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Abstract—We consider a discrete time tandem of queues serving
fixed length packets, where each queue can serve a single packet
during a timeslot. Arrivals and departures take place at each stage
according to arbitrary stochastic processes. Using sample path
techniques and stochastic coupling methods, we present an exact
analysis of the queue occupancy distribution at each stage when all
queues operate according to theFurthest-to-Goservice discipline.
Explicit expressions for average queue occupancies are provided
in terms of the average occupancy in a single queue with a super-
position of the original inputs. To our knowledge, this is the first
analysis of a multi-input multi-output queueing network yielding
exact solutions for general arrival processes.

Index Terms—Packet Scheduling, Queueing Analysis, Network
Calculus, Stochastic Coupling

I. I NTRODUCTION

In this paper we consider a discrete time tandem ofK queue-
ing nodes serving fixed length packets (Fig. 1). Time is slot-
ted and slots are normalized to integral units. Packets enter
the network according to a set of arbitrary arrival processes
{Aij(t)}, whereAij(t) represents the number of packets that
exogenously arrive to sourcei at timeslott which are destined
for nodej. Each node can serve a single packet during a times-
lot. After service, packets either exit the network or are for-
warded to the next node in the tandem, according to their desti-
nations.

To analyze such a system, aservice policymust be specified
that determines which packet to serve when packets from dif-
ferent streams are waiting in the same queue. We consider the
Furthest-to-Go(FTG) service policy, which serves the packet
destined for the furthest downstream node of the tandem (ties
are broken arbitrarily). Under this FTG policy, we develop a
simple network decomposition that preserves steady state queue
occupancy when inputs are independent and stationary. Explicit
expressions for the average number of packets from each traffic
class and in each node of the network are computed in terms
of a single queue with a superposition of the original inputs.
Furthermore, exact occupancy distributions can be obtained in
terms of a simplified2-queue equivalent model. We note that
the FTG service policy is shown in [1] to be stable in all dis-
crete time networks with fixed routing. Our results demonstrate
that this policy is easily analyzable for all input traffic when the
network has a tandem topology.

As queueing networks are non-linear systems driven by
stochastic events, exact analytical results are largely limited to
systems with the special structure ofreversibility [2] [3] [4]
[5]. Reversible networks have product-form occupancy distri-
butions. The best known example of a reversible network is
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Fig. 1. A tandem ofK queues with arrivals and departures at each stage.

the classic M/M/1 Jackson network with Poisson inputs and
independent, exponential service times [5]. Exact analysis of
non-reversible queueing systems is usually confined to small
networks (see [6] [7] [8] for analysis of a single discrete time
queue with general inputs, and [9] for a moment generating
function analysis of a two-queue tandem with i.i.d. arrivals ev-
ery timeslot). Approximation methods are developed in [10]
[11] for modeling discrete time tandems with arrivals and de-
partures at each stage in the special case when inputs have a
specified Markovian structure. Bounding techniques for gen-
eral networks are developed in [12] [13] [14] using a calculus
of network service curves.

Our approach uses the sample-path method of [15] [16],
where tree networks of deterministic service time queues with
general inputs are analyzed using a packet conservation prop-
erty for multi-input single output systems. A similar approach
is used in [17] and [18] to analyze discrete time trees and
tandems with Poisson inputs. We show that a similar conser-
vation property holds for discrete time tandems with general
arrivals and departures at each stage when the FTG service pol-
icy is used. To our knowledge, this result is the first analysis
of a multi-input multi-output queueing network yielding exact
solutions for general inputs.

This paper is structured as follows: In the next section we
describe the tandem and define the arrival parameters. In Sec-
tion III we establish an equivalent model for each node of the
tandem which preserves the exact occupancy distribution. In
Section IV we provide expressions for the average occupancy
within each node of the tandem. Finally, we compare the exact
and simulated delay under the FTG strategy to the simulated
delay under theNearest-to-Go(NTG) service discipline.

II. TANDEM MODEL

Consider theK node tandem of Fig. 1. We label the nodes
in increasing order according to the integers{1, 2, . . . ,K}, so
that node1 is the first node of the tandem and nodeK is the last
(furthest downstream) node of the tandem.
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A. The Arrival Processes

Define:

Aij(t) M= Number of packets arriving to nodei during

slot t that are destined for nodej

λij
M= lim

t→∞

1
t

t−1∑
τ=0

Aij(τ)

We assume that the arrival streamsAij(t) are rate-convergent
so that the above limits defining the arrival ratesλij exist with
probability 1. Note that from the tandem structure of the net-
work,Aij(t)M=0 for all t wheneveri > j. The stochastics of the
arrival streams are otherwise arbitrary.

B. The Queueing Equation

Define theclassof a packet as the destination of a packet, so
that packets of classn ∈ {1, 2, . . . ,K} are destined for noden.
The current number of packets from each class and the current
service decisions for each queue are defined as follows:

N (m)
n (t) M= Number of packets destined for noden

that are currently in nodem

N (m)(t) M=
K∑

n=1

N (m)
n (t)

S(m)
n (t) M= Number of classn packets served by nodem

at timeslott

Note that the service variablesS
(m)
n (t) can take the values of

either0 or 1. Because each node can serve at most one packet
during a timeslot, wheneverS(m)

n (t) = 1 for some nodem and
classn, it must be the case thatS

(m)
ñ (t) = 0 for all other classes

ñ 6= n in that node.
All nodes of the tandem are assumed to be initially empty,

and the input processesAij(t) are applied to the tandem at time
0. Formally, we assume that all data streams satisfyAij(t) = 0
for all t < 0. The queueing dynamics for each nodem and each
classn ≥ m proceed as follows:

N (m)
n (t + 1) = [N (m)

n (t)− S(m)
n (t)] + Amn(t) + S(m−1)

n (t)

We assume that the only packets elligible for service in a
particular queue are those within the queue at the beginning of
a timeslot, and hence newly arriving packets cannot be served
until the next slot. Under theFurthest-to-Go(FTG) service dis-
cipline, the service variableS(m)

n (t) is defined to be1 if n is
the largest class among all packets currently contained in node
m, and0 otherwise. Thus, every timeslot each node serves the
packet having the largest number of future nodes to traverse
among all packets waiting in its queue. New packets arrive to
a given node from both the exogenous input stream and the en-
dogenous input stream consisting of departures from the previ-
ous node.

III. E QUIVALENT MODELS

In this section we develop a simple decomposition of the tan-
dem which serves as an equivalent model for all analytical pur-
poses. We begin by presenting the relevant results of [15].
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Fig. 2. A 2-queue system with two inputs and a single output, together with
its equivalent model formed by replacing the first queue by a pure delay of1
timeslot.

A. Previous Results for Single-Output Systems

Consider the special case tandem illustrated in Fig. 2a con-
sisting of two nodes1 and2 and two general input processes
Y (t) andA(t) delivering packets destined for the final node.
We have the following fact from [15].

Fact 1: (Delay Replacement — from [15]) The departure
process of node2 is unchanged if node1 is replaced by a pure
time delay of one time unit, as shown in the equivalent model
of Fig. 2b, so that the total input stream delivered into the fi-
nal node of the equivalent model is given byY (t−1)+A(t). �

The proof of this fact is developed in [15]. We note that
an independent proof was given in [19]. Intuitively, the result
follows because the final node serves packets no faster than the
first node can deliver them. Hence, the busy period of the final
node in Fig. 2a cannot finish before the busy period of the final
node in the equivalent model.

1

1K

2K K-1, K KK
A    (t) A   (t)  

A   (t)

A       (t)

KK-12

(a)

(b)

2

1

K

(c)

  

1K

2K K-1, K KK
A    (t) A   (t)  

A   (t)

A       (t)

KK-1

kA     (t - D  )kK

K

k=1

Fig. 3. Equivalently representing the departure process of the final node in a
multi-input single output tandem with delayed versions of the original inputs,
where the time delay for thekth input stream is given byDk = (K − k).

Consider now the multi-input single output tandem ofK
queues of Fig. 3a with exogenous arrivals at each stage, all of
which deliver packets destined for the end nodeK. The delay
replacement result of Fact 1 can be used to iteratively replace all
preliminary nodes with pure delays while preserving the output
process of nodeK. Indeed, consider the2-node system con-
sisting of nodes1 and2. By Fact 1, node1 can be replaced
by a delay line without changing the output process of node
2, and hence without affecting the output process of any other
nodes further downstream (see Fig. 3b). The result can be used
again to replace node2 with a delay line (where the sum pro-
cessA1K(t− 1) + A2K(t) entering node2 in Fig. 3b is treated
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as a single collective input when applying Fact 1). This simpli-
fying procedure is iteratively repeated until we are left with a
single nodeK with a superposition of inputs that are delayed
versions of the originals (see Fig. 3c). Specifically, the input
streamAkK(t) for nodek is delayed byDk timeslots (where
Dk

M=(K − k)), so that the sum process
∑K

k=1 AkK(t − Dk)
enters nodeK. We call such a sum process asuperpositionof
the delayed input streams. The resulting departure process of
nodeK is unchanged under this transformation.

Before proceeding with the general problem of a tandem
with arrivals and departures at each stage, we provide a sim-
ple stochastic coupling argument that proves the intuitive result
that, whenever the inputs are independent and stationary, all
time delays can be removed without affecting the steady state
occupancy distribution in the queues.

B. Removing the Delays Via Stochastic Coupling

Consider the2-node tandem with nodes1 and2 and input
streamsX(t), Y (t), andA(t) delivering packets destined for
node2, as shown in Fig. 4. We note that the packet occupancy
in the final node of any single output tandem can always be
described in terms of the occupancy in node2 shown in the fig-
ure, where the input processA(t) represents the actual process
of packets directly entering the final node, and the processes
X(t) andY (t) represent superpositions of delayed versions of
the remaining inputs of the tandem, with delays given as in the
previous subsection so that the output process of the second-to-
last node is unchanged.

A(t)

1 2
Y(t)

X(t)
D

Fig. 4. A canonical2-queue system with inputX(t) delayed by an integer
number of timeslots.

Note that theX(t) process is explicitly shown with a time
delay ofD timeslots (whereD is an integer). We show that
if X(t) andY (t) are independent and stationary, the delay can
be removed without affecting the steady state distribution of
packets in node1 or node2. We first define the notions of
steady state and stationarity.

Definition 1. Let the stochastic processN(t) represent the
number of packets in a queue as a function of time. Thesteady
state distributionF [n] for the queue is defined:

F [n]M= lim
t→∞

1
t

t−1∑
τ=0

Pr[N(τ) ≤ n] (1)

whenever the limit exists.

To define the notion of stationarity, for any arrival process
X(t) and any positive integerD, we define the process̃XD(t)
as follows:

X̃D(t)M=

{
0 if t < D
X(t) if t ≥ D

Thus,X̃D(t) can be viewed as a version of theX(t) data stream
in which packets during the firstD slots are thrown away.

Definition 2. An arrival processX(t) is stationaryif for any
positive delayD, the delayed processX(t−D) is stochastically
indistinguishable fromX̃D(t).

Note that for two stationary arrival processesX(t) andY (t)
that are also independent, the superpositionX(t − D) + Y (t)
is stochastically equivalent to the superpositionX̃D(t) + Y (t),
and hence either superposition applied to a queue yields the
same steady state distribution, provided that the distribution ex-
ists.

Theorem 1. For any general inputsX(t), Y (t), A(t) that are
independent and stationary, the steady state occupancy distri-
bution in node1 of Fig. 4 exists if and only if the steady state
occupancy distribution exists when the time delay on theX(t)
input stream is removed. If the distributions exist, they are iden-
tical.

Similarly, the steady state distribution in node2 is the same
with or without the time delay on theX(t) stream, provided the
distribution exists.

Proof. The proof is given in the Appendix.

This result for the simple3 input model of Fig. 4 proves that
all time delays from any superposition of multiple inputs can
be removed, as the delay lines can be removed iteratively with-
out affecting the steady state distribution, treating the stream for
which the delay is removed as theX(t) stream and the collec-
tion of all other (delayed or non-delayed) streams asY (t).

C. Multi-Input Multi-Output Tandems under FTG

Consider now the general tandem ofK queues shown in Fig.
1, with arrivals and departures at each stage and operating un-
der the Furthest-to-Go service discipline. We define arrival pro-
cessesY (m)

n (t) and their ratesγ(m)
n as follows:

Y (m)
n (t) M=

m∑
i=1

K∑
j=max(n,m)

Aij(t)

γ(m)
n

M=
m∑

i=1

K∑
j=max(n,m)

λij

For given integersn, m, theY
(m)
n (t) process represents the

superposition of all input streams of packets destined for noden

or higher that pass through nodem, andγ
(m)
n represents the ag-

gregate data rate of this process. All packets from theY
(m)
n (t)

stream are thus from classn or higher. By definition of the
FTG policy, these packets have priority over all packets with
class lower thann. Thus, to analyze the packet occupancy or
departure processes for packets of classn or higher, all lower
class packets can be ignored. It follows that the departure pro-
cess of classn or higher packets from any nodem ≤ n is iden-
tical to the departure process in a modified multi-input single
output tandem of nodes1, . . . ,m where all arrival streams for
packets exiting the tandem before noden are removed. Us-
ing Fact 1 of the previous section, all preliminary nodes of this



IEEE PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATIONS — JUNE 2004 4

modified tandem can be replaced with pure delay lines. Thus,
the departure process of classn or higher packets is identi-
cal to the departures in a single queue with an arrival process∑m

i=1

∑K
j=max(n,m) Aij(t − (m − i)). Note that this arrival

process is similar to the processY
(m)
n (t) with the exception

that some of the component processesAij(t) are timeshifted.

Note that
∑

k≥n N
(m)
k (t) represents the current number of

packets in nodem that have class greater than or equal ton.

Theorem 2. If all arrival processes are independent and sta-
tionary, then for any nodem ∈ {2, . . . ,K}, the steady state

distribution of
∑

k≥n N
(m)
k (t) is identical to the steady state

distribution in the second node of the2 node tandem in Fig. 2a,
with input processY (t)M=Y

(m−1)
n (t) at the first stage and input

processA(t)M=
∑

k≥n Amk(t) at the second stage.

Proof. The exogenous inputs to nodem consisting of packets
of classn or higher are given by the process

∑
k≥n Amk(t).

The endogenous arrivals to nodem consist of the departures of
classn or higher packets from nodem− 1. This departure pro-
cess is invariant when all preliminary nodes{1, 2, . . . ,m − 2}
are deleted and inputs to nodem − 1 are replaced by the
stream

∑(m−1)
i=1

∑K
j=max(n,m−1) Aij(t − (m − 1 − i)). This

transforms the tandem into the canonical2-queue system of
Fig. 2a, with inputs as specified. Because all processesAij(t)
are stationary and independent, by Theorem 1, all time delays
can be removed without affecting the steady state occupancy
distribution in the second node, and hence the input stream∑(m−1)

i=1

∑K
j=max(n,m−1) Aij(t− (m− 1− i)) can be replaced

by Y
(m−1)
n (t).

IV. M EAN OCCUPANCY ANALYSIS

Here we use the equivalent model theory of the previous
section to express the mean occupancy in each node of the
multi-input multi-output tandem under the FTG service policy
in terms of the mean occupancy in a single queue. In particular,
for a given input streamX(t), we defineQ(X) as the average
number of packets this input stream yields when applied as the
sole input to a discrete time queue with unit service times. We
assume throughout that such steady state averages exist, and
that all inputs are stationary and independent.

A. Total Queue Occupancy

Consider a single nodem of the tandem, wherem > 1.
Note that all packets in nodem are of classm or higher, and
hence the total number of packets in this node is given by
N (m)(t) =

∑K
n=m N

(m)
n (t). Thus, for the special casen = m,

Theorem 2 implies that that the steady state occupancy distri-
bution for nodem is equal to the distribution in a modified
tandem, where all nodes less than or equal tom − 2 and all
packets less than or equal to classm are deleted, and the ar-
rival streamY

(m−1)
m enters nodem− 1 while the arrival stream∑

k≥m Amk(t) enters nodem. The canonical representation of
this2-queue system is illustrated in Fig. 2a.

Let Θ represent the total number of packets in this equivalent
2-queue tandem. This value is equal to the sum of the average
values in each of the two queues, and hence:

Θ = Q
(
Y (m−1)

m

)
+ N

(m)
(2)

However, by Fact 1, the first queue of this tandem can be
replaced by a pure delay line without affecting the departure
process from the second queue, and hence, without affecting
the total occupancy in the tandem (see Fig. 2b). It follows that
Θ can alternately be described as the sum of the average number
of packets in the delay line and the average number of packets
in the second queue, and we have:

Θ = γ(m−1)
m + Q

Y (m−1)
m (t− 1) +

∑
k≥m

Amk(t)


= γ(m−1)

m + Q

Y (m−1)
m (t) +

∑
k≥m

Amk(t)

 (3)

= γ(m−1)
m + Q

(
Y (m)

m

)
(4)

where (3) follows because, by Theorem 1, the average queue
occupancy is not affected by a time delay on one of the inputs.

Combining (4) and (2), we have:

N
(m)

= γ(m−1)
m + Q

(
Y (m)

m

)
−Q

(
Y (m−1)

m

)
(5)

The above equality establishes a simple and exact formula
for the average node occupancy in a multi-input multi-output
tandem under FTG in terms of the average occupancy in a
single queue with a superposition of the original inputs. We
note that computational techniques for finding the average
occupancy in single queues are given for general Markovian
inputs in [6] [7], for periodic inputs in [8], and upper bounds
on average occupancy for arbitrary rate-convergent inputs are
given in [20].

Example: Suppose all inputs are Poisson, so that the function
Q(X) can be written asQ(λ), a function only of the rateλ of
the input streamX, and is given by the standard equation for
average occupancy in an M/D/1 queue [5]:1

Q(λ) =
λ2

2(1− λ)
+ λ

Hence, the average number of packets in any nodem can be
written:

N
(m)

= γ(m−1)
m + Q

(
γ(m)

m

)
−Q

(
γ(m−1)

m

)
= γ(m)

m +
(γ(m)

m )2

2
(
1− γ

(m)
m

) − (γ(m−1)
m )2

2
(
1− γ

(m−1)
m

) (6)

Note that the above result for Poisson inputs cannot be de-
rived using the theory of reversible Markov chains. Indeed, the
state dynamics are not reversible, as no more than1 packet can
depart from any output line during a timeslot, while an arbitrar-
ily large number of packets can arrive at the input ports during
a slot.

1It can be shown that the queueing equations for a non-slotted M/D/1 queue
are identical to those for a slotted M/D/1 queue where arrivals occur on slot
boundaries.
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B. Individual Class Occupancy

The average occupancy of packets from individual classes

can likewise be analyzed. Define:Z
(m)

n
M=

∑K
k=n N

(m)

k

We clearly haveN
(m)

n = 0 if n < m. Supposen ≥ m. By
Theorem 2, the average occupancy of classn or higher packets
in nodem is the same as the average occupancy in the second
node of a2-queue tandem with input streamY (m−1)

n (t) at the
first queue and input stream

∑
k≥n Amk(t) at the second queue.

Using the same analysis as in the section above, we have [com-
pare with (5)]:

Z
(m)

n = γ(m−1)
n + Q(Y (m)

n )−Q(Y (m−1)
n ) (n ≥ m)

The average occupancy of classn packets in any queuem ≤ n

is thus given byN
(m)

n = Z
(m)

n − Z
(m)

n+1.

V. COMPARISON TONTG

Throughput properties of the FTG strategy and theNearest-
to-Go(NTG) strategy are compared in [1] [21] for general net-
works. Our results for tandem networks enable explicit occu-
pancy and delay analysis of the FTG strategy, and simulation
experiments (omitted for brevity) suggest that delay under NTG
is similar, being noticeably different only under high loadings.

APPENDIX

Proof. (Theorem 1) It is useful to defineN[A(τ)](t) as the num-
ber of packets at timeslott in a discrete time queue that is ini-
tially empty with a general arrival processA(τ) applied at time
0, whereA(τ) could represent a superposition of processes.
Note that the number of packetsN[A(τ)](t) is always greater
than or equal to the number of packets in a queue with the same
input process but with some of the arriving packets deleted.
Hence, the following inequalities hold deterministically for all
timeslotst:

N[X̃D(τ)+ỸD(τ)](t) ≤ N[X̃D(τ)+Y (τ)](t) ≤ N[X(τ)+Y (τ)](t)
(7)

The processN[X(τ)+Y (τ)](t) on the right of the above in-
equality represents the number of packets in node1 of Fig. 4
when theX(τ) andY (τ) streams are applied directly with no
time delay, while the middle term of the above inequality repre-
sents the corresponding number of packets when arrivals during
the firstD slots are deleted from theX(τ) stream. Likewise,
the leftmost term considers the case when packets from both the
X(τ) andY (τ) streams are deleted during the firstD slots.

However, note that the arrival process̃XD(τ) + ỸD(τ) is
stochastically equivalent to the processX(τ − D) + Y (τ −
D) representing a delayed version of inputsX(τ) andY (τ).
Likewise, the arrival process̃XD(τ) + Y (τ) is stochastically
equivalent to the processX(τ −D) + Y (τ). We thus have the
following stochastic equalities for all timeslotst:2

N[X̃D(τ)+ỸD(τ)](t) =
st.

N[X(τ)+Y (τ)](t−D)

N[X̃D(τ)+Y (τ)](t) =
st.

N[X(τ−D)+Y (τ)](t)

2The relationA =
st.

B denotes stochastic equality ofA andB, and the rela-

tion A ≤
st.

B denotes stochastic inequality (see [22]).

Using these stochastic inequalities in (7) yields:
N[X(τ)+Y (τ)](t−D) ≤

st.
N[X(τ−D)+Y (τ)](t) ≤

st.
N[X(τ)+Y (τ)](t)

The upper and lower bounds in the above inequality are time
delayed versions of the same process, namely, the process of
packets in node1 of Fig. 4 whenX(τ) andY (τ) are applied
directly. It follows that their time average distributions (defined
in (1)) are equal, and converge if and only if the middle term
converges. The middle term represents the process of packets
in node1 when theX(τ) stream first passes through theD-slot
delay. Thus, the steady state distribution in node1 is unchanged
if the time delay is removed.

The proof of the corresponding property for node2 is similar
and is omitted for brevity.
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