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Abstract— We consider the fundamental delay bounds for
scheduling packets in anN × N packet switch operating under
the crossbar constraint. Algorithms that make scheduling deci-
sions without considering queue backlog are shown to incur an
average delay of at leastO(N). We then prove that O(log(N))
delay is achievable with a simple frame based algorithm that uses
queue backlog information. This is the best known delay bound
for packet switches, and is the first analytical proof that sublinear
delay is achievable in a packet switch with random inputs. The
algorithm is shown to be implementable with very low complexity,
requiring O(N1.5 log(N)) total operations per timeslot.

Index Terms—stochastic queueing analysis, scheduling, optimal
control

I. I NTRODUCTION

We consider anN × N packet switch withN input ports
an N output ports, shown in Fig. 1. The system operates in
slotted time, and every timeslot packets randomly arrive at the
inputs to be switched to their destinations. Scheduling is con-
strained so that each input can transfer at most one packet per
timeslot, and outputs can receive at most one packet per times-
lot. This constraint arises from the physical limitations of the
crossbar switch fabricthat is commonly used to transfer pack-
ets from inputs to outputs, and gives rise to a very rich problem
in combinatorics and scheduling theory. This problem has been
extensively studied over the past decade [1-19], and remains
an important topic of current research. This is due to both its
technological relevance to high speed switching systems and its
pedagogical example as a network complex enough to inspire
interesting research yet simple enough for an extensive network
theory to be developed.

In this paper, we show that if the matrix of input rates to
the switch has a sufficient number of non-negligible entries (to
be made precise in Section III), then any scheduling strategy
which does not consider queue backlog information necessar-
ily incurs an average delay of at leastO(N). Strategies that do
not consider backlog have been proposed in a variety of con-
texts, including work by Chang et al [2], [3], Leonardi et al [4],
Koksal [5], and Andrews and Vojnović [6]. The basic idea is
to construct a randomized or periodic scheduling rule precisely
matched for known input rates. If these rates are indeed known
a-priori and do not change with time, then such scheduling of-
fers arbitrarily low per-timeslot computation complexity, as any
startup complexity associated with computing the scheduling
rule is mitigated as the same rule is repeatedly used for all time.

The O(N) delay result introduces an intuitive tradeoff be-
tween delay and implementation complexity, as algorithms
which do not consider backlog information may have lower
complexity yet necessarily incur delay that grows linearly in
the size of the switch. To improve delay, we construct a simple
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Fig. 1. AnN ×N packet switch under the crossbar constraint.

algorithm called Fair-Frame that uses queue backlog informa-
tion when making scheduling decisions. For independent Pois-
son inputs, we show that the Fair-Frame algorithm stabilizes the
system and providesO(log(N)) delay whenever the input rates
are within the switch capacity region. This work for the first
time establishes that sub-linear delay is possible in anN × N
switch. Furthermore, the proof is simple and provides the intu-
ition that logarithmic delay is achievable in any single-hop net-
work with a capacity region that is described by a polynomial
number of constraints. Such delay improvement is achieved by
taking advantage of statistical multiplexing gains, which is not
possible for backlog-unaware algorithms.

Previous work in scheduling is found in [1-19]. In [2] it
is shown that stable scheduling can be achieved with a queue
length-oblivious strategy by using a Birkhoff-Von Neumann de-
composition on the known arrival rate matrix. In [7] and [8], it
was shown that scheduling according to anO(N3) Maximum
Weighted Match(MWM) every timeslot stabilizes the switch
whenever possible without requiring prior knowledge of the in-
put rates. In [9] the delay of the MWM algorithm was shown
to be no more thanO(N). We note that MWM scheduling is
queue length-aware, and hence it may be possible to tighten the
delay bound to less thanO(N), as is suggested in the simula-
tions of [9]. However,O(N) delay is the tightest known analyt-
ical bound for MWM scheduling, and was previously the best
known delay bound foranyalgorithm for a switch with random
(Poisson) inputs.

In [10] it is shown that if a switch has an internalspeedup of
2 (allowing for two packet transfers from input to output every
timeslot), then exact output queue emulation can be achieved
via stable marriage matchings, yielding optimalO(1) delay. To
date, there are no known delay optimal scheduling strategies for
packet switches without speedup. However, in the landmark pa-
per [11], a loss-rate optimal scheduling algorithm is constructed
for a 2 × 2 switch with finite buffers. Finite buffer analysis of



IEEE WORKSHOP ON HIGH PERFORMANCE SWITCHING AND ROUTING — APRIL 2004 2

loss rates for systems of parallel queues is addressed in [12]
[13].

Frame based approaches for stabilizing switches and net-
works with deterministically constrained traffic are considered
in [14] [15] [16], and in [17] it was shown that a frame based
algorithm using “greedy” maximum size matches can be used
to stabilize anN ×N packet switch with Poisson inputs. Com-
plexity and delay tradeoffs are explored in [18], where an ex-
plicit complexity-delay curve is established allowing for stable
scheduling at any arbitrarily low computation complexity with
a corresponding tradeoff in average delay. Similar complexity
reductions were developed in [19]. In this paper, we show that
the (complexity, delay) operating point of the Fair-Frame al-
gorithm sits below the curve achieved by the class of algorithms
given in [18]. Indeed, Fair-Frame offers logarithmic delay and
can be implemented withO(N1.5 log(N)) total operations per
timeslot. The combination of low complexity and low delay
makes Fair-Frame competitive even with output queue emula-
tion strategies in switches with a speedup of2.

II. PACKET SWITCHES AND THE CROSSBARCONSTRAINT

Consider theN × N packet switch in Fig. 1. At each in-
put, memory is sectioned into distinct storage buffers to form
N virtual input queues, one for each destination. Packets ran-
domly arrive to each input every timeslot and are placed in the
virtual input queues according to their destinations. Note that
there are a total ofN2 virtual input queues, indexed by(i, j)
for i, j ∈ {1, . . . , N}, where queue(i, j) holds data at inputi
destined for outputj.

Packets arrive to the queues every timeslot according to ar-
rival processesAij(t). A scheduler selects a group of packets
to switch from inputs to outputs by connecting the crosspoints
in Fig. 1 according to apermutation matrix(Sij(t)), so that
no input or output port is scheduled for more than one packet
transfer (where the matrix(Sij(t)) is a0−1 matrix with exactly
one ‘1’ in each row and column, corresponding to the chosen
crosspoint connections). The goal of the scheduler is to choose
permutations every timeslot so that the overall system is stabi-
lized and packets have bounded average queueing delay.

A. Stability and Delay

Assume inputsAij(t) are rate ergodic and define the rate to
queue(i, j) asλij

M= limt→∞
1
t

∑t
τ=0 Aij(τ). Thecapacity re-

gion of the switch is defined as the closure of the set of all rate
matrices(λij) which can be stabilized by the switch by using
some scheduling algorithm, and is described by the following
constraints:

N∑
j=1

λij ≤ 1 for all inputsi (1)

N∑
i=1

λij ≤ 1 for all outputsj (2)

If one of the above inequalities is violated, some input or
output port must be overloaded, leading to instability. As an
example of a stabilizing algorithm for the case when the rate

matrix satisfies the above constraints, suppose traffic is Pois-
son with uniform rates, so thatλij = ρ/N for all (i, j) (where
0 < ρ < 1). Randomly choosing a permutation among all pos-
sible permutation matrices turns each virtual queue(i, j) into
a discreteM/GI/1 queue with geometric service times with
service probability1/N . Such a queue is clearly stable, and
average delay can easily be easily calculated (see [20]):

W randomized=
N−1/2

1−ρ + 1 (3)

One can also consider periodic scheduling, where on slott
each input porti is connected to the output port(i+t) mod N .
The resulting queues are similar toM/D/1 queues, and delay
is given by:

Wperiodic schedule=
N

2(1−ρ) + 1 (4)

While periodic scheduling reduces delay by a factor of2,
the delay remainsO(N). Intuitively, this is because each in-
put port can service at most one of itsN queues per timeslot,
and hence it takes an average ofN/2 timeslots for an arriving
packet to see a server. In the next section we elaborate on this
intuition to show thatO(N) delay is incurred by any schedul-
ing algorithm that operates independently of the input streams
and current levels of queue backlog.

We note that an output-queued system, which bypasses all
switching and sends inputs directly to their output ports, has a
delay given by:

Woutput queue=
1

2(1− ρ)
+ 1 (5)

where we again assume traffic is uniform and Poisson. This gap
betweenO(1) delay andO(N) delay motivates our search for
sublinear delay algorithms among the class of backlog-aware
strategies, considered in Section IV.

III. A N O(N) DELAY BOUND FOR

BACKLOG-INDEPENDENTSCHEDULING

Consider anN × N packet switch with general stochastic
inputs arriving to each of theN2 input queues. All inputs are
assumed to be stationary and ergodic. Assume the system is ini-
tially empty and letXij(t) represent the arrivals to input queue
(i, j) during the interval[0, t] (i.e., Xij(t) =

∑t
τ=0 Aij(τ)).

Let Lij(t) represent the current number of packets queued at
input (i, j), and letSij(t) represent the server control decision
at slot t (where the matrix(Sij(t)) is a permutation matrix).
Here we show that if the control decisions(Sij(t)) are station-
ary and independent of the arrival streams, then average delay
in the switch is necessarilyO(N).1 Because backlog is directly
related to the arrival streams, it follows that stationary switching
schemes which operate independently of queue backlog incur at
leastO(N) delay.

As a caveat, we note that periodic scheduling streams such
as those proposed for Birkhoff-Von Neumann scheduling in [2]
are by definition not stationary. However, randomizing the pe-
riodic schedule(Sij(t)) over the phase of the period yields a

1TheO(N) result holds only when the input rate matrix(λij) has a sufficient
number of positive entries, as described in Theorem 2.
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stationary schedule. If inputs are ergodic, stationary, and inde-
pendent of the scheduling decisions, then the resulting average
packet delay is the same under both the original periodic sched-
ule and the schedule with a randomized phase. Thus, theO(N)
delay result also holds for any scheduling algorithm which is
independent of backlog and which can be made stationary by
phase randomization.

The following lemma is useful for obtaining lower bounds on
delay. The proof uses a technique similar to that used in [21] to
show that fixed length packets minimize delay over all packet
length distributions with the same mean, and is given in [1].

Lemma 1. For a switch with general arrival processes, any
stationary scheduling algorithm which operates independently
of the input streams (and hence, independently of the current
queue backlog) yields a time average queue occupancyLij for
each queue(i, j) satisfying:

Lij ≥ U ij

whereUij represents theunfinished work(or “fractional pack-
ets”) in a system with the same inputs but with constant server
rates ofµij packets/slot, for at least one set of ratesµij such
that

∑
j µij ≤ 1 for all i, and

∑
i µij ≤ 1 for all j.

Proof. The lemma is proved in [1].

The lemma above produces a lower bound on delay in terms
of a system of queues with the same inputs but with constant
server rates, and leads to the following theorem.

Theorem 1. If inputsXij are Poisson with uniform ratesλij =
ρ/N (for ρ < 1 representing the loading on each input), then
delay under any stationary scheduling algorithm which does
not consider backlog is greater than or equal toN2(1−ρ) .

Proof. The unfinished work in an M/D/1 queue with arrival rate
λij and service time1/µij is equal toU ij(µij) = λij

2(µij−λij)
,

which can be computed by addingρij/2, the average portion
of a packet remaining in the server, to the expression for the
average number of packets in the buffer of an M/D/1 queue
[20]. From Lemma 1, there exists a rate matrix(µij) with
row and column sums bounded by 1, so thatLij ≥ U ij for
all (i, j). DefineΛ as the set of all rate matrices(µij) satisfy-
ing
∑

i µij ≤ 1,
∑

j µij ≤ 1. Using Little’s Theorem, and the
fact that

∑
ij λij = ρN , we have:

Delay =
1

ρN

∑
ij

Lij ≥ inf
(µij)∈Λ

 1
ρN

∑
ij

U ij(µij)


However, because theU ij(µij) functions are identical and con-
vex, the expression inside the infimum is a convex symmetric
function and attains its minimum atµij = 1/N for all (i, j),
and the result follows.

Note that this lower bound differs by one timeslot from the
delay expression in (4) for the periodic scheduling algorithm
given in Section II. Because of the1/(1 − ρ) factor, delay
in the N × N packet switch with Poisson inputs necessarily
grows to infinity as the loadingρ approaches 1. For any fixed

loading value, delay grows linearly in the size of the switch.
This O(N) result holds more generally. Indeed, consider gen-
eral stationary, ergodic arrival streamsXij with data ratesλij ,
and define the average rate into input ports of the switch to
be λav

M= 1
N

∑
ij λij . (Note that in the uniform loading case,

λav = ρ, andλij = ρ/N .) We assume that there are at least
O(N2) entries of the rate matrix which have rates greater than
or equal toO(λav/N).

Theorem 2. For general stationary, ergodic inputs with data
ratesλij , if O(N2) of the rates are greater thanO(λav/N),
then average delay under independent scheduling is at least
O(N).

Proof. The proof is provided in [1].

A simple counter-example shows that delay can beO(1) if
the rate matrix does not have a sufficient number of entries with
large enough rate: Consider a rate matrix equal to the identity
matrix multiplied by the scalarλ < 1. Then, the switch can
be configured to always transfer input 1 to output 1, input 2 to
output 2, etc., and average delay is the same as theO(1) delay
of an output queue.

IV. A N O(log(N)) DELAY BOUND FORBACKLOG-AWARE

SCHEDULING

Here we show thatO(log(N)) delay is possible by using a
backlog-aware scheduling strategy. This result for the first time
establishes that sublinear delay is possible in anN ×N packet
switch without speedup. The algorithm is similar to theframe
basedschemes considered in terms of stability in [14] [17], and
is based on the principle of iteratively clearing backlog in min-
imum time. Minimum clearance time policies have recently
been applied to stabilizenetworksin [22], [16]. We begin by
outlining several known results about clearing backlog from a
switch in minimum time.

A. Minimum Clearance Time and Maximum Matchings

Consider a single batch of packets present in the switch at
time zero. We represent the initial backlog as anoccupancy
matrix (Lij), where entryLij represents the number of packets
at input porti destined for output portj. Suppose that no
new packets enter, and the goal is simply to clear all packets
in minimum time by switching according to permutation
matrices. The following fundamental result from combinatorial
mathematics provides the solution to this problem [23]:

Fact 1.LetT ∗ represent the minimum time required to clear
backlog associated with occupancy matrix(Lij). ThenT ∗ is
exactly given by the maximum sum over any row or column of
the matrix(Lij).

It is clear that the minimum time to clear all backlog can be
no smaller than the total number of packets in any row or col-
umn, because the corresponding input or output can only serve
1 packet at a time. This minimum time can be achieved by an
algorithm similar to the Birkhoff-Von Nuemann algorithm de-
scribed in [2]. Indeed, The matrix is first augmented withnull
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packetsso that every row and column has line sumT ∗. Using
Hall’s Theorem [23], it can be shown that the augmented back-
log matrix can be cleared by a sequence ofT ∗ perfect matches
of sizeN .

Such matchings can be found sequentially using any Maxi-
mum Size Matching algorithm, where each match requires at
most O(N2.5) operations (see [2] [24] [25] [14]). Note that
the preliminary matrix augmentation procedure can be accom-
plished withO(N) computations each timeslot by updating a
set of vectorsrow sumandcolumnsumeach timeslot, and then
augmenting the matrix at the beginning of each frame by using
these row and column sum vectors to sequentially update each
row in the next column which does not have a full sum.

B. Fair Frame Scheduling for Logarithmic Delay

We now present a frame based scheduling algorithm which
iteratively clears backlog associated with successive batches
of packets. Packets which are not cleared during a frame are
marked and handled separately in future frames. The algorithm
is “fair” in that when the empirical input rates averaged over a
frame are outside of the capacity region of the switch, decisions
about which packets to serve are made fairly. We show that if
inputs are Poisson and rates are strictly within the capacity re-
gion, the switch is stable and yieldsO(log(N)) delay.

The Fair-Frame Scheduling Algorithm: Timeslots are
grouped into frames of sizeT slots.

1) On the first frame, switching matrices(Sij(t)) are chosen
randomly so that the probability of serving any particular
queue is uniformly1/N .

2) On the(k+1)th frame, the backlog matrix(Lij(kT )) con-
sisting of packets that arrived during the previous frame is
augmented with null packets so that all row and column
sums are equal toT . If this cannot be done, anoverflow
occurs. A new matrix(L̃ij(kT )) with row and column
sums equal toT is formed from a subset of the backlog
of the previous frame. The packets covered by this new
matrix will be scheduled on the next frame, and the re-
maining packets are marked asoverflowpackets. Choice
of which (L̃ij(kT )) to use is based upon some type of
utility function, such as the FCFS utility or max-min fair
utility, described in [1].

3) All non-overflow packets are scheduled during frame(k+
1) by performing maximum matches every timeslot to
strip off permutations from the augmented backlog matrix.

4) If all packets of the augmented backlog matrix are cleared
in less thanT slots, uniform and random scheduling is
performed on the remaining slots to serve the overflow
packets remaining in the system from previous overflow
frames. Note that the probability of serving a particular
overflow packet at the head of its queue(i, j) during such
a slot is1/N .

5) Repeat from step 2.

If any packet arriving during a framek is not cleared within
the next frame, at least one of the following inequalities must

have been violated:∑
j

[Xij((k + 1)T )−Xij(kT )] ≤ T for all i (6)

∑
i

[Xij((k + 1)T )−Xij(kT )] ≤ T for all j (7)

Traffic that satisfies the above inequalities during a frame is said
to beconformingtraffic. Packets remaining in the switch be-
cause of a violation of these inequalities are defined asnon-
conformingpackets and are served on a best effort basis in fu-
ture frames. Note that, by definition, the Fair-Frame algorithm
clears all conforming traffic within2T timeslots.

Here we describe the performance of the Fair-Frame algo-
rithm with random inputs. Suppose inputs are Poisson with
ratesλij satisfying:∑

j

λij ≤ ρ for all i ,
∑

i

λij ≤ ρ for all j (8)

whereρ represents the maximum loading on any input port or
output port. Note that if the sum rate to any input or output
exceeds the value 1, the switch is necessarily unstable. In the
following, we show that ifρ < 1, the Fair-Frame algorithm
can be designed to ensure stability with delay that grows loga-
rithmically in the size of the switch. We start by presenting a
lemma that guarantees that the overflow probability decreases
exponentially in the frame lengthT .

Lemma 2. For an arbitrarily small overflow probabilityδ,
choose an integer frame sizeT such that:

T ≥ log(2N/δ)
log(1/γ)

(9)

whereγ M=ρe1−ρ. Then a switch operating under the Fair-Frame
algorithm with a frame sizeT ensures the probability of a frame
overflow is less thanδ. All conforming packets have a delay less
than 2T , and if T

∑
ij λij ≥ 1, the fraction of packets which

are non-conforming is less than2δ.

Proof. Packets are lost during framek only if one of the2N
inequalities of (6), (7) is violated during the previous frame. Let
X(T ) represent the number of packets arriving from a Poisson
stream of rateρ during an interval ofT timeslots. Then any
individual inequality of (6) and (7) is violated with probability
less than or equal toPr[X(T ) > T ]. By the Chernov bound,
we have for anyr > 0:

Pr[X(T ) > T ] ≤ E
{

erX(T )
}

e−rT

= exp(ρT (er − 1)− rT ) (10)

where the identityE
{
erX(T )

}
= exp(ρT (er − 1)) was used

for the Poisson variableX(T ).
To form the tightest bound, define the exponent in (10) as the

functiong(r) = ρT (er − 1) − rT . Taking derivatives reveals
that the optimal exponent for the Chernov bound is achieved
whener = 1/ρ. Using this in (10), we have:

Pr[X(T ) > T ] ≤
[
ρe1−ρ

]T
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We defineγ M=ρe1−ρ. Theγ parameter is an increasing function
of ρ for 0 ≤ ρ ≤ 1, being strictly less than 1 wheneverρ < 1.
By the union bound, the probability that any one of the2N
inequalities in (6) and (7) is violated is less than or equal to
2NγT . Hence, if we ensure that:

2NγT ≤ δ (11)

then each frame successfully delivers all of its packets with
probability greater than1 − δ. Taking the logarithm of both
sides of (11), we obtain the requirement:

T ≥ log(2N/δ)
log(1/γ)

Now let θ M=T
∑

ij λij represent the expected number of
packet arrivals during a frame. In [1], we show that for Pois-
son arrivals, the extra amount of packets that arrive given that
the number of arrivals is greater than some valueT is stochas-
tically less than the original Poisson variable plus 1. It follows
that the expected number of extra arrivals to a frame in which
one of the inequalities (6), (7) is violated is less than or equal to
1+θ. Thus, the ratio of non-conforming packets to total packet
arrivals is no more thatδ(1 + θ)/θ. Assumingθ ≥ 1, it follows
that this ratio is less than2δ.

The log(2N) delay bound in (9) arises because of the2N
constraints describing the switch capacity region. In a switch
with Bernoulli traffic rather than Poisson traffic, no more than
one packet can enter any input port. In this case, the constraints
in (6) are necessarily satisfied and can be removed from the
union bound expression in (11), which reduces the delay bound.
Intuitively, a similar argument can be used to prove that loga-
rithmic delay is achievable in any single-hop switching network
with a capacity region described by a polynomial number of
constraints, as the logarithm ofNk remainsO(log(N)).

It is useful to understand how the frame size grows for a
fixed overflow probabilityδ as the loadingρ approaches1.
The formula for the frame sizeT contains alog(1/γ) term
in the denominator. Using the definition ofγ and taking a
Taylor series expansion aboutρ = 1 shows thatlog(1/γ) =
(1−ρ)2

2 + O(1 − ρ)3. Thus, the denominator isO((1 − ρ)2).
This suggests that the cost of achievingO(log(N)) delay is to
have a delay which is more sensitive to the loading parameterρ
(confer with eqs. (3)- (5)).

We note that the Poisson assumption is not essential to the
proof—a similar proof can be constructed for any indepen-
dent input streamsXij such thatPr[

∑
j Xij(T ) > T ] and

Pr[
∑

i Xij(T ) > T ] decreases geometrically withT . It is
necessary that the streams be independent for this property to
hold. Indeed, consider a situation where all inputs experience
thesameprocesses, so thatXij(t) = X(t) for all (i, j). When-
ever a packet arrives to input 1 destined for output 1, all other
inputs receive a packet destined for output 1, and the minimum
average delay isO(N/2).

To provide a true delay bound, the delay of non-conforming
packets must be accounted for, as accomplished in the theorem
below.

Theorem 3. For Poisson inputs strictly interior to the capac-
ity region with loading no more thanρ, a frame sizeT can be
selected so that the Fair-Frame algorithm ensures logarithmic
average delay.

Proof. For an overflow probabilityδ (to be chosen later), we

choose the frame sizeT =
⌈

log(2N/δ)
log(1/γ)

⌉
so that overflows occur

with probability less than or equal toδ. The backlog associ-
ated with non-conforming packets for any queue(i, j) can be
viewed as entering avirtual G/G/1 queuewith random service
opportunities every frame. Letq represent the probability of
frame ‘underflow’: the probability that there is at least one ran-
dom service opportunity for non-conforming packets during a
frame. This is the probability that all backlog of the previous
frame can be cleared in less thanT slots. Using a Chernov
bound argument similar to the one given in the proof of Lemma
2, it can be shown thatPr[X(T ) > T − 1] ≤ 1

ργT , and hence:

q ≥ 1− 2N

ρ
γT (12)

Expressed in terms ofδ, this means that:

q ≥ 1− 2N

ρ
γ

log(2N/δ)
log(1/γ)

= 1− 2N

ρ
γlogγ(δ/(2N))

= 1− δ/ρ (13)

The average delay for non-conforming packets in queue(i, j)
is thus less than or equal toT (the size of the frame in which
they arrived) plus the average delay associated with a slotted
G/G/1 queue where a service opportunity arises with probabil-
ity q/N . Every slot, with probability1−δ no new packets arrive
to this virtual queue (as all packets are conforming), and with
probabilityδ there are1 + X packets that arrive, whereX is a
Poisson variable with meanρT (where we again use the result
in [1] which shows that excess arrivals are stochastically less
than the original). Note that this is avery large overbound, as
all overflow packets arriving to an inputi are treated as if they
arrived to queue(i, j). Conforming packets consist of at least
a fraction1− 2δ of the total data and have a delay bounded by
2T . Thus, the resulting average delay satisfies:

Delay ≤ 2T (1− 2δ) + 2δ(T + TDelay(G/G/1))
≤ 2T + 2δTDelay(G/G/1) (14)

whereDelay(G/G/1) represents the average delay of non-
conforming packets in the virtual G/G/1 queue (normalized to
units of frames).

The average delay of a stable, slotted G/G/1 queue with inde-
pendent arrival and service opportunities can be solved exactly.
However, we simplify the exact expression by providing the fol-
lowing upper bound, which is easily calculated using standard
queueing theoretic techniques:

Delay(G/G/1) ≤
1 + E

{
A2
}

/λ

2(µ− λ)
(for µ > λ) (15)
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where, in this context, we have:

λ = δ(1 + ρT ) (16)

µ = q/N (17)

E
{
A2
}

= δE
{
(1 + X)2

}
= δ

[
1 + 3ρT + ρ2T 2

]
(18)

The virtual queue is stable provided thatµ > λ. This is
ensured whenever the parameterδ is suitably small. Indeed, we
have:

µ− λ =
q

N
− δ(1 + ρT )

≥ 1
N
− δ

ρN
− δ(1 + ρT ) (19)

=
1
N

[
1− δ

(
1
ρ

+ N + NρT

)]
(20)

where inequality (19) follows from (13). Hence, we haveµ > λ
whenever the following condition is satisfied:

δ

(
1
ρ

+ N + NρT

)
< 1 (21)

Chooseδ = O(1/N2) and note thatT = d log(2N/δ)
log(1/γ) e =

O(log(N3)) = O(log(N)). It follows that the left hand side of
(21) can be made arbitrarily small for suitably smallδ. In partic-

ular, we can find a valueδ such thatδ
(

1
ρ + N + NρT

)
≤ 1/2,

so that (20) implies(µ − λ) ≥ 1/(2N). In this case, we have
from (14) and (15) that:

Delay ≤ 2T + 2δT
1 + E

{
A2
}

/λ

2(µ− λ)
(22)

≤ 2T + 2δTN

(
1 +

1 + 3ρT + ρ2T 2

1 + ρT

)
= 2T + 2δTN

(
1 +

(1 + ρT )2 + ρT

1 + ρT

)
≤ 2T + 2δTN (2 + 2ρT )

Becauseδ = O(1/N2) andT = O(log(N)), it follows that the
resulting average delay isO(T ), that is,Delay ≤ O(log(N)).

An explicit delay bound for anyN can be obtained for a
given loading valueρ as follows: Again defineγ M=ρe1−ρ, and
define the frame size as a function ofδ: Tδ

M=d log(2N/δ)
log(1/γ) e. Using

the definitions forλ, µ, andE
{
A2
}

given in (16)-(20), the av-
erage delay bound of (22) can be expressed as a pure function
of the parameterδ (as well as the parameterρ). This bound can
be minimized as a function ofδ, subject to the constraint that

δ
(

1
ρ + N + NρTδ

)
< 1. The resulting valueδmin defines a

suitable frame sizeTδmin
and gives the tightest bound achiev-

able from the above analysis.
In Fig. 2 we plot the resulting delay bound as a function of

N for the fixed loading valueρ = 0.7. The delay bound for the
Fair-Frame algorithm follows a logarithmic profile exactly (the
plot is linear when a logarithmic scale is used for the horizon-
tal axis). The bound is plotted next to the exact average delay
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Fig. 2. The logarithmic delay bound for the Fair-Frame algorithm as a func-
tion of the switch sizeN , as compared to theO(N) delay of the randomized
algorithm (which was previously the best known delay bound).

expressed in (3) for the queue length-independent randomized
algorithm.2 Note the rapid growth in delay as a function of the
switch size for the randomized algorithm, as compared to the
relatively slow growth for the Fair-Frame algorithm. From the
plot, the curves cross when the switch size is approximately
200. However, note that the curve for the Fair-Frame algorithm
represents only a simple upper bound, and we conjecture that
tighter delay analysis will reveal that the Fair-Frame algorithm
is preferable even for much smaller switch sizes.

We note that although only average delay is compared, the
Fair-Frame algorithm has the property that all conforming
packets have a worst case delay that is less than or equal to
2T (whereT is logarithmic inN ), and the fraction of conform-
ing packets is at least1−O(1/N2). That is, worst case delay is
logarithmic for all but a negligible fraction of all packets served.

C. Robustness to Changing Input Rates

Note that the Fair-Frame algorithm requires a loading bound
ρ on each input but otherwise does not require knowledge of
the exact input rates. For this reason, it can be shown that the
Fair-Frame algorithm isrobust to time varying input rates. In-
deed, it is not difficult to show that the Chernov bound of (10)
applies even when rates arearbitrarily changing every timeslot,
provided that on each timeslot the new rates always satisfy the
constraints in (8).

In the case when input rates are outside of the capacity re-
gion, it is not possible to stabilize the switch. However, the
Fair-Frame algorithm makes fair scheduling decisions leading
to fair long-term average throughputs in this situation. Indeed,
the utility function of the Fair-Frame algorithm can be adjusted

2The delay expression (3) for randomized switching algorithms can be shown
to hold for any inputs(λij) satisfying all inequalities of (8) with equality (see
[1]). This bound is almost identical to the bound obtained for the MWM algo-
rithm in [9], and hence the plot in Fig. 2 can also be viewed as a comparison
between the MWM bound and the Fair-Frame bound.
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to select empirical rates every frame in order to maximum some
utility metric, such as the First Come First Served (FCFS) fair-
ness metric, or the max-min fairness metric (see [2]). It is not
difficult to show that optimizing over these utility metrics ev-
ery timeslot leads to a near-optimal long-term througput, where
nearness is determined as a function of the frame size.

V. I MPLEMENTATION COMPLEXITY

The Fair-Frame algorithm relies on Maximum Size Match-
ings every timeslot. In [1], it is shown that these matchings
act as the implementation complexity bottleneck.3 In general,
maximum size matchings can be performed using the algo-
rithm in [25] which requiresO(MN1/2) operations, where
M is the number of nonzero entries of the backlog matrix.
For backlog matrices with many nonzero entries,M can be
as large asN2. However, the Fair-Frame algorithm by defi-
nition performs maximum matchings on a backlog matrix for
which the total number of packets at any input is no more
than T , whereT is O(log(N)). It follows that the number
of nonzero entries is less than or equal toNT , i.e., M is
O(N log(N)). Thus, the Fair-Frame algorithm achieves log-
arithmic delay and requiresO(N1.5 log(N)) total operations
every timeslot. This(delay, complexity) operating point lies
below the delay-complexity curve established for the class of
stable algorithms given in [18]. Indeed, in [18] it is shown
that for any parameter choiceα such that0 ≤ α ≤ 3, a sta-
ble scheduling algorithm can be developed requiringO(Nα)
per-timeslot computation complexity and ensuringO(N4−α)
average delay. Thus, the Fair-Frame algorithm reduces delay
by a factor of approximatelyO(N2.5) at theO(N1.5 log(N))
complexity level. We conjecture that a new complexity-delay
tradeoff curve can be established using the techniques given in
[18].

VI. CONCLUSIONS

We have considered scheduling inN × N packet switches
with random traffic. It was shown that queue length-
independent algorithms, such as those using randomized or pe-
riodic schedules designed for known input rates, necessarily in-
cur delay of at leastO(N). However, a simple queue length-
aware algorithm was constructed and shown to provide delay
of O(log(N)). This is the first analytical demonstration that
sublinear delay is possible in a packet switch, and proves that
high quality packet switching with the crossbar architecture is
feasible even for very large switches of sizeN > 1000. The
Fair-Frame algorithm provided here is based on well estab-
lished framing techniques and is simple to implement, requiring
only O(N1.5 log(N)) computations every timeslot. Although
the logarithmic delay proof was performed using the Poisson
input assumption, it is intuitively clear that similar results apply
for more general input streams.

Performance of Fair-Frame can likely be improved by en-
abling dynamic frame sizing and alternative matching assign-
ments. An important question for future research is that of

3Indeed, it is shown in [1] that, for simple utility metrics, “Step 2” of the
Fair-Frame algorithm can be performed using fewer thanO(N1.5) operations
per timeslot.

developing delay-optimal scheduling. Such scheduling would
yield delay which is upper bounded byO(log(N)) and lower
bounded byO(1), which now serve as the tightest known
bounds on optimal delay.
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