (6). These
results can also be extended to the case when the mobility
model conforms to a Markovian random walk (see analytical
discussion and simulation results in Sections VII and VIII).

III. SENDING A SINGLE PACKET

In the previous subsection we showed that the cell parti-
tioned relay algorithm yields an average delay of O(N/(µ−
λi)). Inspection of (6) shows that this O(N) characteristic
cannot be removed by decreasing the data rate λ. The fol-
lowing questions emerge: Can another scheduling algorithm
be constructed which improves delay? What is the minimum
delay the network can guarantee, and for what data rates is
this delay obtainable? More generally, for a given data rate
λ (assumed to be less than the system capacity µ), we ask:
What is the optimal delay bound, and what algorithm achieves
this? In this section we present several fundamental bounds
on delay performance, which establishes initial steps towards
addressing these general questions. We assume throughout that

λ destµ

Ν−2

1

source

2d(N-2)
(p-q)

2d(N-2)
(p-q)

Fig. 3. A decoupled diagram of the network as seen by the packets
transmitted from a single user to the corresponding destination. Service
opportunities at the first stage are Bernoulli with rate µ. Service at the second
stage (relay) queues is Bernoulli with rate (p− q)/(2d(N − 2)).
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the user/cell density d is a fixed value independent of N , and
use d = d∗ = 1.7933 in all numerical examples.

A. Scheduling Without Redundancy

Suppose that no redundancy is used: that is, packets are
not duplicated and are held by at most one user of the
network at any given time. Thus, a packet that is transmitted
to another user is deleted from the memory storage of the
transmitting user. Note that this is the traditional approach to
data networking, and that the 2-hop relay algorithm is in this
class of algorithms.

Theorem 4: Algorithms which do not use redundancy can-
not achieve an average delay of less than O(N).

Proof: The minimum delay of any packet is computed
by considering the situation where the network is empty and
user 1 sends a single packet to user 2. It is easy to verify
that relaying the packet cannot help, and hence the delay
distribution is geometric with mean C = N/d.

Hence, the relay algorithm not only achieves capacity, but
achieves the optimal O(N) delay performance among all
strategies which do not use redundancy. Other policies which
do not use redundancy can perhaps improve upon the delay
coefficient, but cannot change the O(N) characteristic.

B. Scheduling With Redundancy

Although redundancy cannot increase capacity, it can con-
siderably improve delay. Clearly, the time required for a packet
to reach the destination can be reduced by repeatedly trans-
mitting this packet to many users of the network—improving
the chances that some user holding an original or duplicate
version of the packet reaches the destination. Consider any
network algorithm (which may or may not use redundant
packet transfers) that restricts packets to 2-hop paths.

Theorem 5: No algorithm (with or without redundancy)
which restricts packets to 2-hop paths can provide an average
delay better than O(

√
N).

To prove this result, again consider the sending of a single
packet from its source to its destination. Clearly the optimal
scheme is to have the source send duplicate versions of the
packet to new relays whenever possible, and for the packet to
be relayed to the destination as soon as either the source or a
duplicate-carrying relay enters the same cell as the destination.
Let TN represent the time required to reach the destination
under this optimal policy for sending a single packet. In the
following lemma, we bound the limiting behavior1 of E {TN},
proving Theorem 5.

Lemma 1: e−d ≤ limN→∞
E{TN}√

N
≤ 2

1−e−d

Proof: Lemma 1 (a) Lower Bound: To prove the lower
bound, note that during timeslots {1, 2, . . . ,

√
N}, there are

fewer than
√
N users holding the packet. Hence, Pr[TN >√

N ] ≥ (1 − 1/C)
√

N
√

N (where (1 − 1/C)
√

N is the
probability that nobody within a group of

√
N particular users

1Using the inequality e
−d2
N−d e−d ≤

“
1− d

N

”N
≤ e−d, explicit bounds

of the form α
√

N ≤ E {TN} ≤ β
√

N can also be derived.

enters the cell of the destination during a given timeslot).
Recall that the user/cell density d is defined dM=N/C. Thus:

E {TN} ≥ E
{
TN |TN >

√
N

}
Pr[TN >

√
N ]

≥
√
N

(
1− d

N

)N

→ e−d
√
N

(b) Upper Bound: To prove the upper bound, note that
E {TN} ≤ S1 +S2, where S1 represents the expected number
of slots required to send out duplicates of the packet to

√
N

different users, and S2 represents the expected time until one
user within a group of

√
N users containing the packet reaches

the cell of the destination. The probability of the source
meeting a new user is at least 1− (1− 1/C)N−

√
N for every

timeslot where fewer than
√
N users have packets, and hence

the average time to reach a new user is less than or equal to the
inverse of this quantity (i.e, the average time of a geometric
variable). As the source must encounter

√
N users, we have:

S1 ≤
√
N

1− (1− 1/C)N−
√

N
→

√
N

1− e−d

To compute S2, note that P (success), the probability that
one of the

√
N users reaches the destination during a slot,

is given by the probability there is at least one other user in
the same cell as the destination multiplied by the conditional
probability that a packet-carrying user is present given there
is at least one other user in the cell. The former probability is
1− (1− 1/C)N−1, and the latter is at least

√
N/N :

P (success) ≥ 1− (1− 1/C)N−1

√
N

→ 1− e−d

√
N

(7)

Hence, S2 ≤
√

N
1−e−d . Summing S1 and S2 proves the result.

An exact expression for the minimum delay E {TN} is
presented in Appendix D by using a recursive formula. In Fig.
4 we plot the exact expression as a function of N together
with the upper and lower bounds of Lemma 1 for the case
d = d∗ = 1.7933.

C. Multi-User Reception

To increase the packet replication speed throughout the net-
work, it is useful to allow a transmitted packet to be received
by all other users in the same cell as the transmitter, not
just the single intended recipient. This feature cannot increase
capacity, but can considerably improve delay by enabling
multiple duplicates to be injected into the network with just a
single transmission. However, the O(

√
N) result of Theorem

5 cannot be overcome by introducing multi-user reception (see
Appendix E). For the remainder of this paper, we assume
multi-user reception is available when proving fundamental
performance limits, but we do not require multi-user reception
in any of our algorithms that demonstrate achievability of these
limits.
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Fig. 4. The exact minimum delay of a 2-hop scheduling scheme versus the
number of users N at the optimal user/cell density d∗, together with the upper
and lower bounds of Lemma 1. Curves are plotted on a log− log scale and
have slope 1/2, illustrating the O(

√
N) behavior.

IV. SCHEDULING FOR DELAY IMPROVEMENT

In the previous section an O(
√
N) delay bound was de-

veloped for redundant scheduling by considering a single
packet for a single destination. Two complications arise when
designing a general scheduling protocol using redundancy: (1)
All sessions must use the network simultaneously, and (2)
Remnant versions of a packet that has already been delivered
to its destination create excess congestion and must somehow
be removed.

Here we show that the properties of the 2-hop relay
algorithm make it naturally suited to treat the multi-user
problem. The second complication of excess packets is
overcome by the following in-cell feedback protocol, in
which a receiving node tells its transmitter which packet it
is looking for before transmission begins. We assume all
packets are labeled with send numbers SN , and the in-cell
feedback is in the form of a request number RN delivered
by the destination to the transmitter just before transmission.
In the following protocol, each packet is retransmitted

√
N

times to distinct relay users.

In-Cell Feedback Scheme with
√
N Redundancy: In every

cell with at least two users, a random sender and a random
receiver are selected, with uniform probability over all
users in the cell. With probability 1/2, the sender is
scheduled to operate in either ‘source-to-relay’ mode, or
‘relay-to-destination’ mode, described as follows:

1) Source-to-Relay Mode: The sender transmits packet SN ,
and does so upon every transmission opportunity until√
N replicas have been delivered to distinct users, or until

the sender transmits SN directly to the destination. After

such a time, the send number is incremented to SN + 1.
If the sender does not have a new packet to send, remain
idle.

2) Relay-to-Destination Mode: When a user is scheduled to
transmit a relay packet to its destination, the following
handshake is performed:
• The receiver delivers its current RN number for the

packet it desires.
• The transmitter deletes all packets in its buffer des-

tined for this receiver which have SN numbers lower
than RN .

• The transmitter sends packet RN to the receiver. If
the transmitter does not have the requested packet
RN , it remains idle for that slot.

Notice that the destination receives all packets in order, and
that no packet is ever transmitted twice to its destination.

Theorem 6: The In-Cell Feedback Scheme achieves the
O(
√
N) delay bound, with user data rates of O(1/

√
N).

More precisely, if all users receive exogenous data for their
destinations according to a Poisson process of rate λi, the
network can stably support rates λi < µ̃, for the reduced
network throughput µ̃ given by:

µ̃ =
γN

(
1− e−d

)
4(2 + d)

√
N

(8)

where γN is a sequence that converges to 1 as N → ∞.
Furthermore, average end-to-end delay E {Wi} satisfies:

E {Wi} ≤
1
2

+
1/µ̃

1− ρi

where ρi
M=λi/µ̃.

To prove the result, first note that when a new packet reaches
the head of the line at its source queue, the time required for
the packet to reach its destination is at most TN = S1 + S2,
where S1 represents the time required for the source to send
out

√
N replicas of the packet, and S2 represents the time

required to reach the destination given that
√
N users have the

packet. Bounds on the expectations of S1 and S2 which are
independent of the initial state of the network can be computed
in a manner similar to the proof of Lemma 1. The multi-user
environment here simply acts to scale up these expectations by
a constant factor due to collisions with other users (compare
the upper bound of Lemma 1 with that given in (9) below).
This factor does not scale with N because the average number
of users in any cell is the finite number d. Indeed, in Appendix
F it is shown that:

E {TN} ≤
4(2 + d)

√
N

γN (1− e−d)
(9)

where γN is a function that converges to 1 as N →∞.
Note that the random variable TN satisfies the sub-

memoryless property: The residual time of TN given that
a fixed number of slots have already passed (without TN

expiring) is stochastically less than the original time TN .2 This
is because the topology of the network is independent from slot
to slot, and hence starting out with several duplicate packets

2This is often called the ‘New Better than Used’ property’, see [19].
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already in the network yields statistically smaller delay than
if no such initial duplicates are present.

The RN/SN handshake ensures that newer packets do
not interfere with older packets, but that replication of the
next packet waiting at the source queue begins on or before
completion of the TN ‘service time’ for the current packet
SN . Packets thus view the network as a single queue to which
they arrive and are served sequentially. Although actual service
times may not be i.i.d., their expectations are all independently
bounded by E {TN}, as are the expected residual service
times seen by a randomly arriving packet. This is sufficient to
establish the following lemma, the proof of which is similar to
the derivation of the standard P-K formula for average delay
in an M/G/1 queue.

Lemma 2: Suppose inputs to a single server queue are Pois-
son with sub-memoryless service times that are independently
bounded in expectation by a value E {TN}. If the arrival rate
is λ, where λ < 1/E {TN}, then average delay satisfies:

E {W} ≤ 1
2

+
E {TN}
1− ρ

(10)

where ρM=λE {TN}. The expression on the right hand side of
the above inequality is the standard expression for delay in an
M/M/1 queue with i.i.d. service times TN that are restricted
to start on slot boundaries.

Proof: Consider a single packet arriving from a Poisson
stream, and let Wq represent the time this packet spends
waiting in the queue before reaching the server. We have:

Wq =
Nq∑
i=1

Xi +R (11)

where Nq is the number of packets already in the queue, {Xi}
are the service times of these packets, and R represents the
residual time until either the packet currently in the server
finishes its service, or (if the system is empty) the start of
a new timeslot. Note that E {R} ≤ ρactualE {TN} + (1 −
ρactual) 1

2 , where ρactual represents the probability that the
system is busy with a packet already in service. From Little’s
Theorem we have that ρactual = λE {X}, where E {X}
represents the average service time of a generic packet. Since
E {X} ≤ E {TN}, it follows that ρactual ≤ ρ. Clearly
E {TN} ≥ 1/2, and hence we can increase the upper bound
on E {R} by replacing ρactual with ρ, yielding E {R} ≤
ρE {TN}+ (1− ρ) 1

2 . Taking expectations of (11) thus yields:

E {Wq} = ENq

 Nq∑
i=1

E {Xi |Nq }

 + E {R}

≤ ENq

 Nq∑
i=1

E {TN}

 + ρE {TN}+ (1− ρ)
1
2

= E {Nq}E {TN}+ ρE {TN}+ (1− ρ)
1
2

= λE {Wq}E {TN}+ ρE {TN}+ (1− ρ)
1
2
(12)

where (12) follows from Little’s Theorem. We thus have:

E {Wq} ≤
ρE {TN}

1− ρ
+

1
2

Noting that the total waiting time E {W} satisfies E {W} ≤
E {Wq}+ E {TN} yields the result.

Defining µ̃M=1/E {TN} and using (9) proves Theorem 6.

V. MULTI-HOP SCHEDULING AND LOGARITHMIC DELAY

To further improve delay, we can remove the 2-hop restric-
tion and consider schemes which allow for multi-hop paths.
Here, a simple flooding protocol is developed and shown to
achieve O(log(N)) delay at the expense of further reducing
throughput.

To achieve O(log(N)) delay, consider the situation in
which a single packet is delivered over an empty network.
At first, only the source user contains the packet. The packet
is transmitted and received by all other users in the same
cell as the source. In the next timeslot, the source as well
as all of the new users containing the packet transmit in
their respective cells, and so on. If all duplicate-carrying users
enter distinct cells every timeslot, and each of these users
delivers the packet to exactly one new user, then the number
of users containing the packet grows geometrically according
to the sequence {1, 2, 4, 8, 16, . . .}. The actual growth pattern
may deviate from this geometric sequence somewhat, due to
multiple users entering the same cell, or to users entering cells
that are devoid of other users. However, it can be shown that
the expected growth is geometric provided that the number of
packet-holding users is less than N/2.

Define the total time to reach all users as TN = S1 + S2,
where S1 and S2 respectively represent the time required to
send the packet to at least N/2 users, and the time required
to deliver the packet to the remaining users given that at least
N/2 users initially hold the packet.

Lemma 3: Under the above algorithm of flooding the net-
work with a single packet, for any network size N ≥
max{d, 2}, the expected time E {TN} for the packet to reach
every user satisfies E {TN} ≤ E {S1}+ E {S2}, where:

E {S1} ≤
log(N) (1 + d/2)
log(2)(1− e−d/2)

E {S2} ≤ 1 +
2
d
(1 + log(N/2)) (13)

Proof: The proof is given in Appendix G.

A. Fair Packet Flooding Protocol

Thus, O(log(N)) delay is achievable when sending a single
packet over an empty network. To enable O(log(N)) delay
in the general case where all sessions are active and share
the network resources, we construct a flooding protocol in
which the oldest packet that has not been delivered to all
users is selected to dominate network resources. We assume
that packets are sequenced with SN numbers as before.
Additionally, packets are stamped with the timeslot t in which
they arrived.

Fair Packet Flooding Protocol: Every timeslot and in each
cell, users perform the following: Among all packets contained
in at least one user of the cell but which have never been
received by some other user in the same cell, choose the packet
p which arrived earliest (i.e., it has the smallest timestamp tp).
If there are ties, choose the packet from the session i which
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maximizes (tp + i) mod N . Transmit this packet to all other
users in the cell. If no such packet exists, remain idle.

The above protocol is ‘fair’ in that in case of ties, session
i packets are given top priority every N timeslots. Other
schemes for choosing which packet to dominate the network
could also be considered. Delay under the above protocol can
be understood by comparing the network to a single queue
with N input streams of rates λ1, λ2, . . . , λN which share a
single server with service times TN . Note that the TN service
time is also sub-memoryless. Thus, from Lemma 2, we have:

Theorem 7: For Poisson inputs with rates λi for each source
i, the network under the fair flooding protocol is stable
whenever

∑
i λi < 1/E {TN}, with average end-to-end delay

satisfying:

E {W} ≤ 1
2

+
E {TN}
1− ρ

(14)

where ρM=
∑

i λiE {TN}, and E {TN} = E {S1} + E {S2}.
Note that O(log(N)) bounds on E {S1} and E {S2} are given
in Lemma 3. Thus, when all sources have identical input
rates λ, stability and logarithmic delay is achieved when
λ = O( 1

N log(N) ). �
Note that the flooding algorithm easily allows for multicast

sessions, where data of rate λ is delivered from each source to
all other users. One might expect that delay can be improved if
we only design for unicast. However, it is shown in Appendix
H that logarithmic delay is the best possible for any strategy at
any data rate. Hence, communication for unicast or multicast is
the same in the logarithmic delay regime. In the next section,
we address the following question: Is it possible to increase
data rates via some other protocol while maintaining the same
average delay guarantees?

VI. FUNDAMENTAL DELAY/RATE TRADEOFFS

Considering the capacity achieving 2-hop relay algorithm,
the 2-hop algorithm with

√
N redundancy, and the packet

flooding protocol, we have the following achievable de-
lay/capacity performance tradeoffs.

scheme throughput delay
no redundancy O(1) O(N)
redundancy 2-hop O(1/

√
N) O(

√
N)

redundancy multi-hop O( 1
N log(N) ) O(log(N))

A simple observation reveals that delay/rate ≥ O(N) for
each of these three protocols. In this section, we establish that
this is in fact a necessary condition. Thus, performance of each
given protocol falls on or near the boundary of a fundamental
rate-delay curve (see Fig. 1).

Consider a network with N users, and suppose all users
receive packets at the same rate λ. A control protocol which
makes decisions about scheduling, routing, and packet retrans-
missions is used to stabilize the network and deliver all packets
to their destinations while maintaining an average end-to-end
delay less than some threshold W .

Theorem 8: A necessary condition for any conceivable
routing and scheduling protocol that stabilizes the network

with input rates λ while maintaining bounded average end-to-
end delay W is given by:

W

λ
≥ N − d

4d
(1− log(2)) (15)

where log() denotes the natural logarithm, and d = N/C is
the user/cell density.

In particular, if d = O(1), then W/λ ≥ O(N).
The above condition holds for all possible control strategies,

including those that use multi-user reception. We prove this
theorem with a novel technique for probabilistic conditioning.

Proof: Suppose the input rate of each of the N sessions is
λ, and there exists some stabilizing scheduling strategy which
ensures an end-to-end delay of W . In general, the end-to-end
delay of packets from individual sessions could be different,
and we define W i as the resulting average delay of packets
from session i. We thus have:

W =
1
N

∑
i

W i (16)

Let Ri represent the average redundancy associated with
packets from session i. That is, Ri is the number of users
who receive a copy of an individual packet during the course
of the network control operation, averaged over all packets
from session i. Note that all packets are eventually received by
the destination, so that Ri ≥ 1. Additional redundancy could
be introduced by multi-hop routing, or by any packet repli-
cation effort that is used to achieve stability and/or improve
delay. The average number of successful packet receptions per
timeslot is thus given by the quantity λ

∑N
i=1Ri. Since each

of the N users can receive at most 1 packet per timeslot, we
have:

λ

N∑
i=1

Ri ≤ N (17)

Now consider a single packet p which enters the network
from session i. This packet has an average delay of W i and
an average redundancy of Ri. Let random variables Wi and
Ri represent the actual delay and redundancy for this packet.
We have:

W i = E
{
Wi | Ri ≤ 2Ri

}
Pr[Ri ≤ 2Ri] + (18)

E
{
Wi | Ri > 2Ri

}
Pr[Ri > 2Ri]

≥ E
{
Wi | Ri ≤ 2Ri

}
Pr[Ri ≤ 2Ri]

≥ E
{
Wi | Ri ≤ 2Ri

} 1
2

(19)

where (19) follows because Pr[Ri ≤ 2Ri] ≥ 1
2 for any non-

negative random variable Ri.
Note that the smallest possible delay for packet p is the

time required for one of its carriers to enter the same cell
as the destination. Consider now a virtual system in which
there are 2Ri users initially holding packet p, and let Z
represent the time required for one of these users to enter
the same cell as the destination. Every timeslot the ‘success
probability’ for this system is φM=1 − (1 − 1

C )2Ri , so that
E {Z} = 1/φ. Although there are more users holding packet
p in this system, the expectation of Z does not necessarily
bound E

{
Wi | Ri ≤ 2Ri

}
because conditioning on the event
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{Ri ≤ 2Ri} might skew the probabilities associated with the
user mobility process. However, since the event {Ri ≤ 2Ri}
occurs with probability at least 1/2, we obtain the following
bound:

Claim 1:

E
{
Wi | Ri ≤ 2Ri

}
≥ inf

Θ
E {Z | Θ} (20)

where the conditional expectation is minimized over all con-
ceivable events Θ which occur with probability greater than
or equal to 1/2.

A proof of Claim 1 is given at the end of this subsection.
Intuitively, it holds because minimizing over all such events Θ
includes events that could yield mobility patterns of the type
encountered when {Ri ≤ 2Ri}.

We now stochastically couple Z to an independent exponen-
tial variable Z̃ with rate γ M= log(1/(1−φ)). The variable Z̃ is
stochastically less than Z because Pr[Z̃ > ω] ≤ Pr[Z > ω]
for all ω. Indeed, because Z̃ is exponential with rate γ, we
have Pr[Z̃ > ω] = e−γω = (1− φ)ω for any ω ≥ 0, while Z
is geometric with success probability φ, so that:

Pr[Z > ω] = (1− φ)bωc ≥ (1− φ)ω = Pr[Z̃ > ω]

The fact that Z̃ is stochastically less than Z leads to the
following claim:

Claim 2: For variables Z and Z̃, we have:

inf
Θ

E {Z | Θ} ≥ inf
Θ̃

E
{
Z̃ | Θ̃

}
=

1− log(2)
γ

(21)

where the first infimum is taken over all events Θ that occur
with probability greater than or equal to 1/2 on the probability
space for Z, and the second infimum is taken over all events
Θ̃ that occur with probability greater than or equal to 1/2 on
the probability space for Z̃.

Claim 2 is proven at the end of this subsection. Using (21)
and (20) in (19) yields: W i ≥ 1−log(2)

2γ . From the definitions

of γ and φ, we have γ = log
(
1/(1− 1

C )2Ri

)
= 2Ri log(1 +

1
C−1 ). Since log(1+x) ≤ x for any x, we have γ ≤ 2Ri/(C−
1). We thus have:

W i ≥
1− log(2)

2γ
≥ (C − 1)(1− log(2))

4Ri

Summing this inequality over all i, we have:

W =
1
N

N∑
i=1

W i ≥ (C − 1) (1− log(2))
4

1
N

N∑
i=1

1
Ri

≥ (C − 1) (1− log(2))

4 1
N

∑N
i=1Ri

(22)

where (22) follows from Jensen’s inequality, noting that the
function f(R) = 1/R is convex, and hence 1

N

∑N
i=1 f

(
Ri

)
≥

f
(

1
N

∑N
i=1Ri

)
. Combining (22) and (17), we have:

W ≥ (C − 1) (1− log(2))λ
4

=
(N − d) (1− log(2))λ

4d
Hence, the delay/rate characteristics necessarily satisfy the
inequality W

λ ≥ O(N), proving the theorem.

We complete the analysis by proving Claims 1 and 2:
Proof of Claim 2. We first compute infΘ̃ E

{
Z̃ | Θ̃

}
. Note

that Z̃ is a continuous variable, and so the minimizing event
Θ̃ is clearly the event {Z̃ ≤ ω}, where ω is the smallest value
such that Pr[Z̃ ≤ ω] ≥ 1

2 . Since Z̃ is exponential with rate
γ = log(1/(1− φ)), we have Pr[Z̃ > ω] = e−γω = 1/2, and
hence ω = log(2)

γ . Conditioning on this event, we have:

inf
Θ̃

E
{
Z̃ |Θ

}
= E

{
Z̃ | Z̃ ≤ ω

}
=

E
{
Z̃

}
− E

{
Z̃ | Z̃ > ω

}
Pr[Z̃ > ω]

Pr[Z̃ ≤ ω]

=
1
γ − (ω + 1

γ ) 1
2

1/2
=

1− log(2)
γ

Now note that Z̃ is stochastically less than Z, so that
there must exist a coupling variable Z ′ such that variables
Z̃ and Z ′ have the same distribution, and Z ′ lies on the same
probability space as Z and satisfies Z ′ ≤ Z for all instances
of Z ′ and Z (see [19] for a discussion of stochastic coupling).
Since Z ′ is also an exponential with rate γ, it follows that
infΘ E {Z ′ | Θ} = (1− log(2))/γ. However, because Z ′ ≤ Z
always, it follows that:

inf
Θ

E {Z ′ | Θ} ≤ inf
Θ

E {Z | Θ}

proving Claim 2. �
To prove Claim 1, we present a preliminary lemma:
Lemma 4: For any random variables X,Y such that X is

stochastically greater than Y , and for any event Φ such that
Pr[Φ] ≥ 1/2 (where Φ occurs on the same probability space
as X), we have:

E {X | Φ} ≥ inf
{Θ|Pr[Θ]≥ 1

2}
E {Y | Θ}

where events Θ occur on the same probability space as Y .
Proof of Lemma 4. Since X is stochastically greater than Y ,
there must exist a variable X̃ defined on the same probability
space as X , such that X ≥ X̃ always, and where X̃ and Y
have the same distribution [19]. Thus:

E {X | Φ} ≥ E
{
X̃ | Φ

}
≥ inf

{Ψ|Pr[Ψ]≥ 1
2}

E
{
X̃ | Ψ

}
(23)

= inf
{Θ|Pr[Θ]≥ 1

2}
E {Y | Θ} (24)

where (23) follows because Φ is a particular element of the
collection of sets Ψ that occur on the same probability space
as X̃ and satisfy Pr[Ψ] ≥ 1

2 , and (24) follows because X̃
and Y have the same distribution, and the value of any such
infimum depends only on the distribution (seer Appendix I).
�

Proof of Claim 1: Recall that Wi represents the delay
of packet p under a general scheduling strategy, and Ri

represents the redundancy associated with scheduling this
packet. Let W rest

i represent the corresponding delay under
the restricted scheduling policy that schedules packets as
before until either the packet is successfully delivered, or
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the redundancy increases to 2Ri (at which point no more
redundant transmissions are allowed). Since this modified
policy restricts redundancy to at most 2Ri, the delay W rest

i

is stochastically greater than the variable Z, representing
the delay in a virtual system with only one packet that is
initially held by 2Ri users. By Lemma 4 we thus have that
E

{
W rest

i | Ri ≤ 2Ri

}
≥ inf{Θ|Pr[Θ]≥ 1

2}
E {Z | Θ}. How-

ever, note that the restricted policy is identical to the original
policy whenever Ri ≤ 2Ri, and hence E

{
Wi | Ri ≤ 2Ri

}
=

E
{
W rest

i | Ri ≤ 2Ri

}
, proving Claim 1. �

A. Discussion
The fact that delay/rate ≥ O(N) establishes a funda-

mental performance tradeoff, illustrating that no scheduling
and routing algorithm can simultaneously yield low delay
and high throughput. The O(N) and O(

√
N) scheduling

algorithms provided here meet this bound with equality, and
the O(log(N)) algorithm lies above the bound by a factor of
O(log2(N)) (see table above).

We note that alternate approaches to the capacity/delay
tradeoff problem were recently developed in [17] [16] [18] for
networks with different physical characteristics. Specifically,
the work in [17] develops a similar W/λ ≥ O(N) curve
by assuming the user transmission radius can be increased to
include O(Nα) other users, where α is between 0 and 1 and
affects the delay tradeoff. This analysis does not consider the
use of redundant packet transfers or multi-user reception. A
similar approach by Toumpis and Goldsmith in [16] shows that
an improved tradeoff W/λ2 = O(N log5(N)) can be achieved
when multi-user reception is used together with transmission
radius scaling, but there was no proof of optimality.

In the context of a cell partitioned network as we have
defined, an increased transmission radius would correspond to
a user/cell density that is a function of N , that is, d = O(Nα).
While our work was developed independently and intended
only for the case d = O(1) (independent of N ), the necessary
condition in Theorem 8 was proven for arbitrary values of the
user/cell density d, and hence it can be used to evaluate the
performance of the Toumpis-Goldsmith algorithm applied to a
cell partitioned network. Indeed, first note that the additional
inequality Nλ ≤ C must hold for any policy on a cell
partitioned network (as the rate of new packets transmitted
by their sources is less than or equal to C, the maximum
number of transmissions possible during a slot). Thus, λ ≤
1/d is necessary for any protocol, and directly plugging this
inequality into (15) yields: W/λ2 ≥ (N−d)(1−log(2))

4 .
Hence, the Toumpis-Goldsmith algorithm is near-optimal

over the class of all algorithms that can be implemented on
a cell partitioned network that does not impose the constraint
d = O(1). We note that a recent preliminary result in [18]
suggests that an improved tradeoff W/λ3 ≥ O(N) is possible
if the network has different physical properties that allow for
multi-hop transmission during a single slot (so that a bit can be
transfered from node 1 to node 2, ..., to node K, all during a
single slot). Of course, it is not possible to implement such an
algorithm on the cell partitioned network that we have defined,
because transmission on each successive hop would require a
new timeslot.

VII. NON-I.I.D. MOBILITY MODELS

The analysis developed here for the i.i.d. mobility model
can be used to bound the performance of a system with
a Markovian mobility model. Instead of performing control
actions on the network every slot, we decompose the network
into a set of K parallel sub-networks. Packets are considered
to be of ‘type-k’ if they arrive during a timeslot t such that
t mod K = k. On such timeslots, only control actions on
type-k packets take place. The value of K is chosen suitably
large to ensure that the user location distribution after K
slots is within a constant factor of its steady state value.
Specifically, if K is chosen such that, regardless of the initial
configuration of users, the probability that two given users
are in the same cell after K slots is at least 1

2C , then delay
under the three schemes is bounded by O(KN), O(K

√
N),

and O(K log(N)), respectively. The O(KN) result for the 2-
hop relay algorithm (with no redundancy) follows by using
the K-slot Lyapunov drift arguments developed in [1] [5].
The O(K

√
N), and O(K log(N)) bounds follow by literally

repeating the same arguments used for the
√
N redundancy

algorithm and the Fair-Flooding algorithm on a K slot basis.
While this analysis offers a simple upper bound on average

delay, we note that for many network models the value of
K may depend on N , making these bounds larger than the
O(N) and O(

√
N) results for i.i.d. mobility. For example,

the value of K for a Markovian random walk might be
on the order of

√
N , representing the time required for a

node to move from one side of the network to the other.
However, it is possible that alternative scheduling schemes
could yield lower delay. Indeed, in the next section it is shown
through simulation that applying the 2-hop relay algorithm
and the

√
N redundancy algorithm exactly as before (without

the K-subchannel decomposition) yields similar performance
for both i.i.d. and non-i.i.d. mobility. It may be possible to
analytically establish this result by proving that the average
re-visitation time between any two nodes remains O(N) under
Markovian random walks, and that the average time required
to send out

√
N duplicates of a single packet to different nodes

and the time required for the destination to encounter one of
these duplicate-carrying users remains O(

√
N). We leave such

questions for future work.

VIII. SIMULATION RESULTS

Here we compare the average delay obtained through both
analysis and simulation as the network is scaled. We consider
a network with cells given by an M×M grid as shown in Fig.
1. The number of cells C is equal to M2 (where M is varied
between 3 and 15 for simulations), and the number of users N
is chosen as the even integer for which N/C most accurately
approximates the optimal user/cell density value d∗ = 1.7933.

In Fig. 5, plots of average end-to-end delay versus the
number of users N are provided for the 2-hop relay algorithm
and the O(

√
N) redundancy algorithm for both an i.i.d. and

a non-i.i.d. mobility model. In the i.i.d. mobility model, users
choose new cells uniformly over all cells in the network.
In the non-i.i.d. model, each user chooses a new cell every
timeslot according to the following Markovian dynamics: With
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probability α < 1 the user stays in the same cell, and else
it moves to an adjacent cell to the North, South, East, or
West, with each direction equally likely. In the case where
a user is on the edge of the network and is selected to
move in an infeasible direction, it stays in its place. Using
standard random walk theory it is easy to verify that, in steady
state, such a Markov model leaves users independently and
uniformly distributed over all cells, as the stationary equation
for the Markov chain is satisfied when all cell locations have
equal probability [20] [21] [22]. In particular, if πi represents
the steady state probability of a particular cell i, we have:

πi = πiα+πa
(1− α)

4
+πb

(1− α)
4

+πc
(1− α)

4
+πd

(1− α)
4

where πa, πb, πc, πd represent steady state probabilities for
other cells, possibly including cell i. In the case when cell i is
an interior cell, it has four distinct neighbors a, b, c, d. In the
case when it is an edge cell with three neighbors a, b, c, we set
d = i (so that cell i is its own neighbor). In the case when cell
i is a corner cell with 2 neighbors a and b, we set c = d = i.
Clearly these steady state equations are satisfied when the πi

probabilities are set to 1/C for all i.3 Therefore, the network
capacity µ is the same for both the i.i.d. mobility model and
the non-i.i.d. mobility model, and is given by µ = p+q

2d as
described in Theorem 1. In the simulation results we set the
α parameter of the non-i.i.d. model to α = 1/2.

For the capacity achieving 2-hop relay algorithm, the data
rate λ into each user is fixed at 80% of the network capacity
µ (given in Theorem 1), so that ρ = λ/µ = 0.8. The top
three curves for average delay in Fig. 5 respectively represent
the exact analytical delay for i.i.d. mobility, the simulated
performance of the i.i.d. mobility model, and the simulated
performance of the Markovian mobility model. Note that
the simulation curve for the i.i.d. mobility model is almost
indistinguishable from the analytical curve E {W} = N−1−λ

µ−λ .
The curves are plotted on a log log scale and have a slope
of 1, indicating O(N) delay. The delay curve for Markovian
mobility is situated slightly above the curve for i.i.d. mobility,
and also has a slope of 1. This suggests that for Markovian
mobility, delay is increased by a constant multiplicative factor
but remains O(N).

Results for the
√
N redundancy protocol are also shown in

the figure. Data rates λ are set to the value λ = 0.8µ̃, where µ̃
is given in (8). Note that, unlike the network capacity µ, the
throughput µ̃ decreases as O(1/

√
N). The analytical upper

and lower bounds on delay for i.i.d. mobility are shown in the
figure, each having a slope of 1/2 indicating O(

√
N) growth

(note that the lower bound represents the delay of sending
just a single packet). The simulation performance for i.i.d.
mobility is shown in the figure and is situated between the
upper and lower bounds. The upper bound is larger than the
simulated curve by approximately a factor of 10, suggesting
that tighter bounds could be obtained through a more detailed
analysis. The slope of the simulation curve varies between

3Similar results hold when the random walk has a different behavior at
the edges. In particular, if the direction is chosen uniformly over all feasible
directions, then the interior cells will have equal probability but the edge cells
will have a different probability.
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Fig. 5. Average delay versus the number of users N for the 2-hop relay
algorithm and the

√
N redundancy algorithm.

5/8 and 1/2. However, due to the O(
√
N) upper and lower

bounds, the average slope would converge to 1/2 if the graph
were extended. Simulation of the Markovian mobility model is
also provided, and the curve again lies slightly above the i.i.d.
mobility curve. This suggests that delay under the Markovian
model is close to O(

√
N).

Experiments to simulate the performance of the O(log(N))
scheme were not performed. However, for this case, we would
expect a discrepancy between the i.i.d. mobility model and the
non-i.i.d. mobility model. Indeed, although the i.i.d. mobility
model yields logarithmic delay, the delay under a Markovian
mobility model would likely be closer to O(

√
N) due to the

time required for a user to travel from one side of the network
to the other.

IX. CONCLUSIONS

This work for the first time presents a multi-hop, multi-user
system for which a relatively complete network theory can
be developed. Exact expressions for network capacity were
derived, and a fundamental rate-delay curve was established,
representing performance bounds on throughput and end-to-
end network delay for any conceivable routing and scheduling
policy.

Delay analysis for the network was facilitated using a
simple i.i.d. user mobility model. Under this model, an exact
expression for end-to-end delay which includes the full effects
of queueing was established for the capacity achieving 2-
hop relay algorithm. Two other protocols which (necessarily)
use redundant packet transfers were provided and shown
to improve delay at the expense of reducing throughput.
The rate-delay performance of these schemes was shown to
lie on the boundary of the fundamental performance curve
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delay/rate ≥ O(N). Analysis of general mobility models
can be understood in terms of this i.i.d. analysis, where delay
bounds can be scaled by the factor K, representing the number
of slots required between sampling points for samples of user
locations to look nearly i.i.d.. Furthermore, simulation results
suggest that O(

√
N) delay can be achieved for networks with

Markovian mobility, as the delay for such systems closely
follows the delay curve for a system with i.i.d. mobility.

This inspires a rich set of questions concerning the fun-
damental limits of data networks. We believe that the con-
dition delay/rate ≥ O(N) is necessary for general classes
of mobile wireless networks, and that the (rate, delay) =(
O(1/

√
N), O(

√
N)

)
operating point is always achievable.

Such conjectures can perhaps be established using analytical
techniques similar to those created here.

APPENDIX A — THE NETWORK CAPACITY THEOREM

Here we prove Theorem 1: The capacity of a cell partitioned
network is:

µ =
p+ q

2d
where p represents the probability of finding at least two users
in a particular cell, and q represents the probability of finding
a source-destination pair within a cell.

An algorithm for stabilizing the network whenever λ < µ
is given in Section II-C. Here we prove λ ≤ µ is necessary
for stability.

Proof: (Necessity) Consider any stabilizing scheduling
strategy, perhaps one that uses full knowledge of future events.
Let Xh(T ) represent the total number of packets transferred
over the network from sources to destinations in h hops during
the interval [0, T ]. Fix ε > 0. For network stability, there must
be arbitrarily large values T such that the sum output rate is
within ε of the total input rate:∑∞

h=1Xh(T )
T

≥ Nλ− ε (25)

If this were not the case, the total number of packets in the
network would grow to infinity and hence the network would
be unstable. The total number of packet transmissions in the
network during the first T slots is at least

∑∞
h=1 hXh(T ).

This value must be less than or equal to the total number of
transmission opportunities Y (T ), and hence:

∞∑
h=1

hXh(T ) ≤ Y (T ) (26)

where Y (T ) represents the total number of cells containing
at least 2 users in a particular timeslot, summed over all
timeslots 1, 2, . . . , T . By the law of large numbers, it is clear
that 1

T Y (T ) → Cp as T → ∞, where p is the steady state
probability that there are two or more users within a particular
cell, and is given by (2).

From (25) and (26), it follows that

1
T
Y (T ) ≥ 1

T
X1(T ) +

2
T

∞∑
h=2

Xh(T )

≥ 1
T
X1(T ) + 2

(
(Nλ− ε)− 1

T
X1(T )

)

and hence

λ ≤
1
T Y (T ) + 1

T X1(T ) + 2ε
2N

(27)

It follows that maximizing λ subject to (27) involves placing
as much rate as possible on the single hop paths. However, the
time average rate 1

T X1(T ) of 1-hop communication between
source-destination pairs is bounded. Indeed, the probability q
that a particular cell contains a source-destination pair during
a timeslot can be written as 1 minus the probability that
no such pair is present. For the source-destination matching
1 ↔ 2, 3 ↔ 4, . . ., this probability is given as the value q
specified in (3). Let Z(T ) represent the total number of cells
containing source-destination pairs, summed over all timeslots
1, 2, . . . , T . Again by the law of large numbers, it follows that
1
T Z(T ) → Cq. Furthermore, it is clear that the number of
packets delivered on one hop paths is less than or equal to the
number of such opportunities:

1
T
X1(T ) ≤ 1

T
Z(T ) (28)

Combining constraints (27) and (28) and taking limits as T →
∞, we have:

λ ≤ Cp+ Cq + 2ε
2N

(29)

The necessary condition follows by using the user/cell
density definition d = N/C, and noting that ε can be chosen
to be arbitrarily small.

APPENDIX B — EXACT DELAY ANALYSIS OF THE 2-HOP
RELAY ALGORITHM

Proof of Delay Bound in Theorem 3: A decoupled view
of the network as perceived by a single user i is illustrated
in Fig. 3. Due to the i.i.d. mobility, the source user can
be represented as a Bernoulli/Bernoulli queue, where every
timeslot a new packet arrives with probability λ, and a service
opportunity arises with some fixed probability µ. We first show
that µ = p+q

2d . The Bernoulli nature of the server process
implies that the transmission probability µ is equal to the
time average rate of transmission opportunities of source i.4

Hence, we have µ = r1 + r2, where r1 represents the rate
at which the source is scheduled to transmit directly to the
destination, and r2 represents the rate at which it is scheduled
to transmit to one of its relay users. The cell partitioned relay
algorithm schedules transmissions into and out of the relay
nodes with equal probability, and hence r2 is also equal to the
rate at which the relay nodes are scheduled to transmit to the
destination. The total rate of transmission opportunities over
the network is thus N(r1 + 2r2). A transmission opportunity
occurs in any given cell with probability p, and hence:

Cp = N(r1 + 2r2) (30)

4A transmission opportunity arises when a user is selected to transmit to an-
other user, and corresponds to a service opportunity in the Bernoulli/Bernoulli
queue. Such opportunities arise with probability µ every timeslot, independent
of whether or not there is a packet waiting in the queue.
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Recall that q is the probability that a given cell contains a
source-destination pair. Since the cell partitioned relay algo-
rithm schedules the single-hop ‘source-to-destination’ trans-
missions whenever possible, the rate r1 satisfies:

Cq = Nr1 (31)

It follows from (31) that r1 = q/d, and hence by (30) we
infer that r2 = p−q

2d . The total rate of transmissions out of the
source node is thus given by µ = r1 + r2 = p+q

2d .
The source is thus a Bernoulli/Bernoulli queue with input

rate λ and server probability µ, having an expected number of
packets given by Lsource = ρ(1−λ)

1−ρ , where ρM=λ/µ [23]. This
queue is reversible ([22], [23]), and so the output process is
also a Bernoulli stream of rate λ.

A given packet from this output process is transmitted to
the first relay node with probability r2

µ(N−2) (because with
probability r2/µ the packet is intended for a relay node, and
each of the N − 2 relay nodes are equally likely). Hence,
every timeslot this relay independently receives a packet with
probability λ̃ = λr2

µ(N−2) . The relay node is scheduled for a
potential packet transmission to the destination with probabil-
ity µ̃ = r2

(N−2) (because a ‘relay-to-destination’ opportunity
arises in the relay node with probability r2, and arises for
each of the N − 2 destination nodes with equal probability).
However, packet arrivals and transmission opportunities are
mutually exclusive events in the relay node. It follows that
the discrete time Markov Chain for queue occupancy in the
relay node can be written as a simple birth-death chain which
is identical to the chain of a continuous time M/M/1 queue
with input rate λ̃ and service rate µ̃ (where λ̃/µ̃ = ρ). This
holds for each relay node, and the resulting occupancy at any
relay is thus: Lrelay = ρ

1−ρ . From Little’s Theorem, the total
network delay is W i =

[
Lsource + (N − 2)Lrelay

]
/λ, and

hence E {Wi} = N−1−λi

µ−λi
, proving the theorem. �

APPENDIX C — HETEROGENEOUS DATA RATES

Proof of Theorem 2: Here we prove that for heterogeneous
data rates (λij) such that there are at most K nonzero λij

entries in each row i, the symmetric capacity region satisfies:∑
j

λij ≤ (1− e−d − de−d)
2d

+O(K/N) ∀i

∑
i

λij ≤ (1− e−d − de−d)
2d

+O(K/N) ∀j

Before proving the theorem, we first note that whenever
N > d, we have:

e
−d2
N−d e−d ≤

(
1− d

N

)N

≤ e−d

which can be proven by taking the logarithm of the above
inequality and using the fact that log(1 + x) ≤ x whenever
x > −1.5 The difference between the upper and lower bounds

is thus e−d

(
1− e

−d2
N−d

)
. Using the Taylor expansion e

−d2
N−d =

5Note that −d
N−d

≤ − log
“
1 + d

N−d

”
= log

“
1− d

N

”
≤ −d

N
.

1 + −d2

N−d + O(1/N2) reveals that this difference is O(1/N),
and hence (1− d

N )N = e−d +O(1/N).
Proof: (Necessity) The proof that the above inequalities

are necessary conditions for stability is similar to the proof of
Theorem 1, where the equation (25) is replaced by:

1
T

∞∑
h=1

Xh(T ) ≥
∑

i

∑
j

λij − ε

Repeating the same argument as in Theorem 1, it follows that
[compare with (29)]:

1
N

∑
i

∑
j

λij ≤
Cp+ Cq̃ + 2ε

2N
=

p

2d
+

q̃

2d
+

ε

N

where p is the probability that at least two users are within a
cell (given in (2)), and q̃ is the probability that there exists
a source-destination pair within the cell. Note that q̃ may
be different from the value of q given in (3) because of
the different sets of source-destination pairs. However, since
each user i has at most K destination nodes to consider, the
union bound implies that the probability of any particular user
entering a given cell along with at least one of its destinations
is less than or equal to 1

C
K
C , so that q̃ ≤ N

C
K
C = O(K/N).

The probability p that at least two users are within a cell
satisfies:

p = 1−
(

1− d

N

)N

− d

(
1− d

N

)N−1

= 1− e−d − de−d +O(1/N)

Hence, 1
N

∑
i

∑
j λij ≤ 1−e−d−de−d

2d + O(K/N). This to-
gether with the fact that no user sends or receives more than
any other proves the result.

For sufficiency, we consider a 2-hop routing scheme, where
data is routed uniformly over all relay nodes on the first
hop regardless of its destination. We note that such a traffic
uniformization scheme is conceptually similar to the 2-stage
switch scheduling algorithm developed for N × N packet
switches in [24], where packets are randomly assigned to
output ports at the first stage so that traffic is uniform at the
second stage.

Proof: (Sufficiency) From the Network Capacity Theorem
developed in [1] [5], we know that it is sufficient to describe a
transmission strategy yielding long term node-to-node packet
exchange rates µij together with a set of multi-commodity
flows which route all data to their destinations without ex-
ceeding these rates on any link (i, j). Consider the strategy
of choosing a transmitter and receiver in each cell completely
randomly over all user pairs. As the expected number of packet
transfer opportunities over the network is Cp opportunities per
slot, the total rate of opportunities between any two links is
µij = Cp

N(N−1) .
Suppose now the rate of exogenous data arriving to any

node i is identically λ (for some data rate λ), as is the sum
rate of data entering the network destined for any node j,
so that

∑
i λij =

∑
j λij = λ for all i, j. (Any smaller rate

matrix which does not sum to λ in every row and column
can be increased to a matrix which does have this property).
Consider the 2-hop routing scheme were exogenous packets at
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a source are routed randomly and uniformly to any available
relay node, and these packets are then transferred from relay
to destination. Since on the first hop the algorithm routes data
independently of its destination, the incoming traffic to the
relay nodes is uniformly distributed, so that each relay receives
data destined for node j at a rate λ/(N−1) for all destinations
j.

The total rate of traffic flowing over any link from i to j is
thus 2λ/(N−1) (where a stream of total rate λ/(N−1) flows
from i to j due to packets from source i being relayed to j,
and data of rate λ/(N − 1) flows from i to j due to traffic
being relayed from i to destination j). This traffic satisfies the
link constraint provided that 2λ/(N − 1) ≤ µij = Cp

N(N−1) ,
or equivalently that λ ≤ p

2d . Thus, any rate matrices (λij)
satisfying

∑
i λij ≤ p

2d for all j and
∑

j λij ≤ p
2d for all

i are within the capacity region, where p
2d = 1−e−d−de−d

2d +
O(1/N).

APPENDIX D — MINIMUM DELAY FOR 2-HOP ROUTING

Here we derive a recursive formula for the minimum
average delay for sending a single packet from source to
destination in the case when routing is restricted to 2-hop
paths. We assume that multi-user reception is not available,
so that at most one user per cell can receive a packet during
a single timeslot.

The minimum delay algorithm transfers the packet to its
destination whenever the source or a duplicate-carrying relay
is in the same cell as the destination, and otherwise schedules
the source to deliver a duplicate version of the packet to a new
user whenever possible. Let E {TN} represent the expected
time for the packet to reach the destination. The value of
E {TN} can be computed recursively by defining variables
X1, X2, . . . , XN−1, where Xk represents the expected time
for the packet to reach its destination given that k users
are carrying duplicates of the packet. The probability that
a particular user does not move to the same cell as the
destination during a timeslot is (1 − 1/C). Therefore, the
probability that at least one user among a group of k users
does reach the destination is 1−(1−1/C)k. Note that because
all paths are restricted to 2 hops, the number of users holding a
duplicate version of the packet increases by at most one every
slot. This number stays the same if the source user does not
visit anyone new, and if (independently) all k− 1 other users
holding the packet do not visit the destination. Considering
the Markov nature of the problem, we have the following
transition probabilities for each state k ∈ {1, . . . , N − 2}:

Pr[k → end] = 1−
(

1− 1
C

)k

Pr[k → k] =
(

1− 1
C

)N−k (
1− 1

C

)k−1

=
(

1− 1
C

)N−1

Pr[k → k + 1] = 1− Pr[k → end]− Pr[k → k]

In state k = N − 1, the remaining time to finish is a
geometric variable with probability 1 −

(
1− 1

C

)N−1
. The

values of Xi can thus be computed recursively as follows:

XN−1 =
1

1− (1− 1/C)N−1

Xk = 1 +Xk(1− 1/C)N−1 +
Xk+1

[
(1− 1/C)k − (1− 1/C)N−1

]
and E {TN} = X1.

APPENDIX E — MULTI-USER RECEPTION

Here we show that multi-user reception cannot overcome the√
N lower bound on delay for 2-hop routing. Specifically, we

show that the delay E {TN} for any algorithm which restricts
packets to 2-hop paths satisfies:

lim
N→∞

E {TN}√
N

≥ e−d2

Proof: Consider sending a single packet to its destination
over an empty network. Let Kt represent the total number
of users who have the packet at the beginning of slot t (not
including the destination). Since scheduling restricts transfers
to 2-hop paths, the number of users holding the packet
increases every timeslot by at most the number of users in
the same cell as the source (which is d − 2/C on average).
Hence, we have for all t ≥ 1:

E {Kt} ≤ td (32)

Note that during slots {1, 2, . . . , t} there are at most Kt

users holding the packet, and hence during each of these slots
the probability that no packet-holding user enters the cell of
the destination is at least (1− 1

C )Kt . Thus:

Pr[TN > t | Kt] ≥
(

1− 1
C

)tKt

=
(

1− d

N

)tKt

(33)

We thus have:

E {TN} ≥ tPr[TN > t]
(34)

= tEKt
{Pr[TN > t | Kt]}

(35)

≥ tEKt

{(
1− d

N

)tKt
}

(36)

≥ t

(
1− d

N

)tE{Kt}

(37)

≥ t

(
1− d

N

)t2d

(38)

where inequality (36) follows from (33), inequality (37) holds
by Jensen’s inequality (noticing that the function βx is convex
in x for any β > 0), and (38) follows from (32). This
holds for all integers t. Choosing t =

√
N yields E {TN} ≥√

N
(
1− d

N

)Nd → e−d2√
N .
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APPENDIX F — DELAY OF
√
N REDUNDANCY

ALGORITHM

Here we prove eq. (9), establishing an O(
√
N) bound on

the service time E {TN} for the partial feedback scheme with√
N redundancy. The proof requires the following preliminary

lemma.
Lemma 5: Consider N users which independently choose

to enter one of C cells, and recall that d = N/C represents
the expected number of users per cell. Let J represent the
number of users contained in a given cell. We have:6

E {J |J ≥ 1} ≤ 1 + d
Proof: Let Ii represent an indicator variable taking the value

1 if the ith user of the subset is in the cell, and 0 otherwise.
Define K as the lowest indexed user within the cell, where we
let K = N + 1 if no users are present. Thus, J =

∑N
i=K Ii.

We have:

E {J | J ≥ 1} = 1 + E
{∑N

i=K+1 Ii

∣∣∣ J ≥ 1
}

= 1 + EK|J≥1

{∑N
i=K+1 E {Ii|K,J ≥ 1}

∣∣∣ J ≥ 1
}

= 1 + EK|J≥1

{∑N
i=K+1

1
C

∣∣∣ J ≥ 1
}

(39)

≤ 1 + EK|J≥1

{∑N
i=1

1
C

∣∣∣ J ≥ 1
}

= 1 + N
C

where (39) follows because the condition J ≥ 1 can be
inferred by knowledge of K, and E {Ii | K} = 1

C for all
i > K. Indeed, the event K = k is equivalent to the event
that user k is in the cell but users 1, . . . , k − 1 are not in
the cell, and this event is independent of the location of users
i ∈ {k + 1, . . . , N}.

To prove the
√
N bound on E {TN}, recall that TN = S1 +

S2, where S1 represents the time required for the source to
send out

√
N replicas of the packet (while competing with

other sessions for network resources), and S2 represents the
time required to reach the destination given that

√
N users

have the packet.
Lemma 6:

E {S1} ,E {S2} ≤
4 + 2d

γN (1− e−d)

√
N

where γN is a sequence that converges to 1 as N →∞.
Proof: The E {S1} bound: Let S1 represent the time

required for the source to deliver a duplicate packet to
√
N

distinct users. For the duration of S1, there are at least
N −

√
N users who do not have the packet, and hence

every timeslot the probability that at least one of these users
visits the cell of the source is at least 1 − (1 − 1

C )N−
√

N .
Given this event, the probability that the source is chosen
by the partial feedback algorithm to transmit is expressed by
the product α1α2, representing probabilities for the following
conditionally independent events: α1 is the probability that
the source is selected from all other users in the cell to be
the transmitting user, and α2 represents the probability that
this source is chosen to operate in ‘source-to-relay’ mode. Let
random variable J represent the number of additional users in

6An exact value of E {J | J ≥ 1} = E {J} /Pr[J ≥ 1] can easily be
computed and leads to tighter but more complicated delay bounds.

the cell of the source (excluding the source user itself). The
value of α1 is thus α1 = E {1/(J + 1) | J ≥ 1}. By Jensen’s
inequality, we have:

α1 ≥ 1/E {1 + J | J ≥ 1}
≥ 1/(2 + d)

where the last inequality follows because E {J | J ≥ 1} ≤
1 + d (as proven in Lemma 5).

The probability α2 that the source operates in ‘source-to-
relay’ mode is 1/2. Thus, every timeslot during the interval
S1, the source delivers a replica packet to a new user with
probability of at least φ, where

φ ≥
(

1− (1− 1
C

)N−
√

N

)
1

2(2 + d)

→ 1− e−d

4 + 2d
The average time until a replica is transmitted to a new user

is thus a geometric variable with mean less than or equal to
1/φ. It is possible that two or more replicas are delivered in
a single timeslot. However, in the worst case,

√
N of these

times are required, so that the average time E {S1} is upper
bounded by

√
N/φ.

Proof: The E {S2} bound: To prove the bound on E {S2},
note that every timeslot in which there are at least

√
N users

with replicas of the packet, the probability that one of these
users transmits the packet to the destination is given by the
chain of probabilities θ0θ1θ2θ3. The θi values represent prob-
abilities for the following conditionally independent events:
θ0 represents the probability that there is at least one other
user in the same cell as the destination (and is given by
θ0 = 1− (1− 1/C)N−1 → 1− e−d), θ1 represents the prob-
ability that the destination is selected as the receiver (where,
similar to the α1 computation, we have θ1 ≥ 1/(2 + d)), θ2
represents the probability that the sender operates in ‘relay-
to-destination’ mode (where θ2 = 1/2), and θ3 represents the
probability that the sender is one of the

√
N users who have

a replica of the packet intended for the destination (where
θ3 =

√
N/(N − 1) ≥ 1/

√
N ). Thus, every timeslot, the

probability that the S2 time comes to completion is at least
(1−e−d)

(4+2d)
√

N
. The value of E {S2} is thus less than or equal to

the inverse of this quantity.

APPENDIX G — LOGARITHMIC DELAY FOR FLOODING
PROTOCOL

Here we prove Lemma 3: Under the algorithm of flooding
the network with a single packet, for any network size N ≥
max{d, 2}, the expected time E {TN} for the packet to reach
every user satisfies E {TN} ≤ E {S1}+ E {S2}, where:

E {S1} ≤
log(N) (1 + d/2)
log(2)(1− e−d/2)

E {S2} ≤ 1 +
2
d
(1 + log(N/2))

Proof: (The E {S2} Bound) Let M represent the number of
users who do not initially have the packet (so that M ≤ N/2),
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and label these M users {u1, u2, . . . , uM}. Let Xi represent
the number of timeslots it takes for the non-packet holding
user ui to reach a cell containing a user who possesses a
packet. Due to the multi-user reception feature, user ui must
receive the packet at this time. The random variable Xi is
geometric, in that a ‘success’ happens on any given timeslot
with probability ψ ≥ 1 − (1 − 1

C )N/2. Thus, we have for all
N :

ψ ≥ 1− e−d/2 (40)

All times Xi are independent and identically distributed,
and hence the random variable S2 is equal to the maximum
value of at most M = bN/2c i.i.d. variables. Hence, E {S2} ≤
E {max{X1, X2, . . . , XM}}. To obtain a simple bound on this
time, we consider new random variables {Y1, Y2, . . . , YM}
which are i.i.d. and exponentially distributed with rate λ =
log(1/(1 − ψ)). Notice that the random variable 1 + Yi is
stochastically greater than Xi, because the complementary
distribution functions satisfy Pr[1 + Yi > t] ≥ Pr[Xi > t]
for all real numbers t (see [19] for a treatment of stochastic
dominance for random variables). It follows that:

E {S2} ≤ E {max{X1, X2, . . . , XM}}
≤ 1 + E {max{Y1, Y2, . . . , YM}}

The expected maximum of M i.i.d. exponential variables of
rate λ is equal to the expectation of the sum of intervals I1 +
I2+. . .+IM , where Ii represents the duration of time between
the (i − 1)th and ith completion time. The interval I1 is the
first completion time of M independently racing exponential
variables, and hence I1 is exponentially distributed with rate
Mλ. Furthermore, I2 is the first completion time of M − 1
racing exponential variables, I3 is the first completion time of
M − 2 racing exponentials, and so on. It follows that:

E {I1 + I2 + . . .+ IM} =
1
λ

M∑
m=1

1
m

Hence, E {S2} ≤ 1+ 1
λ

∑M
m=1

1
m , which is upper bounded by

1 + 1
λ (1 + log(M)). Hence:

E {S2} ≤ 1 +
1 + log(M)

log(1/(1− ψ))
≤ 1 +

1 + log(N/2)
log(ed/2)

Proof: (The E {S1} bound) We compute a bound on E {S1}
by noting that E {S1} ≤ E

{
S̃1

}
, where S̃1 is the time to reach

at least N/2 users when the multi-user reception feature is
turned off, and any transmitted packet is received by at most
1 other user within a cell. It turns out that the variable S̃1

is easier to work with, as the number of users holding the
packet can at most double every timeslot. Let Kt represent the
number of users containing a duplicate version of the packet
at timeslot t ∈ 1, 2, . . . (suppose only the source user has
the packet at time 0, so that K0 = 1). Let u1, u2, . . . , uKt

represent the users containing the packet at time t. Each of
these users ui delivers the packet to ai new users on the next
timeslot, where ai is a binary random variable taking a value
of either 0 or 1. Whenever there are at least N/2 users which
do not currently hold the packet, we have that E {ai} ≥ θ1θ2,

where θ1 = 1− (1− 1
C )N/2 represents a lower bound on the

probability that at least one of the new users enters the cell of
user ui, and θ2 represents a lower bound on the probability that
user i is selected to transmit its replica among all other packet-
holding users within the cell. Define J as the total number of
other packet-holding users in the cell (not including user i). It
follows that:

θ2 = E
{

1
1 + J

}
(41)

≥ 1
1 + E {J}

(42)

≥ 1
1 + d/2

(43)

where (42) follows by Jensen’s inequality and convexity of the
function 1/(1+x), and (43) follows because there are no more
than N/2 packet holding users, and hence E {J} ≤ N

2C = d/2.
Thus:

E {ai} ≥
1− (1− 1

C )N/2

1 + d/2

≥ 1− e−d/2

1 + d/2
(44)

where (44) follows because (1− d
N )N ≤ e−d for all N ≥ d >

0.
Let Zt = Kt/Kt−1 be a random variable representing the

multiplicative factor by which the number of packet-holding
users grows after one timeslot. (Note that 1 ≤ Zt ≤ 2). It
clearly holds that:

Zt+1 =
Kt + a1 + a2 + . . .+ aKt

Kt

The ai random variables are not independent, although they
are identical. Thus, for any timeslot t in which fewer than N/2
users have packets:

E {Zt+1 | Kt} =
Kt +KtE {a1}

Kt

= 1 + E {a1}

≥ 1 +
1− e−d/2

1 + d/2
(45)

Now consider the stopping time S̃1 where at t = S̃1−1 there
are fewer than N/2 users with packets, but at time t = S̃1 the
N/2 threshold is either met or crossed. Note that S̃1 is similar
to a stopping time variable, treated in [22], [19], although the
event {S̃1 ≥ t} is not independent of Zt. The number of users
KS̃1

containing the packet at time t = S̃1 satisfies:

N ≥ KS̃1
= Z1Z2 . . . ZS̃1

and hence

log(N) ≥ log(Z1) + log(Z2) + . . .+ log(ZS̃1
)

Define the indicator random variable It to be 1 if S̃1 ≥ t, and
0 otherwise. Taking expectations of the above inequality, we
find:
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log(N) ≥ E


S̃1∑
t=1

log(Zt)


= E

{ ∞∑
t=1

log(Zt)It

}

= E

{ ∞∑
t=1

E {log(Zt)It | Kt−1}

}

= E

{ ∞∑
t=1

ItE {log(Zt) | Kt−1}

}
where the last equality follows because the variable Kt−1

completely determines the binary value of It. Recall that
1 ≤ Zt ≤ 2, and hence log(Zt) ≥ log(2)(Zt − 1) (as the
lower bound values are points along the chord of the concave
function log(Z) over the interval 1 ≤ Z ≤ 2). We thus have:

log(N)
log(2)

≥ E

{ ∞∑
t=1

ItE {(Zt − 1) |Kt−1 }

}

≥
(

1− e−d/2

1 + d/2

)
E

{ ∞∑
t=1

It

}
(46)

=
(

1− e−d/2

1 + d/2

)
E

{
S̃1

}
where (46) follows from (45). Thus, E {S1} ≤ E

{
S̃1

}
≤

log(N)(1+d/2)
log(2)(1−e−d/2)

.

APPENDIX H — MINIMUM DELAY FOR MULTI-HOP
ROUTING IS LOGARITHMIC

Lemma 7: Starting with a single packet contained in one
user in an empty network of size N , the flooding algorithm
of delivering the packet to its destination by having every
duplicate-carrying user transmit to other users whenever pos-
sible has an average delay E {TN} which is logarithmic. In
particular

lim
N→∞

E {TN}
log(N)

≥ 1
log(1 + d)

This bound holds even if multi-user reception is available.
Proof: As in the proof of Lemma 3, define Kt as the

number of users holding the packet at time t (where K0 = 1),
and let Zt = Kt/Kt−1 represent the growth factor after one
timeslot. We have:

Zt+1 =
Kt + a1 + a2 + . . .+ aKt

Kt

where ai represents the number of new users to which the ith
packet-holding user transmits during a timeslot. We clearly
have E {ai} ≤ d during any timeslot, and hence:

E {Zt+1 | Kt} =
Kt +KtE {a1}

Kt
≤ 1 + d

Because Kt = Z1Z2 · · ·Zt, it follows by recursion that:

E {Kt} ≤ (1 + d)t (47)

Note that during slots {1, 2, . . . , t} there are at most Kt

users holding the packet, so the probability that none of these
users enters the cell of the destination on such a timeslot is
greater than or equal to

(
1− 1

C

)Kt . Hence, the proof given
in Appendix E for the

√
N bound for 2-hop routing can be

followed exactly up to (37). In particular, we have [compare
with (33)-(37)]:

E {TN} ≥ tPr[TN > t]
= tEKt

{Pr[TN > t | Kt]}

≥ tEKt

{(
1− d

N

)tKt
}

≥ t

(
1− d

N

)tE{Kt}

Using (47) in the above inequality, we have:

E {TN} ≥ t

(
1− d

N

)t(1+d)t

(48)

The above inequality holds for all integers t ≥ 0. For
convenience, we choose t to represent a base (1+d) logarithm:
tM= log1+d(αNβ), where β is any number less than 1, and α
is chosen within the bounds 1 ≤ α ≤ (d + 1) so that t is an
integer. Using this value of t in (48), we have:

E {TN} ≥
(log(α) + β log(N))

log(1 + d)

[(
1− d

N

)N
]αNβ log(αNβ)

N log(1+d)

Note that
(
1− d

N

)N → e−d as N → ∞, and its exponent
αNβ log(αNβ)

N log(1+d) converges to 0 whenever β < 1. It follows that[(
1− d

N

)N
]αNβ log(αNβ)

N log(1+d) → 1, and hence:

lim
N→∞

E {TN}
log(N)

≥ β

log(1 + d)

for any β < 1. The bound can be optimized by taking a limit
as β → 1, yielding the result.

APPENDIX I — TAKING INFIMUMS OVER SETS

Here we compute infΘ E {X | Θ} for a non-negative ran-
dom variable X , where the infimum is taken over all events Θ
such that Pr[Θ] ≥ 1

2 . Let P (x) = Pr[X ≤ x] represent the
cumulative distribution function for X . Let ω be the unique
real number such that Pr[X < ω] ≤ 1

2 and Pr[X ≤ ω] ≥ 1
2 .

Note that if P (x) is continuous, then Pr[X < ω] = Pr[X ≤
ω] = 1

2 . In general, a non-continuous distribution may have a
point mass at x = ω.

Lemma 8: For any non-negative random variable X , we
have:

inf
{Θ|Pr[Θ]≥ 1

2}
E {X | Θ} = E {X | X < ω} 2Pr[X < ω] +

ω (1− 2Pr[X < ω])
Note that the infimum depends only on the cumulative

distribution function P (x). In the special case when P (x) is
continuous at x = ω, then Pr[X < ω] = Pr[X ≤ ω] = 1

2 ,
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and hence the lemma implies that the infimum is equal to
E {X | X ≤ ω}.

Proof: To prove the lemma, let p(x)M=
dP (x)

dx represent the
generalized density function of X (which may contain im-
pulses if P (x) is not continuous). Consider any event Θ such
that Pr[Θ] ≥ 1

2 . Define the conditional probability distribution
f(x)M=pX|Θ(x | Θ). Note that p(x) = pX|Θ(x | Θ)Pr[Θ] +
pX|Θc(x | Θc)Pr[Θc] (where Θc represents the complement
of the event Θ). Hence, pX|Θ(x | Θ) ≤ p(x)/Pr[Θ] ≤
p(x)/ 1

2 . That is:

f(x) ≤ 2p(x) for all x (49)

Note also that f(x) is a probability distribution for a non-
negative variable, so that

∫∞
0
f(x)dx = 1. We have:

E {X | Θ} =
∫ ω−

0

xf(x)dx+
∫ ∞

ω−
xf(x)dx

=
∫ ω−

0

x2p(x)dx+
∫ ω−

0

x[f(x)− 2p(x)]dx

+
∫ ∞

ω−
xf(x)dx

≥
∫ ω−

0

x2p(x)dx+ ω

∫ ω−

0

[f(x)− 2p(x)]dx

+ω
∫ ∞

ω−
f(x)dx (50)

where (50) follows because (49) implies the integrand
of the second integral is non-positive for all x (so that∫ ω−

0
x[f(x) − 2p(x)]dx ≥ ω

∫ ω−

0
[f(x) − 2p(x)]dx). Noting

that
∫ ω−

0
f(x)dx+

∫∞
ω−

f(x)dx = 1, inequality (50) implies:

E {X | Θ} ≥ E {X | X < ω} 2Pr[X < ω] +

ω − ω

∫ ω−

0

2p(x)dx

= E {X | X < ω} 2Pr[X < ω] +
ω (1− 2Pr[X < ω]) (51)

The lower bound (51) holds for all events Θ such that
Pr[Θ] ≥ 1/2, and hence:

inf
{Θ|Pr[Θ]≥ 1

2}
E {X | Θ} ≥ E {X | X < ω} 2Pr[X < ω] +

ω (1− 2Pr[X < ω])

We now show that the reverse inequality is also true. Let A
be the outcome of a biased coin flip that is independent of X .
Specifically, let Pr[A = 1] = q, Pr[A = 0] = 1− q, where q
is the value such that qPr[X = ω] = ( 1

2 −Pr[X < ω]). Note
that 0 ≤ q ≤ 1 because Pr[X = ω] + Pr[X < ω] ≥ 1

2 but
Pr[X < ω] ≤ 1

2 .
Consider the particular event Θ∗ defined as follows:

Θ∗ M={{X < ω} ∪ {{X = ω} ∩ {A = 1}}} (52)

That is, Θ∗ represents the event that either X < ω, or both
X = ω and A = 1. Note that Pr[Θ∗] = 1/2, because

Pr[Θ∗] = Pr[X < ω] + qPr[X = ω]. We then have:

E {X | Θ∗} = E {X | X < ω} Pr[X < ω]
Pr[Θ∗]

+ ω
qPr[X = ω]
Pr[Θ∗]

= E {X | X < ω} 2Pr[X < ω] +
ω (1− 2Pr[X < ω])

Thus, the particular event Θ∗ allows the conditional expec-
tation to meet the lower bound of (51). Thus, Θ∗ is the
minimizing event, and its resulting expectation is equal to the
infimum, proving the lemma.
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