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Abstract— We consider the fundamental delay bounds for Inputs

scheduling packets in anN x N packet switch operating under 1— % > ®

the crossbar constraint. Algorithms that make scheduling deci- —

sions without considering queue backlog are shown to incur an

average delay of at leasO(N). We then prove that O(log(N)) % >

delay is achievable with a simple frame based algorithm that uses —

queue backlog information. This is the best known delay bound !

for packet switches, and is the first analytical proof that sublinear | —
— >
f—

delay is achievable in a packet switch with random inputs. The
algorithm is shown to be implementable with very low complexity,
requiring O(N'%log(NV)) total operations per timeslot. |||

Index Terms—stochastic queueing analysis, scheduling, optimal
control Outpus 1 2 3 N

Fig. 1. AnN x N packet switch under the crossbar constraint.
I. INTRODUCTION

We consider anV x N packet switch with/V input ports algorithm called Fair-Frame that uses queue backlog informa-
an N output ports, shown in Fig. 1. The system operates fion when making scheduling decisions. For independent Pois-
slotted time, and every timeslot packets randomly arrive at then inputs, we show that the Fair-Frame algorithm stabilizes the
inputs to be switched to their destinations. Scheduling is cosiystem and provide8(log(XN)) delay whenever the input rates
strained so that each input can transfer at most one packet grer within the switch capacity region. This work for the first
timeslot, and outputs can receive at most one packet per timgsie establishes that sub-linear delay is possible ilvar N
lot. This constraint arises from the physical limitations of thewitch. Furthermore, the proof is simple and provides the intu-
crossbar switch fabri¢hat is commonly used to transfer packition that logarithmic delay is achievable in any single-hop net-
ets from inputs to outputs, and gives rise to a very rich problework with a capacity region that is described by a polynomial
in combinatorics and scheduling theory. This problem has beeamber of constraints. Such delay improvement is achieved by
extensively studied over the past decade [1-19], and remafaking advantage of statistical multiplexing gains, which is not
an important topic of current research. This is due to both i@ssible for backlog-unaware algorithms.
technological relevance to high speed switching systems and itfrevious work in scheduling is found in [1-19]. In [2] it
pedagogical example as a network complex enough to inspigeshown that stable scheduling can be achieved with a queue
interesting research yet simple enough for an extensive netwtgkgth-oblivious strategy by using a Birkhoff-Von Neumann de-
theory to be developed. composition on the known arrival rate matrix. In [7] and [8], it

In this paper, we show that if the matrix of input rates twas shown that scheduling according to@(W?3) Maximum
the switch has a sufficient number of non-negligible entries (Weighted MatcHMWM) every timeslot stabilizes the switch
be made precise in Section lll), then any scheduling strategyrenever possible without requiring prior knowledge of the in-
which does not consider queue backlog information necessaut rates. In [9] the delay of the MWM algorithm was shown
ily incurs an average delay of at le&3tN). Strategies that do to be no more tha® (V). We note that MWM scheduling is
not consider backlog have been proposed in a variety of cajueue length-aware, and hence it may be possible to tighten the
texts, including work by Chang et al [2], [3], Leonardi et al [4]delay bound to less thaBi(N), as is suggested in the simula-
Koksal [5], and Andrews and Vojnawi[6]. The basic idea is tions of [9]. HoweverO(N) delay is the tightest known analyt-
to construct a randomized or periodic scheduling rule precisetal bound for MWM scheduling, and was previously the best
matched for known input rates. If these rates are indeed knokmown delay bound foanyalgorithm for a switch with random
a-priori and do not change with time, then such scheduling fRoisson) inputs.
fers arbitrarily low per-timeslot computation complexity, as any In [10] it is shown that if a switch has an interradeedup of
startup complexity associated with computing the scheduligallowing for two packet transfers from input to output every
rule is mitigated as the same rule is repeatedly used for all timieneslot), then exact output queue emulation can be achieved

The O(N) delay result introduces an intuitive tradeoff bevia stable marriage matchings, yielding optira¥ll) delay. To
tween delay and implementation complexity, as algorithntiate, there are no known delay optimal scheduling strategies for
which do not consider backlog information may have lowgracket switches without speedup. However, in the landmark pa-
complexity yet necessarily incur delay that grows linearly iper[11], a loss-rate optimal scheduling algorithm is constructed
the size of the switch. To improve delay, we construct a simpler a2 x 2 switch with finite buffers. Finite buffer analysis of
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loss rates for systems of parallel queues is addressed in [f&]trix satisfies the above constraints, suppose traffic is Pois-
[13]. son with uniform rates, so that, = p/N for all (i, j) (where
Frame based approaches for stabilizing switches and net< p < 1). Randomly choosing a permutation among all pos-
works with deterministically constrained traffic are consideresible permutation matrices turns each virtual quéie) into
in [14] [15] [16], and in [17] it was shown that a frame based discreteM /GI/1 queue with geometric service times with
algorithm using “greedy” maximum size matches can be usedrvice probabilityl /N. Such a queue is clearly stable, and
to stabilize anV x N packet switch with Poisson inputs. Com-average delay can easily be easily calculated (see [20]):
plexity and delay tradeoffs are explored in [18], where an ex- o N_1/2
plicit complexity-delay curve is established allowing for stable W randomized™ =, T 1 ()
scheduling at any arbitrarily low computation complexity with . - .
a corresponding tradeoff in average delay. Similar complexit Ong can alsq consider periodic schedulln_g, where ontslot
reductions were developed in [19]. In this paper, we show th%ﬁ(:h Input port is connectec_i to the output peeti-t) mod N.
the (complexity, delay) operating point of the Fair-Frame al-. © resultl.ng queues are similari¢/D/1 queues, and delay
gorithm sits below the curve achieved by the class of algorithrjr?sg'ven by:
given in [18]. Indeed, Fair-Frame offers logarithmic delay and T .. _ _N
can be implemented wit®(N!-? log(N)) total operations per Wperiodic schedule™ 215 + ! )
timeslot. The combination of low complexity and low delay \While periodic scheduling reduces delay by a factor2pf
makes Fair-Frame competitive even with output queue emutie delay remain® (V). Intuitively, this is because each in-
tion strategies in switches with a speedupz of put port can service at most one of ¥ queues per timeslot,
and hence it takes an average/df2 timeslots for an arriving
1. PACKET SWITCHES AND THE CROSSBARCONSTRAINT  packet to see a server. In the next section we elaborate on this
intuition to show thatO (V) delay is incurred by any schedul-

Consider thelV x N packet switch in Fig. 1. At each in-. X : .
put, memory is sectioned into distinct storage buffers to forfY algorithm that operates independently of the input streams

N virtual input queuesone for each destination. Packets rarf‘-md current levels of queue backiog. .

domly arrive to each input every timeslot and are placed in the\_Ne _note that an ogtput-qu_eued SVS‘G”.‘* which bypasses all

virtual input queues according to their destinations. Note th v[vltch|r_1g and §ends inputs directly to their output ports, has a

there are a total ofV? virtual input queues, indexed Ly, j) elay given by:

fori,5 € {1,..., N}, where queuéi, j) holds data at input 7 1

destined for outpuf. Woutput queue 21— p) +1 (5)
Packets arrive to the queues every timeslot according to ar-

rival processest;; (). A scheduler selects a group of packet¥#here we again assume traffic is uniform and Poisson. This gap

to switch from inputs to outputs by connecting the crosspoirfe&tweenO(1) delay andO () delay motivates our search for

in Fig. 1 according to germutation matrix(S;;(t)), so that sublinear delay algorithms among the class of backlog-aware

no input or output port is scheduled for more than one packétategies, considered in Section IV.

transfer (where the matrixS; ;(¢)) is a0— 1 matrix with exactly

one ‘1’ in each row and column, corresponding to the chosen I11. AN O(N) DELAY BOUND FOR

crosspoint connections). The goal of the scheduler is to choose BACKLOG-INDEPENDENTSCHEDULING

permutations every timeslot so that the overall system is stabi-Consider anv x N packet switch with general stochastic
lized and packets have bounded average queueing delay. jnputs arriving to each of th&/2 input queues. All inputs are
assumed to be stationary and ergodic. Assume the system is ini-
A. Stability and Delay tially empty and letX;; (¢) represent the arrivals to input queue
Assume inputsi;; (t) are rate ergodic and define the rate téi:J) during the interval0, ] (i.e., X;(t) = 327_; Ayj(7))-
queue(i, j) ash;2 limy_o % Zi:o Ay; (). Thecapacity re- !_et Lij.(t.) represent the current number of packets queggd at
gion of the switch is defined as the closure of the set of all rafaPUt (i, j), and letS;;(t) represent the server control decision
matrices(\;;) which can be stabilized by the switch by usinﬂjlow (where the matriX5;;(t)) is a permutation matrix).

some scheduling algorithm, and is described by the followirige"® We show that if the control decisioffs;;(t)) are station-
constraints: ary and independent of the arrival streams, then average delay

in the switch is necessaril9(V).! Because backlog is directly

N related to the arrival streams, it follows that stationary switching
> Aij < 1forallinputsi (1) schemes which operate independently of queue backlog incur at
j=1 leastO(N) delay.

N As a caveat, we note that periodic scheduling streams such
> Ay < 1for all outputs; (2) as those proposed for Birkhoff-Von Neumann scheduling in [2]
=1

are by definition not stationary. However, randomizing the pe-

If one of the above inequalities is violated, some input gfodic schedule(S;;(t)) over the phase of the period yields a

output port must be _Overload?d’ leading to instability. As aanheO(N) result holds only when the input rate maiix; ;) has a sufficient
example of a stabilizing algorithm for the case when the ratember of positive entries, as described in Theorem 2.



IEEE WORKSHOP ON HIGH PERFORMANCE SWITCHING AND ROUTING — APRIL 2004 3

stationary schedule. If inputs are ergodic, stationary, and indeading value, delay grows linearly in the size of the switch.

pendent of the scheduling decisions, then the resulting averddrs O(N) result holds more generally. Indeed, consider gen-

packet delay is the same under both the original periodic schedal stationary, ergodic arrival strean¥s; with data rates\;;,

ule and the schedule with a randomized phase. Thug){he) and define the average rate into input ports of the switch to

delay result also holds for any scheduling algorithm which e Aavé% Zij Aij. (Note that in the uniform loading case,

independent of backlog and which can be made stationary by, = p, and\;; = p/N.) We assume that there are at least

phase randomization. O(N?) entries of the rate matrix which have rates greater than
The following lemma is useful for obtaining lower bounds owlr equal toO (A, /N).

delay. The proof uses a technique similar to that used in [21]

: S eorem 2. For general stationary, ergodic inputs with data
show that fixed length packets minimize delay over all paCkreates M. if O(N?) of the rates are greater tha® (A, /N),

length distributions with the same mean, and is given in [1]. then average delay under independent scheduling is at least
Lemma 1. For a switch with general arrival processes, anyO(N).
stationary scheduling algorithm which operates independen

tl . . .
of the input streams (and hence, independently of the curr&ry{POf' The proof s provided in [1]. =

queue backlog) yields a time average queue occupancfor A simple counter-example shows that delay carcie) if
each queugi, j) satisfying: the rate matrix does not have a sufficient number of entries with
— — large enough rate: Consider a rate matrix equal to the identity
Lij 2 Ui matrix multiplied by the scalak < 1. Then, the switch can
be configured to always transfer input 1 to output 1, input 2 to
V%utput 2, etc., and average delay is the same a®fh¢ delay
5f an output queue.

whereU;; represents thenfinished work(or “fractional pack-

ets”) in a system with the same inputs but with constant ser

rates ofy;; packets/slot, for at least one set of rajeg such

thatzj pi; < 1forall i, and} ", pu;; < 1forall j.

IV. AN O(log(N)) DELAY BOUND FORBACKLOG-AWARE
SCHEDULING

The lemma above prod.uces a lower _bound on dglay in term$Here we show thaD (log(N)) delay is possible by using a
of a system of queues with the same inputs but with constasicklog-aware scheduling strategy. This result for the first time
server rates, and leads to the following theorem. establishes that sublinear delay is possible itNar N packet

Theorem 1. If inputs X,; are Poisson with uniform ratel;; = switch without speedup. The algorithm is similar to freme

p/N (for p < 1 representing the loading on each inpuf), therﬁ)ase(hchemes co_nsi_dered i_n terms of stabi_lity in [14] [1_7], a_nd
delay under any stationary scheduling algorithm which dod$ based on the principle of iteratively clearing backlog in min-

not consider backlog is greater than or equal ﬁy _ imum time. Minimum clearance time policies have recently
=) been applied to stabilizeetworksin [22], [16]. We begin by

Proof. The unfinished work in an M/D/1 queue with arrival rateutlining several known results about clearing backlog from a
Ai; and service timé /y;; is equal toUij(uij) = ﬁ switch in minimum time.
which can be computed by adding; /2, the average portion
of a packet remaining in the server, to the expression for the Minimum Clearance Time and Maximum Matchings
average number of packets in the buffer of an M/D/1 queue
[20]. From Lemma 1, there exists a rate matfjx;) with
row and column sums bounded by 1, so that > U;; for
all (i, j). DefineA as the set of all rate matricé¢s,;) satisfy-
ing Y, pij < 1, Zj wi; < 1. Using Little’s Theorem, and the
factthat,; \i; = pIN, we have:

Proof. The lemma is proved in [1].

Consider a single batch of packets present in the switch at
time zero. We represent the initial backlog asatupancy
matrix (L,;), where entryL;; represents the number of packets
at input porti destined for output porf. Suppose that no
new packets enter, and the goal is simply to clear all packets
in minimum time by switching according to permutation
matrices. The following fundamental result from combinatorial
1 - . 1 — mathematics provides the solution to this problem [23]:

Deloy=2N %:L” % hen | o8 %:UZ] (ki) N . .

‘ Fact 1.Let T* represent the minimum time required to clear

However, because thé;; (y;;) functions are identical and con-biglélt?g ?\?;?%atfhdevr\gfxﬁgﬁﬁqugg ;?/::’(’2‘;{ ).rowg?ZolL?nn of
vex, the expression inside the infimum is a convex symmetﬁgz Y9 y y

function and attains its minimum at; = 1/N for all (i, j), the matrix(L; ).

and the result follows. . - .
It is clear that the minimum time to clear all backlog can be

Note that this lower bound differs by one timeslot from thao smaller than the total number of packets in any row or col-
delay expression in (4) for the periodic scheduling algorithmmn, because the corresponding input or output can only serve
given in Section Il. Because of the/(1 — p) factor, delay 1 packet at a time. This minimum time can be achieved by an
in the N x N packet switch with Poisson inputs necessarilglgorithm similar to the Birkhoff-Von Nuemann algorithm de-
grows to infinity as the loading approaches 1. For any fixedscribed in [2]. Indeed, The matrix is first augmented withil
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packetsso that every row and column has line stith. Using have been violated:
Hall's Theorem [23], it can be shown that the augmented back-

log matrix can be cleared by a sequencédfperfect matches > [Xij((k+1)T) = X5(kT)] < T forall i (6)
of sizeN. J
Such matchings can be found sequentially using any Maxi- Z (X (E+1)T) — X;;(kT)] < T forall j (7)

mum Size Matching algorithm, where each match requires at

most O(N?25) operations (see [2] [24] [25] [14]). Note that . - . iy . .
the prel(imina?ry Enatrix aug(ment[at]io[n p]rc[)ce]dEJre])can be acco affic that satisfies the above inequalities during a frame is said
plished withO(N) computations each timeslot by updating o be cor;formu?g;[_rafnc;c tEacke_ts remﬂf"”g n tgef_sw;ch be-
set of vectorsow_sumandcolumnsumeach timeslot, and then cau?e ora V'Of lton od ese mec(qjual 'ei arte ffe Itnbe ax f
augmenting the matrix at the beginning of each frame by usifig" (f)rmlngpal\rl: f s;r?r][ ;r% S?“.’f O?ha Fe.s E or aIS'S I'rt]h u-
these row and column sum vectors to sequentially update e rames. Note that, by detinition, the Fair-rrame aigonthm

row in the next column which does not have a full sum. clears all conform_mg traffic withiaT' timeslots. .
Here we describe the performance of the Fair-Frame algo-

rithm with random inputs. Suppose inputs are Poisson with
rates);; satisfying:
B. Fair Frame Scheduling for Logarithmic Delay

We now present a frame based scheduling algorithm which
iteratively clears backlog associated with successive batches
of packets. Packets which are not cleared during a frame arkerep represents the maximum loading on any input port or
marked and handled separately in future frames. The algoritlvutput port. Note that if the sum rate to any input or output
is “fair” in that when the empirical input rates averaged over exceeds the value 1, the switch is necessarily unstable. In the
frame are outside of the capacity region of the switch, decisiofdlowing, we show that ifp < 1, the Fair-Frame algorithm
about which packets to serve are made fairly. We show thatdin be designed to ensure stability with delay that grows loga-
inputs are Poisson and rates are strictly within the capacity ré¢hmically in the size of the switch. We start by presenting a
gion, the switch is stable and yieldglog(N)) delay. lemma that guarantees that the overflow probability decreases

The Fair-Frame Scheduling Algorithm: Timeslots  are exponentially in the frame length.
grouped into frames of siZE slots.

D> Ay <pforalli , Y A <p forallj (8)

Lemma 2. For an arbitrarily small overflow probabilitys,
1) On the first frame, switching matricéS;;(t)) are chosen choose an integer frame siZésuch that:
randomly so that the probability of serving any particular
queue is uniformiyl /N w
2) Onthe(k+1)"" frame, the backlog matri¢d.;; (kT')) con- ~ log(1/7)

sisting of packets that arrived during the previous frame is A 1 . . .
augmented with null packets so that all row and columf{€r&y=pc ~*. Thena switch operating under the Fair-Frame
sums are equal t&. If this cannot be done, aoverflow algorithm with a frame siz& ensures the probability of a frame

occurs. A new matri>(£--(kT)) with row and column overflow is less thad. All conforming packets have a delay less
. ij

sums equal td@” is formed from a subset of the backlogthan 2T, and 'fT_Zij Aij 2 1, the fraction of packets which
of the previous frame. The packets covered by this ned® non-conforming is less thax.
matrix will be scheduled on the next frame, and the re*roof. Packets are lost during franieonly if one of the2 N
maining packets are marked agerflowpackets. Choice inequalities of (6), (7) is violated during the previous frame. Let
of which (L;;(kT')) to use is based upon some type of¢(T') represent the number of packets arriving from a Poisson
utility function, such as the FCFS utility or max-min fairstream of rateyp during an interval ofl” timeslots. Then any
utility, described in [1]. individual inequality of (6) and (7) is violated with probability
3) All non-overflow packets are scheduled during fraihe-  |ess than or equal t#r[X (T) > T]. By the Chernov bound,
1) by performing maximum matches every timeslot tgve have for any- > 0:
strip off permutations from the augmented backlog matrix.
4) If all packets of the augmented backlog matrix are cleared PriX(T)>T)] < E {erX (T)} e T
in less thanT" slots, uniform and random scheduling is ,
performed on the remaining slots to serve the overflow = exp(pl(e" 1) —rT)  (10)

packets remaining in the system from previous OverﬂOWhere the identit rX(T)V _ T(e" — 1)) was used
frames. Note that the probability of serving a particulafrOr the Poisson vf;:iiglﬁ'(T)} exp(pT (e )

overﬂgw packet at the head of its queig;) during such To form the tightest bound, define the exponent in (10) as the
aslotisl/N. functiong(r) = pT'(e” — 1) — rT. Taking derivatives reveals
5) Repeat from step 2. that the optimal exponent for the Chernov bound is achieved
whene” = 1/p. Using this in (10), we have:
If any packet arriving during a framieis not cleared within
the next frame, at least one of the following inequalities must PriX(T)>T] < [pelfp]

(9)

T
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We definey2pe! ~*. The~ parameter is an increasing functioriTheorem 3. For Poisson inputs strictly interior to the capac-
of p for 0 < p < 1, being strictly less than 1 whenever< 1. ity region with loading no more thap, a frame sizél” can be
By the union bound, the probability that any one of th®¥ selected so that the Fair-Frame algorithm ensures logarithmic
inequalities in (6) and (7) is violated is less than or equal tverage delay.
2N~T. Hence, if we ensure that:

Proof. For an overflow probabilityy (to be chosen later), we

2N~T <5 (11) choose the frame sizE = P‘l’ogg(jf\%‘ﬂ so that overflows occur

. . with probability less than or equal #&© The backlog associ-
then each frame successfully delivers all of its packets witheq with non-conforming packets for any quesj) can be
probability greater than — 4. Taking the logarithm of both \jie\yed as entering wirtual G/G/1 queuewith random service
sides of (11), we obtain the requirement: opportunities every frame. Let represent the probability of

log(2N/5) frame ‘underflow’: the probability that there is at least one ran-
>_=" 717 dom service opportunity for non-conforming packets during a
log(1/7) frame. This is the probability that all backlog of the previous
R frame can be cleared in less th#@hslots. Using a Chernov
Now let 0=T"5_;; Ai; represent the expected number ofq,nd argument similar to the one given in the proof of Lemma

packet arrivals during a frame. In [1], we show that for POi$ it can be shown thaer[X (T) > T — 1] < 24T, and hence:
son arrivals, the extra amount of packets that arrive given that - r

the number of arrivals is greater than some vallis stochas- 2N

tically less than the original Poisson variable plus 1. It follows g=1-—" (12)
that the expected number of extra arrivals to a frame in which P

one of the inequalities (6), (7) is violated is less than or equal Expressed in terms @f, this means that:

1+ 6. Thus, the ratio of non-conforming packets to total packet

arrival_s is no more that(1 + ¢)/6. Assumingd > 1, it follows ¢ > 1- ﬂ’yl?fé‘(zll\/’{g)

that this ratio is less thaay. O - 0

g 2 tos, 3/2)
p
= 1-46/p (13)

Thelog(2N) delay bound in (9) arises because of tg
constraints describing the switch capacity region. In a switch
with Bernoulli traffic rather than Poisson traffic, no more than

one packet can enter any input port. In this case, the constraintgy,o average delay for non-conforming packets in queug
in (6) are necessarily satisfied and can be removed from {8, s |ess than or equal 1 (the size of the frame in which
union bound expression in (11), which reduces the delay bougky, arrived) plus the average delay associated with a slotted
Intuitively, a similar argument can be used to prove that 109g5/G/1 queue where a service opportunity arises with probabil-
rithmic delay is achievable in any single-hop switching network, , /" Every slot, with probability. —3 no new packets arrive
with a capacity region descf'bgd by a polynomial number @f this virtual queue (as all packets are conforming), and with
constraints, as the logarithm of* remainsO(log(V)). probability § there arel + X packets that arrive, wher¥ is a
It is useful to understand how the frame size grows for Byisson variable with measi” (where we again use the result
fixed overflow probabilitys as the loadingo approaches. j, [1] which shows that excess arrivals are stochastically less
The formula for the frame siz&' contains alog(1/7) terM  than the original). Note that this is\ery large overboundas
in the denominator. Using the definition of and taking a g| gverflow packets arriving to an inputre treated as if they
Taylogr series expansion abopt= 1 shows thalog(1/7) = arrived to queudi, j). Conforming packets consist of at least
“‘Tm + O(1 — p)®. Thus, the denominator I9((1 — p)?). a fractionl — 26 of the total data and have a delay bounded by
This suggests that the cost of achievififlog(V)) delay is to 2T. Thus, the resulting average delay satisfies:
have a delay which is more sensitive to the loading parameter
(confer with egs. (3)- (5)). Delay

We note that the Poisson assumption is not essential to the
proof—a similar proof can be constructed for any indepen-
dent input streamsX;; such thatPr[}>; X;;(7) > T] and where Delay(G/G/1) represents the average delay of non-
Pr[y, X;;(T) > T] decreases geometrically witfi. It is conforming packets in the virtual G/G/1 queue (normalized to
necessary that the streams be independent for this propertyitits of frames).
hold. Indeed, consider a situation where all inputs experienceThe average delay of a stable, slotted G/G/1 queue with inde-
thesameprocesses, so that;;(t) = X () for all (4, 7). When-  pendent arrival and service opportunities can be solved exactly.
ever a packet arrives to input 1 destined for output 1, all othBlbwever, we simplify the exact expression by providing the fol-
inputs receive a packet destined for output 1, and the minimuswing upper bound, which is easily calculated using standard
average delay i®(N/2). queueing theoretic techniques:

To provide a true delay bound, the delay of non-conforming
packets must be accounted for, as accomplished in the theorem
below.

2T(1 — 26) + 26(T + T Delay(G/G/1))

<
< 2T + 26T Delay(G/G/1) (14)

1+E{A%} /A

Delay(G/G/1) < 50—

(for > A) (15)
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Where, in this ConteXt, we have: Average Delay vs. Switch Size N (loadingp = 0.7)
3500
‘ Exact De‘layWRan‘domlzed A‘\gorithm (bueue Ler‘lgthflnde;endem)
)\ — 5(1 + pT) (16) — Delay Upper Bound--Fair Frame Algorithm (Queue Length-Aware)
3000+ g
pw=q/N 17

E{A%} =0E{(1+X)?} =0 [1+3pT +p*T?] (18) 7

The virtual queue is stable provided that> X. This is

ensured whenever the parameiés suitably small. Indeed, we 2000}

have: i
q ¢ 1500/
A = L o saqpr <
1 v — 01+ ,T)
> l _ i _ 5(1 + pT) (19) 1000+
- N pN
1 1 //
- = [1—5 <+N+NpT)} (20) 50
N p
where inequality (19) follows from (13). Hence, we have- ) % w0 a0 w0 40 S0 o0 70 @0 w0 100

whenever the following condition is satisfied: swien Size N

1 Fig. 2. The logarithmic delay bound for the Fair-Frame algorithm as a func-
- tion of the switch sizeV, as compared to th@(N) delay of the randomized
0 ( +N+ NpT) <l (21) algorithm (which was previously the best known delay bound).

Chooses = O(1/N?) and note thafl” = [%1 -

. expressed in (3) for the queue length-independent randomized
3)) —

(;(110g(Nb)) N g(logé.]tv))illt foIIol\IA:cs that.ttht;el Ief;[wr;nd S|c:'e of algorithm? Note the rapid growth in delay as a function of the

(21) can be m_a € arbitranly sma orlsw ablys npartic=  switch size for the randomized algorithm, as compared to the
ular, we can find a valuésuch that (; + N + NPT> <1/2, relatively slow growth for the Fair-Frame algorithm. From the

so that (20) impliegy — A\) > 1/(2N). In this case, we have plot, the curves cross when the switch size is approximately

from (14) and (15) that: 200. However, note that the curve for the Fair-Frame algorithm
) represents only a simple upper bound, and we conjecture that
Delay < 2T + 26T + { }/ 22) fughter delay analysis will reveal that th_e Falr Frame algorithm
2(p—N) is preferable even for much smaller switch sizes.
1+ 3pT + p*T? We note that although only average delay is compared, the
< 2T+ 20TN (1 t—— T ) Fair-Frame algorithm has the property that all conforming
) packets have a worst case delay that is less than or equal to
— 97 195TN (14 (14 pT)" + pT 2T (WhereT'is logarithmic inN), and thg fraction of conforml-
1+ pT ing packets is at least— O(1/N?). That is, worst case delay is
< 2T +20TN (2 + 207) logarithmic for all but a negligible fraction of all packets served.

Because = O(1/N?) andT = O(log(N)), it follows thatthe = Ropustness to Changing Input Rates

resulting average delay &(T), that is,Delay < O(log(N)). . . . .
g g y 6(T) cay (log ))D Note that the Fair-Frame algorithm requires a loading bound

o _ p on each input but otherwise does not require knowledge of
~An explicit delay bound for anyV can be obtained for a the exact input rates. For this reason, it can be shown that the
given loading value as follows: Again defing/2pe' =7, and  Fair-Frame algorithm isobust to time varying input ratesn-

define the frame size as afunctiondofﬂ;é(%}. Using deed, it is not difficult to show that the Chernov bound of (10)

the definitions for\, 1, andE { A2} given in (16)-(20), the av- applies even when rates ambitrarily changing every timeslot
erage delay bound of (22) can be expressed as a pure funchépvided that on each timeslot the new rates always satisfy the
of the parametef (as well as the parametgy. This bound can constraints in (8).

be minimized as a function of, subject to the constraint that In the case when input rates are outside of the capacity re-

s (; LNt NpT5> < 1. The resulting valu,,;,, defines a gion, it is not po§3|ble to stab|!|ze the sv_wtch. quever, the
Ny ble f e d ai he tiah bound achi Fair-Frame algorithm makes fair scheduling decisions leading
suitable frame sizé;,, ., and gives the tightest bound achievy, ;. long-term average throughputs in this situation. Indeed,

able fr_om the above analysis._ . tpe utility function of the Fair-Frame algorithm can be adjusted
In Fig. 2 we plot the resulting delay bound as a function o

N for the fixed loading valug = 0.7. The delay bound for the = 2The delay expression (3) for randomized switching algorithms can be shown
Fair-Frame algorithm follows a logarithmic profile exactly (théo hold for any inputgA;;) satisfying all inequalities of (8) with equality (see

lot is linear when a | rithmi lei d for the horiz 1)). Thls bound is almost |dent|_cal to the bound obtaln_ed for the MWM algo—
plotis linea en aloga C scale Is used 1o € Norzotigm in [9], and hence the plot in Fig. 2 can also be viewed as a comparison
tal axis). The bound is plotted next to the exact average delafween the MWM bound and the Fair-Frame bound.
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to select empirical rates every frame in order to maximum sordeveloping delay-optimal scheduling. Such scheduling would
utility metric, such as the First Come First Served (FCFS) faiyield delay which is upper bounded 6y(log(N)) and lower
ness metric, or the max-min fairness metric (see [2]). It is nbbunded byO(1), which now serve as the tightest known
difficult to show that optimizing over these utility metrics evbounds on optimal delay.

ery timeslot leads to a near-optimal long-term througput, where

nearness is determined as a function of the frame size. REFERENCES
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