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Abstract—We consider a discrete time tandem of queues serving {A () (A () A (1)
fixed length packets, where each queue can serve a single packet % ’ KK

during a timeslot. Arrivals and departures take place at each stage At L L L
according to arbitrary stochastic processes. Using sample path {Au(t} 1 9 K-1 K
techniques and stochastic coupling methods, we present an exact ‘ A " ‘
analysis of the queue occupancy distribution at each stage when all ] [ {

gqueues operate according to théurthest-to-Goservice discipline.

Explicit expressions for average queue occupancies are providedrig. 1. A tandem oK’ queues with arrivals and departures at each stage.
in terms of the average occupancy in a single queue with a super-

position of the original inputs. To our knowledge, this is the first
analysis of a multi-input multi-output queueing network yielding

. . the classic M/M/1 Jackson network with Poisson inputs and
exact solutions for general arrival processes.

) ] ) independent, exponential service times [5]. Exact analysis of
Callr;ﬂlelj(sTgEE Fs’t?gkce; uspclir;%du"”@ Queueing Analysis, Network non_reversible queueing systems is usually confined to small
' networks (see [6] [7] [8] for analysis of a single discrete time
queue with general inputs, and [9] for a moment generating
I. INTRODUCTION function analysis of a two-queue tandem with i.i.d. arrivals ev-

In this paper we consider a discrete time tanderi afueue- €ry timeslot). Approximation methods are developed in [10]
ing nodes serving fixed length packets (Fig. 1). Time is sldil1] for modeling discrete time tandems with arrivals and de-
ted and slots are normalized to integral units. Packets en@rtures at each stage in the special case when inputs have a
the network according to a set of arbitrary arrival processépecified Markovian structure. Bounding techniques for gen-
{A;;(t)}, where A;;(t) represents the number of packets tharal networks are developed in [12] [13] [14] using a calculus
exogenously arrive to sourdeat timeslott which are destined of network service curves.
for nodej. Each node can serve a single packet during a times-Our approach uses the sample-path method of [15] [16],
lot. After service, packets either exit the network or are fowhere tree networks of deterministic service time queues with
warded to the next node in the tandem, according to their degieneral inputs are analyzed using a packet conservation prop-
nations. erty for multi-input single output systems. A similar approach

To analyze such a systemsarvice policymust be specified is used in [17] and [18] to analyze discrete time trees and
that determines which packet to serve when packets from di#ndems with Poisson inputs. We show that a similar conser-
ferent streams are waiting in the same queue. We consider vagon property holds for discrete time tandems with general
Furthest-to-Go(FTG) service policy, which serves the packearrivals and departures at each stage when the FTG service pol-
destined for the furthest downstream node of the tandem (tieg is used. To our knowledge, this result is the first analysis
are broken arbitrarily). Under this FTG policy, we develop af a multi-input multi-output queueing network yielding exact
simple network decomposition that preserves steady state queakitions for general inputs.
occupancy when inputs are independent and stationary. ExpliciThis paper is structured as follows: In the next section we
expressions for the average number of packets from each traff@scribe the tandem and define the arrival parameters. In Sec-
class and in each node of the network are computed in tertign Il we establish an equivalent model for each node of the
of a single queue with a superposition of the original inputéandem which preserves the exact occupancy distribution. In
Furthermore, exact occupancy distributions can be obtainedSaction IV we provide expressions for the average occupancy
terms of a simplified-queue equivalent model. We note thawithin each node of the tandem. Finally, we compare the exact
the FTG service policy is shown in [1] to be stable in all disand simulated delay under the FTG strategy to the simulated
crete time networks with fixed routing. Our results demonstratelay under théNearest-to-GENTG) service discipline.
that this policy is easily analyzable for all input traffic when the
network has a tandem topology.

As queueing networks are non-linear systems driven by
stochastic events, exact analytical results are largely limited toConsider the/’ node tandem of Fig. 1. We label the nodes
systems with the special structure mversibility [2] [3] [4] in increasing order according to the integéts2,..., K}, so
[5]. Reversible networks have product-form occupancy disttihat nodel is the first node of the tandem and nades the last
butions. The best known example of a reversible network (&irthest downstream) node of the tandem.

Il. TANDEM MODEL
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A. The Arrival Processes At) At)
Define:
. . Y(t Y(t
A;;(t) £ Number of packets arriving to nodeluring © 2 2 | YO ‘ ‘ 2 —
slot¢ that are destined for node @ de'ayalj)
t—1
1
Aij 2 lim - Z Ai;(1) Fig. 2. A2-queue system with two inputs and a single output, together with
t—oo 1 p— its equivalent model formed by replacing the first queue by a pure delay of
o timeslot.

We assume that the arrival streamg(¢) are rate-convergent
so that the above limits defining the arrival rateg exist with i 1« Results for Single-Output Systems
probability 1. Note that from the tandem structure of the net- ] ) ) o
Consider the special case tandem illustrated in Fig. 2a con-

work, Aij(t)éo for all t whenever > j. The stochastics of the ™~ )

arrival streams are otherwise arbitrary. sisting of two noded and2 and two general input processes
Y (¢t) and A(t) delivering packets destined for the final node.

B. The Queueing Equation We have the following fact from [15].

Define theclassof a packet as the destination of a packet, so Fact 1: (Delay Replacement — from [15]) The departure

that packets of class € {1,2,..., K} are destined for node. rqcess of node is unchanged if node is replaced by a pure
The current number of packets from each class and the currgnt . . : .

. - : ime delay of one time unit, as shown in the equivalent model
service decisions for each queue are defined as follows:

of Fig. 2b, so that the total input stream delivered into the fi-
N () £  Number of packets destined for node nal node of the equivalent model is givenbft — 1) + A(t). O

that are currently in node: . . .
y The proof of this fact is developed in [15]. We note that

i N(m) (1) an independent proof was given in [19]. Intuitively, the result
— " follows because the final node serves packets no faster than the
first node can deliver them. Hence, the busy period of the final
node in Fig. 2a cannot finish before the busy period of the final

[l

N (t)

Sim) (1) 2 Number of class: packets served by node

at timeslott node in the equivalent model.

Note that the service variablé§™ (¢) can take the values of A A A @®
either0 or 1. Because each node can serve at most one packet « kLK KK
during a timeslot, whenevet\™ (t) = 1 for some noden and A @® L L L
classn, it must be the case thaf™ () = 0 for all other classes - ! e K
7 # n in that node. @

All nodes of the tandem are assumed to be initially empty, A0 A AL
and the input processes; (t) are applied to the tandem at time “ n ¢
0. Formally, we assume that all data streams satisfyt) = 0 A (1)
forall ¢ < 0. The queueing dynamics for each nedend each e 2K K
classn > m proceed as follows: 1 ()

N(m)(t + 1) _ [N(m)(t) _ S(m) (t)] + Amn(t) + S(m_l)(t) K
n n n n A (t'
% e E-O) /o K|,

()

We assume that the only packets elligible for service in a
particular queue are those within the queue at the beginning of
a timeslot, and hence newly arriving packets cannot be serveal 3. Equivalently representing the departure process of the final node in a
until the next slot. Under thEurthest-to-GAFTG) service dis- V"Jﬁg;’lﬁgﬂf%”g&%’;?g: fﬁ;%ﬁr,?pm'@tgiﬁqygdgﬁﬁ'E;i“;??fi‘g,;')‘?' mputs.
cipline, the service variabl§{™ (t) is defined to be if n is
the largest class among all packets currently contained in node€onsider now the multi-input single output tandem f&f
m, and0 otherwise. Thus, every timeslot each node serves thgeues of Fig. 3a with exogenous arrivals at each stage, all of
packet having the largest number of future nodes to travekgRich deliver packets destined for the end ndfe The delay
among all packets waiting in its queue. New packets arrive @placement result of Fact 1 can be used to iteratively replace all
a given node from both the exogenous input stream and the gpeliminary nodes with pure delays while preserving the output
dogenous input stream consisting of departures from the preyfocess of nodés. Indeed, consider thg-node system con-
ous node. sisting of nodesl and2. By Fact 1, nodel can be replaced

by a delay line without changing the output process of node
Ill. EQUIVALENT MODELS 2, and hence without affecting the output process of any other

In this section we develop a simple decomposition of the tanedes further downstream (see Fig. 3b). The result can be used
dem which serves as an equivalent model for all analytical pagain to replace nod2with a delay line (where the sum pro-
poses. We begin by presenting the relevant results of [15]. cessA;k (¢ — 1) + Ak (t) entering node& in Fig. 3b is treated
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as a single collective input when applying Fact 1). This simpliFhus,X 5 (¢) can be viewed as a version of thgt) data stream
fying procedure is iteratively repeated until we are left with a which packets during the firdd slots are thrown away.
smgl_e noder Wlth. a superposition of inputs thfat are delz.iyeg)efinition 2. An arrival processX (¢) is stationaryif for any
versions of the originals (see Fig. 3c). Specifically, the input__. . delayD, the delayed process (¢ — D) is stochasticall
streamAy k (t) for nodek is delayed byD;, timeslots (where positive delay), _ayedap y
N $% indistinguishable fronX p (¢).

Dp£(K — k)), so that the sum process, , Apx (t — Di)
enters nodek. We call such a sum processaperpositiorof ~ Note that for two stationary arrival process€st) andY (¢)
the delayed input streams. The resulting departure procesdhtt are also independent, the superposificit — D) + Y (?)
nodeK is unchanged under this transformation. is stochastically equivalent to the superpositiop (¢) + Y (t),

Before proceeding with the general problem of a tande@id hence either superposition applied to a queue yields the
with arrivals and departures at each stage, we provide a sipame steady state distribution, provided that the distribution ex-
ple stochastic coupling argument that proves the intuitive resisits.

that, whenever the inputs are _independen_t and stationary, @korem 1. For any general inputsy (¢), Y (), A(t) that are
time delays can be removed without affecting the steady st@{gependent and stationary, the steady state occupancy distri-
occupancy distribution in the queues. bution in nodel of Fig. 4 exists if and only if the steady state
) _ ] occupancy distribution exists when the time delay onXtte)
B. Removing the Delays Via Stochastic Coupling input stream is removed. If the distributions exist, they are iden-
Consider the2-node tandem with nodes and2 and input tical.
streamsX (¢), Y'(t), and A(t) delivering packets destined for Similarly, the steady state distribution in noflés the same
node2, as shown in Fig. 4. We note that the packet occupaneth or without the time delay on th¥ (¢) stream, provided the
in the final node of any single output tandem can always liéstribution exists.
described in terms of the occupancy in n@dghown in the fig-
ure, where the input proceskt) represents the actual proces
of packets directly entering the final node, and the processehis result for the simpl8 input model of Fig. 4 proves that
X (t) andY (t) represent superpositions of delayed versions afl time delays from any superposition of multiple inputs can
the remaining inputs of the tandem, with delays given as in the removed, as the delay lines can be removed iteratively with-
previous subsection so that the output process of the secondetat-affecting the steady state distribution, treating the stream for
last node is unchanged. which the delay is removed as th&(t) stream and the collec-
tion of all other (delayed or non-delayed) stream%és).

groof. The proof is given in the Appendix. O

A(t)
Y(t) L C. Multi-Input Multi-Output Tandems under FTG
X(t) 1 2 Consider now the general tandemiofqueues shown in Fig.
/ 1, with arrivals and departures at each stage and operating un-
D der the Furthest-to-Go service discipline. We define arrival pro-

m) ; (m) .
Fig. 4. A canonical-queue system with inpuk (¢) delayed by an integer C€SS€Yn (t) and their ratesy, as follows:
number of timeslots.

m K
Note that theX () process is explicitly shown with a time yim) £ Z A (t)
delay of D timeslots (whereD is an integer). We show that i=1 j=max(n,m)
if X(t) andY (¢) are independent and stationary, the delay can m K
be removed without affecting the steady state distribution of yﬁl’”) L Z Z Aij
packets in nodd or node2. We first define the notions of i=1 j—max(n,m)

steady state and stationarity.

Definition 1. Let the stochastic proces¥ (t) represent the ~ FOr given integers, m, the,{""(t) process represents the
number of packets in a queue as a function of time. Staady superposition of all input streams of packets destined for node
state distributiorF[n] for the queue is defined: or higher that pass through node and~,,"’ represents the ag-
gregate data rate of this process. All packets fromythi&’ (¢)
stream are thus from classor higher. By definition of the
FTG policy, these packets have priority over all packets with
class lower tham. Thus, to analyze the packet occupancy or
whenever the limit exists. departure processes for packets of class higher, all lower

To define the notion of stationarity, for any arrival proces%'ass packets can be ignored. It follows that the departure pro-

X(t) and any positive integeD, we define the process,(t) eSS of class or higher packets from any node < 7 is iden-
as follows: tical to the departure process in a modified multi-input single

output tandem of nodek . .., m where all arrival streams for
(1) 0 ift<D packets exiting the tandem before nadere removed. Us-
DAY= X(@t) ift>D ing Fact 1 of the previous section, all preliminary nodes of this

t—o0o

Fln]2 lim % > Pr[N(r) <n] (1)
=0
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modified tandem can be replaced with pure delay lines. Thus, —m)
the departure process of classor higher packets is identi- 0=0Q (Y,%m*”) +N" @)

cal to the departures in a single queue with an arrival procesi_mwever by Fact 1, the first queue of this tandem can be

2iz1 ijma"<"=m) Aij(t = (m — 7). Note that this arrival replaced by a pure delay line without affecting the departure
process is similar to the process™ (t) with the exception process from the second queue, and hence, without affecting
that some of the component processes(?) are timeshifted.  the total occupancy in the tandem (see Fig. 2b). It follows that
Note that}", ., N\™(t) represents the current number of can alternately be described as the sum of the average number
packets in noden that have class greater than or equabto  of packets in the delay line and the average number of packets

Theorem 2. If all arrival processes are independent and stal the second queue, and we have:

tionary, then for any noden € {2,..., K}, the steady state

distribution of =, N\"™(t) is identical to the steady state © AW+ Q [V — 1)+ D Ani(t)

distribution in the second node of tBenode tandem in Fig. 2a, k>m

with input proceséf(t)éYn(m_l)(t) at the first stage and input

processA(t)2 Y, ., Amk(t) at the second stage. = Am=D L ymD) + Z Apis(t) (3)

Proof. The exogenous inputs to node consisting of packets k2m

of classn or higher are given by the proce3s, .., Amx(1). N (Y(m)) )

The endogenous arrivals to nodeconsist of the departures of m m

classn or higher packets from node — 1. This departure pro- where (3) follows because, by Theorem 1, the average queue

cess is invariant when all preliminary nodgls 2,...,m — 2} gccupancy is not affected by a time delay on one of the inputs.

are deleted and inputs to node — 1 are replaced by the  Combining (4) and (2), we have:

Streang:{l) Z]K:max(n,m—l) Aij (t - (m -1 Z)) This ——(m)

transforms the tandem into the canonieadjueue system of N = 7,(,:”’1) +Q (Y,ﬁbm)) -Q (Y,f{”’l)) (5)

Fig. 2a, with inputs as specified. Because all procedsgs) ) ] ]

are stationary and independent, by Theorem 1, all time delays! e above equality establishes a simple and exact formula

can be removed without affecting the steady state occupariey the average node occupancy in a multi-input multi-output

distribution in the second node, and hence the input stre&"f}ﬁ‘dlem under I;I’G In terms .‘:_f thefatt;]/erag_e.oclc.upartlcy \'/r\‘/ a
(m—1) =K e single queue with a superposition of the original inputs. We

Zi:l(m_%:jzma"("’m‘l) At = (m—=1-1)) can be replaced note that computational techniques for finding the average

by Yz (t). O occupancy in single queues are given for general Markovian

inputs in [6] [7], for periodic inputs in [8], and upper bounds
IV. MEAN OCCUPANCY ANALYSIS on average occupancy for arbitrary rate-convergent inputs are

Here we use the equivalent model theory of the previogéven in [20].

section to express the mean occupancy in each node of the

multi-input multi-output tandem under the FTG service policy Example Suppose all inputs are Poisson, so that the function

in terms of the mean occupancy in a single queue. In particul@({X) can be written ag)(A), a function only of the rate\ of

for a given input streanX (¢), we defineQ(X) as the average the input streamX, and is given by the standard equation for

number of packets this input stream yields when applied as ##éerage occupancy in an M/D/1 queue 15]:

sole input to a discrete time queue with unit service times. We \2

assume throughout that such steady state averages exist, and QAN ==———=+2A

that all inputs are stationary and independent. 2(1-4)

Hence, the average number of packets in any nadean be

A. Total Queue Occupancy written:
Consider a single node: of the tandem, where: > 1. ~(m) (m—1) ( (m) ( (m—l))
; . N = _
Note that all packets in node are of classn or higher, and m +Q (! ) @ (vm

hence the total number of packets in this node is given by (m) (v )2
N () =8 N{™(t). Thus, for the special case= m, = Omo T 5 (1 B (m>) i (1 B (m—l)) 6)
Theorem 2 implies that that the steady state occupancy distri- m m
bution for nodem is equal to the distribution in a modified Ngte that the above result for Poisson inputs cannot be de-
tandem, where all nodes less than or equakite- 2 and all  yjyeq ysing the theory of reversible Markov chains. Indeed, the
packets less (tha|11 or equal to classare deleted, and the ar-giate dynamics are not reversible, as no more thgacket can
rival streamY,," ") enters noden — 1 while the arrival stream depart from any output line during a timeslot, while an arbitrar-
Zkzm Ami(t) enters noden. The canonical representation ofily large number of packets can arrive at the input ports during
this 2-queue system is illustrated in Fig. 2a. a slot.
Let © represent the total number of packets in this equivalent ) ]
It can be shown that the queueing equations for a non-slotted M/D/1 queue

2-queu¢_3 tandem. This value is equal to the sum of the averag€identical to those for a slotted M/D/1 queue where arrivals occur on slot
values in each of the two queues, and hence: boundaries.

(7551))2 (m—1)
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B. Individual Class Occupancy Using these stochastic inequalities in (7) yields:

The average occupancy of packets from individual class®%x (r)+y () (t—D) = Nix(r—py+v () (1) = Nix(r)4+v () ()

S . =(m) A K 7(m) s st

can likewise be arEL);f)ed. D.efmﬁ’n = ken N The upper and lower bounds in the above inequality are time

We clearly haveV,, = 0if n < m. Suppose: > m. By  delayed versions of the same process, namely, the process of
Theorem 2, the average occupancy of class higher packets packets in node of Fig. 4 whenX () andY (7) are applied
in nodem is the same as the average occupancy in the secajiféctly. It follows that their time average distributions (defined
node of a2-queue tandem with input stream(m’l)(t) at the in (1)) are equal, and converge if and only if the middle term
first queue and input stream, .., A,,,x(t) at the second queue.converges. The middle term represents the process of packets
Using the same analysis as in the section above, we have [cammodel when theX (1) stream first passes through theslot

pare with (5)]: delay. Thus, the steady state distribution in nbdunchanged
—(m) B ~ if the time delay is removed. -
Z," =4+ Q™) = Q™) (n > m) The proof of the corresponding property for ndtis similar
and is omitted for brevity. O

The average occupancy of claspackets in any queue < n
is thus given b 75:") = Zflm) - Z(Z)l. _ 5 REFER’_ENCES _ _ _
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