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Abstract— We consider an ad-hoc wireless network operating
within a free market economic model. Users send data over a
choice of paths, and scheduling and routing decisions are updated
dynamically based on time varying channel conditions, user
mobility, and current network prices charged by intermediate
nodes. Each node sets its own price for relaying services,
with the goal of earning revenue that exceeds its time average
reception and transmission expenses. We first develop a greedy
pricing strategy that maximizes social welfare while ensuring all
participants make non-negative profit. We then construct a (non-
greedy) policy that balances profits more evenly by optimizing a
profit fairness metric. Both algorithms operate in a distributed
manner and do not require knowledge of traffic rates or channel
statistics. This work demonstrates that individuals can benefit
from carrying wireless devices even if they are not interested in
their own personal communication.

Index Terms— Revenue Maximization, Multi-Hop Networks,
Queueing Analysis, Stochastic Optimization, Control by Pricing

I. INTRODUCTION

This paper presents a free market economic model for ad-
hoc wireless networks. Multiple users desire to send packet-
based traffic to their destinations, potentially using multi-
hop paths. However, individual wireless nodes incur both
reception and transmission costs, and hence will not agree
to act as intermediate relays for this traffic unless they are
adequately compensated. Thus, each node sets its own price
for handling new data, and can dynamically adjust this price
in reaction to time varying network conditions. Additionally,
nodes dynamically choose next-hop neighbors for their data
based on channel conditions and advertised prices. The goal
of each user is to maximize its net utility, and the goal of
individual wireless nodes is to facilitate communication while
attempting to make a profit.

We design distributed pricing and control mechanisms for
this system. The mechanisms yield “fruitful markets,” in the
sense that the network takes maximum advantage of its multi-
hop capacity while ensuring that cooperation is profitable for
all participants. Specifically, we propose two different market
algorithms, one that admits a greedy interpretation and one
that does not.

In our first algorithm, each node charges a per-unit price
that is proportional to its current level of queue backlog.
Neighboring transmitters pay a handling charge according
to this per-unit price, together with a reception fee that is
equal to the cost incurred by receiving a new transmission.
Every timeslot, individual nodes observe the current channel
conditions on their outgoing links and the current prices of the
corresponding neighboring nodes, and determine which data
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to transmit, how much to transmit, and which neighbor to send
to. This choice is determined greedily every slot. Specifically,
each node compares the past revenue earned by accepting data
to the costs and service charges associated with transmitting on
the current timeslot, and makes a greedy transmission decision
that maximizes instantaneous profit. Note that a node might
decide to remain idle on a given timeslot in order to wait for
better channel conditions and/or lower prices. However, the
node must eventually transmit the data, as it is obligated to
remain stable (so that the long term output rate is equal to the
long term input rate).

We show that the algorithm yields an aggregate network
utility that can be pushed arbitrarily close to optimal, with a
corresponding tradeoff in end-to-end average delay. Further,
the algorithm ensures that everyone makes a non-negative
profit. However, the resulting profits are not necessarily bal-
anced evenly across members of the network. To yield a more
fair profit distribution, we propose a second algorithm that
seeks to maximize a general concave profit metric. This al-
gorithm uses an interesting technique of “bang-bang pricing,”
alternating between periods of allowing free service (price =
0) and periods where price is set to a pre-specified maximum
value. The algorithm optimizes the target performance metric,
although it relies on user cooperation and does not necessarily
admit a greedy interpretation.

Prior work in the area of network pricing is found in [1]-
[26]. The problem of allocating flow rates to multiple users
sharing a fixed capacity transmission link is considered from
an economic perspective in [1]. Flow allocation and pricing
in a multi-hop network is considered in [2]. Both [1] and [2]
cast the problem as a static convex program, where Lagrange
multipliers are interpreted as prices charged by the link to each
user. It is shown that there exist prices that yield the optimal
flow rates if users greedily maximize their utility minus cost.
Control mechanisms that use price updates to converge to the
utility optimal flow rates are considered in [3] [4]. Pricing
solutions applied to static wireless downlinks are considered in
[5]. More recent work in [6] [7] uses back-pressure techniques
for utility optimization in stochastic wireless networks, and
relates queue backlog to prices charged to users at each
network access point. Related work is considered in [8]. Worst-
case throughput utility results for a wireless link with non-
stationary channels are presented in [9].

In all of the works above, pricing is introduced only to
obtain a fair sharing of resources over all users, so that indi-
vidual profit objectives are not directly considered. Problems
of pricing to maximize revenue are considered in [10] [11] [12]
for static wireless downlinks, where structural properties of the
resulting (non-convex) problem are examined. Work in [13]
[14] [15] considers game theory approaches to related prob-
lems. Work in [16] considers admission pricing to maximize
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revenue in a data link with multiple traffic classes, and de-
velops an optimal algorithm based on dynamic programming.
Simplifications for large networks are considered in [17]. Mar-
ket mechanisms to stimulate cooperation in ad-hoc wireless
networks are considered in [18]-[21]. The mechanisms in [18]
provide monetary credits to each node that forwards traffic,
but does not consider utility optimization and does not account
for heterogeneous network conditions. Work in [19] presents a
simulation study of more general pricing strategies, based on
pricing principles of [3]. Related work in [20] considers sub-
contracting strategies for distributing a computational task over
a mobile network. Analytical properties of pricing mechanisms
for communication in static networks with fixed routes are
considered in [21].

Our approach in this paper is quite different than the
previous work, particularly that of [18]-[21], in that it provides
analytical guarantees for market mechanisms, and is directly
designed for stochastic networks. We treat the problems of
social welfare and profit balancing, and ensure that all nodes
make a non-negative profit by intelligently reacting to link and
price information. Different from most work in this area, we
consider a packet based model that fully includes queueing.
Our analysis and routing strategies are inspired by the back-
pressure concepts developed in [27] [28] and by the techniques
for stochastic network optimization developed in [7] [29].

While our analysis can be applied to wireless networks with
general interference properties, for simplicity of exposition we
consider a simplified model where each node transmits using
signals that are orthogonal to those of neighboring nodes. This
highlights the economic issues involved in making transmis-
sion decisions based on advertised prices and observed channel
conditions, without requiring additional distributed multiple
access protocols to implement these decisions. However, the
multiple access problem is another important issue for wireless
networks, and we briefly describe how random and scheduled
access strategies can be incorporated. Specifically, suppose
there are one or more owners of different network regions, and
these owners schedule transmissions based on requests from
nodes within their regions. We can show that the analytical
results of the greedy algorithm presented in this paper are
preserved if nodes pay owners a fixed fraction of their profits,
so that each owner has an incentive to schedule to maximize
the sum of instantaneous profit within its region. Alternative
multiple access strategies based on localized auctions within
different network regions (using recent network auction results
such as [22]-[26]), may also provide efficient mechanisms and
suggest possible directions for future work.

In the next section we describe our network model. Sections
III and IV develop the greedy and profit-balanced algorithms,
respectively. Simulations are provided in Section V.

II. NETWORK MODEL

Consider an ad-hoc wireless network with N nodes. The
network operates in slotted time with slots t ∈ {0, 1, 2, . . .}.
Channel conditions on each link are assumed to be constant
over the duration of a timeslot, but can vary from slot to slot
(due, for example, to wireless fading and/or user mobility).

Specifically, let (n, b) represent the wireless link from node n
to node b, and let Snb(t) represent the current channel state
of the link. The value of Snb(t) can represent a quantized
estimate of one or more physical link parameters (such as
attenuation), or can represent an abstract characterization of
the channel (such as “Good,” “Medium,” “Bad,” or “0”). We
assume that there are a finite (but arbitrarily large) number of
channel states, and that each node n knows the state of its
own outgoing links at the beginning of each timeslot.

Let S(t) = (Snb(t)) represent the matrix of channel states
over all network links. For simplicitly of exposition, we as-
sume throughout that channel state matrices S(t) are indepen-
dent and identically distributed (i.i.d) over timeslots.1 For each
matrix S we define channel probabilties πS

M=Pr[S(t) = S].
The channel probabilities are not necessarily known to the
network nodes.

A. Resource Allocation Constraints and Cost Externalities

Let Sn(t) = (Sn1(t), Sn2(t), . . . , SnN (t)) represent the
vector of channel states for outgoing links of node n. We
say that Snb(t) = “0” if node n cannot transmit to node b
during slot t. In most networks of interest, nodes can only
directly communicate with a small subset of current neighbors,
and so each Sn(t) vector typically contains only a few non-
zero channel states. Define µnb(t) as the transmission rate
chosen by node n for the (n, b) data link during slot t (in
units of bits/slot). Let µn(t) = (µn1(t), µn2(t), . . . , µnN (t))
represent the corresponding vector of transmission rates on
outgoing links of node n. The transmission rate vector for
node n ∈ {1, . . . , N} is chosen every timeslot in reaction to
the current channel states Sn(t), subject to the constraint:

µn(t) ∈ Ω(n)
Sn(t) (1)

where Ω(n)
Sn

represents the compact set of all transmission rate
options for node n when Sn(t) = Sn. We assume these sets
are such that if µn ∈ Ω(n)

Sn
, then we also have µ̃n ∈ Ω(n)

Sn
,

where µ̃n is any vector formed from µn by setting one or
more entries to zero. That is, it is always possible to choose
to transmit nothing over a particular link, and this choice does
not reduce the rate options on other links.

Note that the constraints (1) are designed for distributed im-
plementation, as they imply that the transmission rate options
available to node n are not affected by the transmission rates
chosen by other nodes m 6= n. This assumption is valid if all
nodes use orthogonal signals, so that transmission rate choices
at a particular node do not influence the options of other nodes.
Alternatively, this assumption holds if there is an implicit time
division multiple access structure in the network, where sets
of non-interfering nodes are scheduled either periodically or
pseudo-randomly, and this schedule is embedded into the the
channel state process S(t) by artificially setting link states to
zero at appropriate times. Extensions to interference networks
can be treated by defining constraint sets ΩS(t) specifying the
set of all options for (µ1(t), . . . ,µN (t)).

1This i.i.d. assumption simplifies analysis but is not essential, and our
results can be extended to general ergodic channel processes with steady state
probabilities πS , using the T -slot Lyapunov arguments of [28][29].
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Define Ctran
n (µn(t),Sn(t)) as the external transmission

cost incurred by node n due to choosing transmission rate
µn(t) when the channel state vector is Sn(t). This cost func-
tion provides a monetary measure of the personal resources
(such as power) expended by node n for this transmission
decision. An example transmission cost function is given by:

Ctran
n (µn,Sn) =

∑
{b|Snb>0}

eµnb − 1
Snb

(2)

which corresponds to independent outgoing links, logarithmic
rate-power curves µnb = log(1+SnbPnb) for each link (n, b),
and costs that are directly proportional to power expediture.
An example constraint set Ω(n)

Sn
is the set of all rates that can

be achieved by allocating non-zero power Pnb to at most one
outgoing link (n, b), where 0 ≤ Pnb ≤ Pmax.

Define Crec
nb (µnb(t)) as the reception cost incurred by node

b due to receiving an incoming transmission from node n over
link (n, b). This represents the external cost expended when
demodulating and processing the received signal. An example
reception cost function is given by:

Crec
nb (µnb) =

{
σb if µnb > 0
0 otherwise (3)

where σb is a value proportional to the power expended by
node b when receiving a transmission. The structure of the
Crec

nb (µnb) function can also be extended to include depen-
dence on the channel condition Snb(t). We assume through-
out that transmission and reception costs are zero whenever
the corresponding transmission rates are zero. All costs are
assumed to be non-decreasing in the transmission rate vector,
and are upper bounded by finite constants.

B. Network Queueing and Routing Constraints

Data might take multi-hop paths through the network, and
hence each network node maintains an internal set of queues
to store data according to its final destination. Any data that
is bound for a particular destination node c is labeled as com-
modity c data. Let U (c)

n (t) represent the amount of commodity
c data currently queued in network node n (in units of bits).
Node n has accepted this data and hence has responsibility
for either delivering this data to its destination or delivering it
to another node that accepts these responsibilities. Let µ(c)

nb (t)
represent the transmission rate offered to commodity c bits
over link (n, b) during slot t. Node n chooses µ(c)

nb (t) subject
to the following routing constraints:

N∑
c=1

µ
(c)
nb (t) ≤ µnb(t) for all links (n, b) and all slots t (4)

where µnb(t) is the rate selected by the resource allocation
decision at node n. This model allows for dynamic routing of
data, as µ(c)

nb (t), µnb(t) can be changed from slot to slot.
Let R(c)

n (t) represent the amount of new exogenous com-
modity c data that the user at node n admits into the network
during slot t. The one-step queueing dynamics for each node

n and each commodity c thus satisfies:

U (c)
n (t+ 1) ≤ max[U (c)

n (t)−
∑

b

µ
(c)
nb (t), 0]

+
∑

a

µ(c)
an(t) +R(c)

n (t) (5)

This is expressed as an inequality because individual nodes
may not have enough commodity c data to send to node n

at the full offered transmission rate µ(c)
an(t). We assume that

U
(n)
n (t) = 0 for all t, as data that reaches its destination is

immediately removed from the network.

C. Data Admission and Relay Pricing

We assume that each network layer node n has either zero
or one user at its transport layer. Nodes with users are source
nodes. When the user at node n admits an amount of data
R

(c)
n (t) to the network layer, it pays this node an amount

α
(c)
n (t) (in units of dollars). This amount is to be determined

by the dynamic pricing rule established by node n. This
distinction between “the user at node n” and “node n” shall
be convenient, even in cases when the user in fact owns node
n and hence “pays itself” for acceptance of new data.

When a given node n transmits data at rate µnb(t) to
another node b during slot t, it pays both a reception fee and
a handling charge. The reception fee is exactly equal to the
reception cost Crec

nb (µnb(t)) incurred by node b upon receiving
the transmission. The handling charge is given by

∑
c β

(c)
nb (t),

where β(c)
nb (t) is the charge for accepting responsibility of new

commodity c data, and is determined every slot by node b. The
total payment from node n to node b is thus:

Crec
nb (µnb(t)) +

∑
c

β
(c)
nb (t)

We shall consider handling charges of the form β
(c)
nb (t) =

q
(c)
b (t)µ(c)

nb (t), where q(c)b (t) is a per-unit price for accepting
commodity c data at node b. We assume that the current price
q
(c)
b (t) is set by node b and is advertised at the beginning of

the timeslot, as is the reception cost function Crec
nb (µnb(t)).

In this way, a transmitting node n can assess the payments
required for making a transmission decision. Note that if the
reception cost functions are given by (3), then each receiver
node b can communicate its fixed reception fee σb at time
0, and every slot it needs only to advertise its current price
q
(c)
b (t) for each commodity c.

D. Time Average Profits and the Social Welfare Objective

The user at each source node n has a utility function
g
(c)
n (r) that represents a monetary measure of the satisfaction

it receives by sending commodity c data to its destination at
a long term average rate r bits/slot. Utility functions g(c)

n (r)
are assumed to be non-negative and concave, with bounded
right derivatives. We assume each user has elastic traffic, in
the sense that it always has an infinite reservoir of data to send,
and the long term send rate can be adapted to whatever rate
the network allows. In the case when the user at node n does
not desire to send any data of a particular commodity c, we
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set g(c)
n (r)M=0. Without loss of generality, we treat non-source

nodes as if they are sources of users with utility functions that
are identically zero for every commodity c.

For each node n ∈ {1, . . . , N}, define the node profit
variable φn(t) as follows:

φn(t) M=
∑

c

α(c)
n (t) +

∑
c

∑
a

β(c)
an (t)−

∑
c

∑
b

β
(c)
nb (t)

−Ctran
n (µn(t),Sn(t))−

∑
b

Crec
nb (µnb(t)) (6)

The value φn(t) represents the “instantaneous profit” (total
revenue minus total cost) associated with transmission de-
cisions in the current timeslot. The total cost includes the
internal payments to other nodes as well as the external
transmission and reception costs. The final term in the right
hand side of (6) represents the sum of all reception fees paid
by node n. The external reception costs incurred by node n
and the corresponding reception fees paid to node n do not
appear, as these terms exactly cancel each other. Define the
expected time average profit of node n over t slots as follows:

φn(t)M=
1
t

t−1∑
τ=0

E {φn(τ)} (7)

Likewise, for each user n ∈ {1, . . . , N} we define the
expected time average user profit ψn(t) as follows:

ψn(t)M=
∑

c

g(c)
n (r(c)n (t))− 1

t

t−1∑
τ=0

∑
c

E
{
α(c)

n (t)
}

(8)

where:

r(c)n (t)M=
1
t

t−1∑
τ=0

E
{
R(c)

n (τ)
}

(9)

That is, the user profit ψn(t) represents the difference between
the throughput utility and the time average payments associ-
ated with user n over the course of t slots.

The individual goal of each user and each node is to
maximize its own time average profit. Our overall network
objective is to maximize the sum of profits over all users and
all nodes. However, there is an additional constraint that all
queues of the network must be stable.2 This ensures that the
long term input rate to the network is exactly the same as the
long term output rate. The following simple lemma relates this
sum profit objective to maximizing social welfare.

Lemma 1: (Social Welfare) Any network control and pric-
ing algorithm that stabilizes the network yields time average
profits ψn(t) and φn(t) that satisfy:

lim sup
t→∞

N∑
n=1

[
ψn(t) + φn(t)

]
=

lim sup
t→∞

[∑
n,c

g(c)
n (r(c)n (t))− 1

t

t−1∑
τ=0

∑
n

E {Cn(t)}

]
(10)

where Cn(t) represents the external cost of node n:

Cn(t)M=Ctran
n (µn(τ),Sn(t)) +

∑
b

Crec
nb (µnb(t))

2We say a queue U(t) is stable if lim supt→∞
1
t

Pt−1
τ=0 E {U(τ)} < ∞.

We call the right hand side of (10) the social welfare of
the network, and note that it involves only external utilities
and costs. The proof of the lemma is trivial, and follows by
noticing that the sum of internal payments over all nodes is
exactly equal to the sum of internal revenues earned from
taking these payments. Therefore, the internal monetary costs
and revenues cancel each other out in the sum profit metric.
The lemma implies that the objective of designing a network
control and pricing algorithm to stabilize the network while
maximizing sum profit is equivalent to the objective of de-
signing a network control algorithm to maximize the social
welfare metric, without regard to network prices.

The following theorem establishes that any achievable social
welfare value (and hence any achievable sum profit value)
can be achieved arbitrarily closely via a stationary randomized
policy that bases decisions only on the current channel state,
and that sets all monetary charges α(c)

n (t) and β(c)
n (t) to zero.

Theorem 1: Suppose there exists a control strategy that
stabilizes the network and yields a positive lim sup social
welfare value g∗:

g∗ M= lim sup
t→∞

[∑
n,c

g(c)
n (r(c)n (t))− 1

t

t−1∑
τ=0

∑
n

E {Cn(t)}

]
Then for any ρ such that 0 < ρ < 1, there exists a stationary
randomized control algorithm that stabilizes the network, sets
all α(c)

n (t), β(c)
n (t) to zero, sets all admissions R

(c)
n (t) to

particular constant values R(c)∗
n for all time, and that chooses

transmission rates µ∗n(t) according to a stationary and random
function of the observed channel state matrix S(t). Further,
this stationary randomized policy yields for all t and all (n, c):

R(c)∗
n +

∑
a

E
{
µ(c)∗

an (t)
}
≤
∑

b

E
{
µ

(c)∗
nb (t)

}
(11)

and yields the following social welfare result for all slots t:∑
n,c

g(c)
n (R(c)∗

n )−
∑

n

E {Cn(t)} ≥ ρg∗ (12)

Proof: The proof is similar to the necessary conditions for
network stability and minimum average energy expenditure
proven in [28] and [30], and is omitted for brevity.

The probabilities and transmission rate modes required of
the stationary policy in Theorem 1 could in principle be
computed by an offline algorithm with centralized knowledge
of all channel probabilities, cost functions, and user utilities.
However, the resulting algorithm might cause some nodes to
receive negative profit, and hence these nodes would have no
incentive to continue participating. The design of an online
control algorithm that maximizes social welfare in this context
and ensures all users and nodes receive non-negative profit is
an open question. We resolve this question in the next section
by a simple and direct online algorithm that makes use of back-
pressure [27] [28]. The algorithm has the additional desirable
feature that individual control actions can be interpreted as
greedily maximizing instantaneous profit.

E. Discussion of Alternative Approaches

It is possible to use a modified Lagrange multiplier ar-
gument, similar to [2], to prove existence of fixed flows



PROCEEDINGS OF IEEE INFOCOM, MAY 2007 5

and prices that yield the desired non-negative profit result
in a static network with no channel variation and with more
assumptions imposed on the structure of the cost functions.
However, the resulting multipliers (prices) are not known a-
priori, and it would require an extensive offline computation
to estimate them to within an adequate degree of accuracy.
Online techniques related to dual subgradient algorithms, as
in [28] [7] [8], can also be considered when prices are suitably
defined for this free market context. However, we can show
that these algorithms do not always lead to non-negative
profits, particularly when there are centrally located nodes with
varying channels and non-negligible costs.

III. A GREEDY PRICING STRATEGY

The following algorithm makes distributed and greedy de-
cisions at each node using local link conditions and prices
of neighboring nodes. It uses a positive constant V that
determines a tradeoff in end-to-end network delay. We shall
also require the following finite bounds on the maximum
transmission rate into and out of a given node n:

µmax,out
n

M= suph
S,µn∈Ω

(n)
Sn

i
∑

b

µnb

µmax,in
n

M= sup»
S,

n
µi∈Ω

(i)
Si

oN

i=1

–
∑

a

µan

Stochastic Greedy Pricing Algorithm (SGP):
Pricing: Every timeslot t, each node n sets the per-unit price

q
(c)
n (t) for handling new commodity c data as follows:

q(c)n (t) = U (c)
n (t)/V

The corresponding charge for accepting R
(c)
n (t) units of ex-

ogenous data is given by:

α(c)
n (t) = R(c)

n (t)q(c)n (t)

The charge for accepting endogenous commodity c data at rate
µ

(c)
an(t) is given by:

β(c)
an (t) = µ(c)

an(t)q(c)n (t)

Admission Control: Every timeslot t, each user n observes
the current prices q(c)n (t) in its source node (for all commodi-
ties c such that the utility function g

(c)
n (r) is not identically

zero), and chooses R(c)
n (t) = r

(c)
n , where the r(c)n values solve:

Maximize:
∑

c g
(c)
n (r(c)n )−

∑
c r

(c)
n q

(c)
n (t) (13)

Subject to:
∑

c r
(c)
n ≤ Rmax

n

0 ≤ r
(c)
n for all c

where Rmax
n is a constant such that Rmax

n ≥ µmax,out
n .

Resource Allocation: Every timeslot t, each node n ob-
serves the current prices q

(c)
b (t) advertised by neighboring

nodes b. It then computes the differential price W
(c)
nb (t) as

follows:

W
(c)
nb (t)M=q(c)n (t)− q

(c)
b (t)− δmax/V (14)

where δmax
M=maxn{µmax,out

n , µmax,in
n + Rmax

n }, and repre-
sents the largest change in any queue backlog during a slot.

The network parameter δmax is assumed to be known by all
nodes at the beginning of operation. The optimal differential
price and the corresponding optimal commodity is computed:

W ∗
nb(t)

M= max
c
W

(c)
nb (t)

c∗nb(t)
M= arg max

c
W

(c)
nb (t) (15)

The current channel states Sn(t) of all outgoing links are
observed, and the transmission rate vector µn(t) is allocated
as the solution of the following optimization problem:

Maximize:
∑

b µnbW
∗
nb(t)−

∑
b C

rec
nb (µnb)

−Ctran
n (µn,Sn(t)) (16)

Subject to: µn ∈ Ω(n)
Sn(t)

Routing/Scheduling: Whenever W ∗
nb(t) > 0, data of com-

modity c∗nb(t) is transmitted over link (n, b) at a rate µnb(t),
where µnb(t) is determined by the resource allocation algo-
rithm above.

A. Greedy Interpretation of SGP
The admission control strategy can be viewed as a greedy

optimization every timeslot, where node n maximizes its
utility associated with admitting new traffic to its source node
(as measured by the g

(c)
n (r) functions) minus the total cost

of admitting this traffic, subject to a constraint Rmax
n on the

total sum of admitted data. Note that in the special case when
user n has only a single active commodity (that is, it has a
single non-zero g

(c)
n (r) function), then the algorithm reduces

to setting R(c)
n (t) = r, where r maximizes g(c)

n (r) − rq
(c)
n (t)

subject to 0 ≤ r ≤ Rmax
n .

The resource allocation computes the differential prices
W

(c)
nb (t). Note from (14) that:

W
(c)
nb (t)µ(c)

nb (t) = [q(c)n (t)− q
(c)
b (t)]µ(c)

nb (t)− µ
(c)
nb (t)δmax/V

The first term on the right hand side of the above equality
represents the difference between the charge required for
transmitting commodity c traffic to node b and the revenue it
would earn by accepting this same amount of traffic from other
nodes, charging these nodes the current price q

(c)
n (t). From

a greedy perspective, it makes sense to transmit commodity
c data to node b only when the price differential q(c)n (t) −
q
(c)
b (t) is positive. The value µ(c)

nb (t)δmax/V can be viewed
as a “fudge factor” that decreases the price differential to
account for the fact that node n may not receive new data
at its currently advertised price. The value W

(c)
nb (t)µ(c)

nb (t)
can thus be viewed as node n’s estimate of its instantaneous
profit associated with relaying µ

(c)
nb (t) units of commodity

c data (not including transmission costs or reception fees).
Hence, commodity c∗nb(t) defined in (15) is the most valuable
commodity to transfer over link (n, b). The resource allocation
(16) can thus be viewed as a greedy attempt by node n to
allocate resources to maximize its total instantaneous profit.

Note also that the SGP algorithm transmits commodity c

data from node n only if W (c)
nb (t) > 0 for some receiver

node b. It follows that such transmissions can only take place
if U (c)

n (t) > δmax. Therefore, there is always enough data
available to fill the offered transmission rates.
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B. Algorithm Performance

Assume all queues of the network are initially empty, and
that the SGP algorithm is implemented with a fixed control
parameter V > 0. Assume all utility functions g(c)

n (r) have
finite right derivatives at r = 0. Because utilities are concave, it
follows that right derivatives exist and are non-increasing over
the interval r ≥ 0. Define η as the maximum right derivative
of any utility function. Note that 0 ≤ η <∞.

Theorem 2: (SGP Performance) For arbitrary S(t) pro-
cesses and for any fixed parameter V > 0, SGP ensures:

(a) U (c)
n (t) ≤ V η + δmax for all slots t and all (n, c).

(b) All nodes and users receive non-negative profit. Specif-
ically, for all slots t and nodes n ∈ {1, . . . , N}, we have:

1
t

t−1∑
τ=0

φn(τ) ≥ 0 (17)

Likewise, for all users n ∈ {1, . . . , N}, all commodities c,
and all slots t, we have:

g(c)
n

(
1
t

t−1∑
τ=0

R(c)
n (τ)

)
− 1
t

t−1∑
τ=0

α(c)
n (τ) ≥ 0 (18)

(c) If channel state matrices S(t) are i.i.d. over timeslots, then
the achieved social welfare of the algorithm satisfies:

lim inf
t→∞

[∑
n,c

g(c)
n (r(c)n (t))− 1

t

t−1∑
τ=0

∑
n

E {Cn(t)}

]
≥

g∗ −O(1/V )

where g∗ is the corresponding social welfare value achieved
by any other stabilizing control algorithm.3

The parameter V thus determines an explicit tradeoff be-
tween welfare utility and queue congestion (and hence, by
Little’s Theorem [31], end-to-end average delay). It is inter-
esting to note that the non-negative profit result of part (b)
holds deterministically on every timeslot t and for any node n
that is implementing the SGP algorithm, regardless of whether
or not the other nodes are implementing SGP.

Proof: (Theorem 2 part (a)) Fix any (n, c) pair, and consider
the admission variable R(c)

n (t) chosen by the SGP algorithm
according to (13) at a particular time t. The right derivative
of g(c)

n (r) evaluated at any point r ≥ 0 is less than or equal
to η. Hence, if q(c)n (t) > η, then g

(c)
n (r) − rq

(c)
n (t) ≤ 0 for

all r ≥ 0, with equality holding only at r = 0. It follows
that if q(c)n (t) > η, then R

(c)
n (t) = 0 (otherwise, the solution

to (13) could be improved by setting R
(c)
n (t) = 0). Noting

that q(c)n (t) = U
(c)
n (t)/V , we have established the following

important property (Property P1) of SGP:
(P1) For any (n, c), t, if U (c)

n (t) > V η, then R(c)
n (t) = 0.

Now suppose that for a particular timeslot t, we have
U

(c)
n (t) ≤ V η + δmax for all (n, c) (this certainly holds for

t = 0, as all queues are initially empty). We prove that the
same holds for time t+ 1.

Consider any particular (n, c). If U (c)
n (t + 1) ≤ U

(c)
n (t),

then clearly U
(c)
n (t + 1) ≤ V η + δmax. Else, queue (n, c)

3A bound on the O(1/V ) term in the theorem can be computed explicitly,
but we omit this computation for brevity.

must have received new commodity c arrivals during slot
t (either endogenous, exogenous, or both). If it received a
positive amount of exogenous commodity c arrivals from the
source user, then R(c)

n (t) > 0 (refer to the one-step queueing
dynamics (5)). By Property P1, this implies that U (c)

n (t) ≤ V η.
As δmax represents the largest change in queue backlog during
any single timeslot, it follows that U (c)

n (t+ 1) ≤ V η + δmax.
Finally, in the case that this queue did not receive any exoge-

nous arrivals but did receive a positive amount of endogenous
data transmitted from other nodes, then by the SGP routing
policy we know that W (c)

an (t) > 0 for at least one other node a
(where a 6= n). It follows from (14) and the price definitions
q
(c)
n (t) = U

(c)
n (t)/V that:

U (c)
a (t)− U (c)

n (t)− δmax > 0 (19)

Therefore:

U (c)
n (t+ 1) ≤ U (c)

n (t) + δmax

< U (c)
a (t)− δmax + δmax (20)

≤ V η + δmax (21)

where (20) follows from (19), and (21) follows because all
queues are bounded by V η + δmax on slot t.

Hence, in all cases we have U (c)
n (t+1) ≤ V η+ δmax. This

holds for all queues (n, c), and by induction it holds for all
timeslots t ∈ {0, 1, 2, . . .}, proving the result.

Proof: (Theorem 2 part (b)) For each user n, the SGP
admission decisions R(c)

n (t) are chosen to optimally solve (13).
Hence, for any (n, c) and any slot τ we have:

g(c)
n (R(c)

n (τ))− q(c)n (τ)R(c)
n (τ) ≥ 0 (22)

Indeed, the left hand side being negative would create a
contradiction, as then the solution to (13) could be strictly
improved by changing R(c)

n (τ) to 0. Taking a time average of
(22) over τ ∈ {0, . . . , t−1} and using concavity of the utility
function together with the fact that α(c)

n (τ) = q
(c)
n (τ)R(c)

n (τ)
yields (18).

To prove (17), for each node n ∈ {1, . . . , N} and each slot
τ , define hn(τ) as follows:

hn(τ) M=
∑

b

∑
c

µ
(c)
nb (τ)W (c)

nb (τ)−
∑

b

Crec
nb (µnb(τ))

−Ctran
n (µn(τ),Sn(τ)) (23)

For any link (n, b), SGP transmits only a single commodity
c∗nb(τ), and this commodity receives the full transmission rate
µnb(τ). It follows that µnb(τ)W ∗

nb(τ) =
∑

c µ
(c)
nb (τ)W (c)

nb (τ).
Thus, hn(τ) is the same as the maximization metric (16) used
in the resource allocation algorithm of SGP. Further note that
µn(τ) = 0 is always an option in the resource allocation
optimization (16), and hence this optimization metric is always
non-negative. That is, hn(τ) ≥ 0 for all n and all τ . Using
simple algebra together with the definitions of hn(τ) in (23)
and φn(τ) in (6), we have for all τ :

φn(τ) = hn(τ) +
∑

c

α(c)
n (τ) +

∑
c

∑
a

β(c)
an (τ)

−
∑
b,c

µ
(c)
nb (τ)[q(c)n (τ)− δmax/V ]
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Because hn(τ) ≥ 0, we have:
t−1∑
τ=0

φn(τ) ≥
t−1∑
τ=0

[∑
c

α(c)
n (τ) +

∑
c

∑
a

β(c)
an (τ)

]

−
t−1∑
τ=0

∑
b,c

µ
(c)
nb (τ)[q(c)n (τ)− δmax/V ](24)

It suffices to prove that the right hand side of the above
inequality is non-negative. That is, we desire to prove:

Revenuen(t) ≥
t−1∑
τ=0

∑
b,c

µ
(c)
nb (τ)[q(c)n (τ)− δmax/V ] (25)

where Revenuen(t) represents the first term on the right hand
side of (24), and is equal to the total revenue earned by node
n from handling charges paid to it during the course of the
first t slots.

To show this, observe that all sample paths and queueing
values are preserved if the actual data chosen to be transmitted
from each queue U

(c)
n (τ) takes place according to the Last

In First Out (LIFO) strategy. Using this interpretation, we
note that every bit of data that arrives to node n is charged a
particular price by node n. Thus, the data associated with the
µ

(c)
nb (τ) transmissions out of node n is composed of bits that

may have arrived at different times and may have been charged
different prices. However, under the LIFO transmission rule,
all of this data was transmitted into node n during slots when
the queue backlog was greater than or equal to U (c)

n (τ)−δmax.
This is because µ(c)

nb (τ) ≤ δmax, and so the LIFO transmission
of µ(c)

nb (τ) data leaves at least U (c)
n (τ) − δmax bits of data

behind, all of which must have been there when the transmitted
data arrived. It follows that the price charged to each bit of
this transmitted data when it arrived to node n was at least
(U (c)

n (τ) − δmax)/V . Therefore, the total revenue earned by
accepting this data is at least as large as the right hand side
of (25). Thus, (25) holds, and the result follows.

Part (c) of Theorem 2 follows from the following Lyapunov
drift lemma from [7][29]. Let U(t) = (U (c)

n (t)) represent the
matrix of queue backlogs, and let L(U) be a non-negative
function of the network queue state, called a Lyapunov func-
tion. Formally define the Lyapunov drift as follows:

∆(U(t))M=E {L(U(t+ 1))− L(U(t)) | U(t)}

Let f(t) represent some real valued stochastic reward process
related to the system, and assume |f(t)| ≤ fmax for all t.

Lemma 2: (Lyapunov drift [7][29]) If there exist constants
B > 0, ε > 0, V > 0 such that for all slots t and all queue
states U(t), the Lyapunov drift satisfies:

∆(U(t))− V E {f(t) | U(t)} ≤ B − ε
∑
n,c

U (c)
n (t)− V f∗

for some target utility value f∗, then:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E
{
U (c)

n (τ)
}

≤ B + V (fmax − f∗)
ε

lim inf
t→∞

1
t

t−1∑
τ=0

E {f(τ)} ≥ f∗ −B/V �

Proof: (Theorem 2 part (c)) Define L(U)M= 1
2

∑
n,c(U

(c)
n )2.

The queueing dynamics (5) can be used to bound the Lyapunov
drift ∆(U(t)) according to a standard computation [28][29]:

∆(U(t))− V
∑

n

E

{∑
c

g(c)
n (R(c)

n (t))− Cn(t) | U(t)

}
≤

B − V
∑

n

E

{∑
c

g(c)
n (R(c)

n (t))− Cn(t) | U(t)

}

−
∑
n,c

U (c)
n (t)E

{∑
b

µ
(c)
nb (t)−

∑
a

µ(c)
an(t)−R(c)

n (t) | U(t)

}
where B is a constant that depends on N , δmax, and
the maximum cost function values. The key observation
is that, given U(t) and given the pricing rule q

(c)
n (t) =

U
(c)
n (t)/V , the SGP algorithm comes within an additive con-

stant B̃ M=δmax

∑
n µ

max,out
n of minimizing the right hand side

of the above inequality over all possible control decisions for
{R(c)

n (t)}, {µn(t)}, and {µ(c)
nb (t)}. The detailed demonstration

of this is similar to related demonstrations in [7][29], and
is omitted for brevity. However, this immediately implies
that plugging the alternative stationary randomized decisions
{R(c)∗

n }, {µ∗n(t)}, and {µ(c)∗
nb (t)} from Theorem 1 into the

right hand side and adding B̃ preserves the inequality. The
stationary randomized algorithm makes decisions independent
of U(t), and yields a significant simplification. Specifically,
plugging (11) and (12) directly into the right hand side of the
above inequality yields:

∆(U(t))− V
∑

n

E

{∑
c

g(c)
n (R(c)

n (t))− Cn(t) | U(t)

}
≤

(B + B̃)− V ρg∗

where g∗ is the social welfare of any particular stabilizing
strategy, and ρ is any value such that 0 < ρ < 1 (from
Theorem 1). Using Lemma 2 yields:

lim inf
t→∞

1
t

t−1∑
τ=0

∑
n

E

{∑
c

g(c)
n (R(c)

n (τ))− Cn(τ)

}
≥

ρg∗ − (B + B̃)/V

Taking a limit as ρ → 1 and using concavity of the utility
functions g(c)

n (r) proves part (c) of Theorem 2.

IV. PRICING FOR BALANCED PROFITS

While the SGP algorithm makes greedy decisions and en-
sures non-negative profit for all participants, the profits might
not be distributed evenly. To provide more balanced profits,
we define profit metrics according to general non-decreasing
concave functions Φn(φn) and Ψn(ψn) for all nodes and
users. Suppose that φn and ψn respectively represent the time
average profit of each node and user n ∈ {1, . . . , N}. The goal
is to design a control and pricing algorithm that stabilizes the
network, ensures non-negative profits, and that optimizes:∑N

n=1

[
Φn(φn) + Ψn(ψn)

]
(26)

We impose an additional bounded price assumption on the
problem: all per-unit prices are bounded by a maximum
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price Qmax. To solve this problem, we use our optimization
framework from [29] [30] [7]. Let γn(t) and νn(t) represent
auxiliary variables, and consider the equivalent problem:

Maximize:
N∑

n=1

[Φn(γn) + Ψn(νn)]

Subject to: 1) φn ≥ γn , ψn ≥ νn for all n
2) Network Stability

Define φpos
n (t) and φneg

n (t) respectively as the sum of positive
terms in the φn(t) function (6) and the absolute value of the
sum of the negative terms. Thus, φn(t) = φpos

n (t) − φneg
n (t).

The inequality constraints in the above problem are treated via
stabilization of virtual queues Xn(t) and Yn(t) with dynamics:

Xn(t+ 1) = max[Xn(t)− φpos
n (t), 0] + γn(t) + φneg

n (t)

Yn(t+ 1) = max[Yn(t)−
∑

c

g(c)
n (R(c)

n (t)), 0]

+νn(t) +
∑

c

α(c)
n (t) (27)

Stabilizing the Xn(t) and Yn(t) queues implies that the time
average of the queue input variables is less than or equal to the
time average of the queue service variables. We next generalize
the pricing variables:

α(c)
n (t) = p(c)

n (t)R(c)
n (t) , β(c)

nb (t) = q
(c)
nb (t)µ(c)

nb (t)

where p(c)
n (t) is the per-unit price for exogenous commodity

c arrivals at node n, and q
(c)
nb (t) is the per-unit price for

commodity c data transmitted over link (n, b).
Let Z(t)M=(U(t);X(t);Y (t)) represent the combined

queue state. Define the Lyapunov function L(Z(t)) as follows:

L(Z(t)) =
1
2

∑
n,c

(U (c)
n (t))2 +

1
2

∑
n

Xn(t)2 +
1
2

∑
n

Yn(t)2

The following bound involving Lyapunov drift ∆(Z(t)) can
be computed via the queueing dynamics (5) and (27):

∆(Z(t))− V
∑

n E {Φn(γn(t)) + Ψn(νn(t)) | Z(t)} ≤
D − V

∑
n E {Φn(γn(t)) + Ψn(νn(t)) | Z(t)}

−
∑

n,c U
(c)
n (t)E

{∑
b µ

(c)
nb (t)−

∑
a µ

(c)
an(t)−R

(c)
n (t) | Z(t)

}
−
∑

nXn(t)E {φn(t)− γn(t) | Z(t)}

−
∑

n Yn(t)E
{∑

c g
(c)
n (R(c)

n (t))−
∑

c α
(c)
n (t)− νn(t) | Z(t)

}
where D is a constant. The following algorithm is obtained by
making control and pricing decisions that minimize the right
hand side of the above drift bound on every slot t.

Bang-Bang Pricing Algorithm for Stochastic Networks:
Pricing: Every slot t, each node n observes its virtual

queues Xn(t), Yn(t) and chooses p(c)
n (t) as follows:

p(c)
n (t) =

{
Qmax if Yn(t) < Xn(t)
0 otherwise

Each node n also observes the virtual queues Xa(t) of its
neighbors, and chooses q(c)an (t) as follows:

q(c)an (t) =
{
Qmax if Xa(t) < Xn(t)
0 otherwise

Admission Control: Every slot t, each node n chooses
R

(c)
n (t) (for each commodity c) as the maximum of:

Yn(t)g(c)
n (r)− r[U (c)

n (t)− p(c)
n (t)(Xn(t)− Yn(t))]

over the interval 0 ≤ r ≤ Rmax
n .

For each n, the auxiliary variable γn(t) is chosen as
the maximum of V Φn(γ) − Xn(t)γ subject to 0 ≤ γ ≤
Qmaxδmax. Likewise, the auxiliary variable νn(t) is chosen as
the maximum of VΨn(ν)−Yn(t)ν subject to 0 ≤ ν ≤ ηRmax

n .
Resource Allocation: Each node n observes the channel

states and queue backlogs of its neighbors, and computes:

Θ(c)
nb (t)M=U (c)

n (t)− U
(c)
b (t)− q

(c)
nb (t)(Xn(t)−Xb(t))

The optimal weight and commodity is then chosen as follows:

Θ∗
nb(t)

M=max
c

Θ(c)
nb , c∗nb(t)

M=arg max
c

Θ(c)
nb

The transmission vector µn(t) is allocated as the solution to:

Maximize:
∑

b µnbΘ∗
nb −Xn(t)Ctran

n (µn,Sn(t))
−Xn(t)

∑
b C

rec
nb (µnb)

Subject to: µn ∈ Ω(n)
Sn(t)

Routing/Scheduling: The µ(c)
nb (t) rates are selected as:

µ
(c)
nb (t) =

{
µnb(t) if Θ∗

nb(t) > 0 and c = c∗nb(t)
0 otherwise

The actual queues U(t) are then updated according to (5), and
the virtual queues X(t),Y (t) are updated according to (27).

Unlike SGP, the pricing here does not depend on the
commodity c, but is potentially link dependent.

Theorem 3: (Bang-Bang Pricing Performance) The Bang-
Bang pricing algorithm stabilizes all actual and virtual queues
of the system, ensures all participants make non-negative
profit, and yields:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E
{
U (c)

n (τ)
}

≤ O(V )

lim inf
t→∞

N∑
n=1

[
Φn(φn(t)) + Ψn(ψn(t))

]
≥ Φ∗ −O(1/V )

where φn(t) and ψn(t) are defined in (7) and (8), and where
Φ∗ is the lim sup of the achieved profit metric (26) under any
other stabilizing control algorithm.

Proof: The result uses the Lyapunov drift lemma (Lemma
2) together with the fact that (i) The given control decision
variables minimize the right hand side of the drift bound, and
(ii) There exists a stationary randomized control algorithm that
stabilizes the system and achieves a profit metric of at least
ρΦ∗ (for any ρ such that 0 < ρ < 1). A complete derivation
is omitted for brevity.

V. SIMULATION

Consider the network of Fig. 1, where there are seven
wireless nodes, four of which have sources that desire to send
data to any of the three wireline access points. This is a single
commodity problem, as the three access points can be viewed
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S1

S2

S3
S4

75

6

C7C5C2

Fig. 1. A single commodity network where four different wireless sources
desire to send data to any of the three wireline access points.

SGP Profit BB Profit SGP U BB U
User 1 0.36 1.36 – –
User 2 1.13 1.70 – –
User 3 0.72 1.08 – –
User 4 1.31 1.05 – –
Node 1 0.03 1.35 377 1533
Node 2 4.97 1.67 299 1211
Node 3 1.65 1.04 333 1574
Node 4 1.57 1.00 286 1438
Node 5 0.86 1.05 93 259
Node 6 0.02 0.59 132 782
Node 7 0.02 0.61 53 308
Total 12.63 12.51 1573 7104

Fig. 2. A table of simulation results showing time average profit (in cents/slot)
and queue backlog (in packets) for the SGP and Bang-Bang algorithms. V =
50 for SGP, V = 500 for BB. Rmax = 1, Qmax = g(1 + Rmax).

collectively as a single node. Assume traffic is in units of
packets, and suppose each wireless node can transmit over at
most one outgoing link per timeslot. The dashed links indicate
time varying ON/OFF channels with i.i.d. ON probabilities of
1/2 (so that a single packet can be transmitted when ON, and
zero when OFF). Transmission costs over these links are 1
cent/packet, and reception costs of all links are equal to 0.5
cent/packet. The solid links to the access points are always
ON, and can transmit one packet per slot with transmission
costs C2 = C5 = C7 = 1. Suppose utility functions for
each of the four users are given by g(r) = 10 log(1 + r). We
simulate the SGP and Bang-Bang pricing algorithms over 10
million timeslots. We use Φ(x) = Ψ(x) = log(1 + x) for
the Bang-Bang implementation. Profit results are presented in
Fig. 2. Note that nodes 5, 6, and 7 make positive profits by
acting as pure relays. This shows that nodes can benefit from
participating in the free market even if they do not desire their
own personal communication. Decreasing the V parameter
in the Bang-Bang algorithm leads to less precisely balanced
profits but also decreases congestion. Under SGP, nodes 6 and
7 support roughly 1/3 of the traffic from S4, but receive only
0.02 profit. If C5 is increased to 3, the profit of nodes 6 and
7 significantly increases under both SGP and BB, while the
profit of node 5 decreases (results omitted for brevity).
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