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Abstract— We consider a one-hop wireless network with inde-
pendent time varying ON/OFF channels and N users, such as a
multi-user uplink or downlink. We first show that general classes
of scheduling algorithms that do not consider queue backlog
must incur average delay that grows at least linearly with N .
We then construct a dynamic queue-length aware algorithm that
maximizes throughput and achieves an average delay that is
independent of N . This is the first order-optimal delay result
for opportunistic scheduling with asymmetric links. The delay
bounds are achieved via a technique of queue grouping together
with Lyapunov drift and statistical multiplexing concepts.

Index Terms— Queueing Analysis, Stability, Stochastic Control

I. INTRODUCTION

In this paper, we investigate the fundamental delay scaling
laws in a multi-user wireless system with N time varying
data links, such as a multi-user uplink or downlink. Packets
arrive to the system according to independent stochastic arrival
streams, with one arrival stream for each link, and are stored in
separate queues to await transmission. Time is slotted, and the
system can support a transmission over at most one link per
timeslot. Channel conditions on each link vary independently
every slot according to ON/OFF Bernoulli processes, so that a
link can transmit exactly one packet during a timeslot when it
is in the ON state, and cannot transmit in the OFF state. Such
ON/OFF channel states might arise from channel fluctuations
or fading due to user mobility. Every timeslot, a network
controller views the conditions on each channel and chooses
exactly one link to transmit.

This system model is central to the study of channel-
aware (or “opportunistic”) scheduling in wireless systems,
and the model along with many generalizations have been
extensively considered in the literature [2]-[24]. Landmark
work by Tassiulas and Ephremides in [2] characterizes the
capacity region of this model, consisting of the set of all
arrival rate vectors the system can be configured to stably
support. The work in [2] also proposes the Longest Connected
Queue (LCQ) scheduling policy, and uses a Lyapunov drift
argument to show that this policy stabilizes the system (and
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thus maximizes throughput) whenever input rates are interior
to the capacity region. Furthermore, the work in [2] uses a
stochastic coupling argument to show that, in the special case
of a symmetric system with identical input rates for each user
and identical channel probabilities for each link, the LCQ
policy minimizes average delay.

This delay optimality result is generalized in [5] [11], where
a delay optimal policy is developed for selecting transmission
rates within the polytope capacity region associated with the
Gaussian multiple access channel, and in [15] where gener-
alizations to multi-server systems are considered. However,
these delay optimality results hold only in cases when the
system exhibits perfect symmetry in traffic rates and channel
statistics. Indeed, these works use the stochastic coupling
technique of [2], which requires this symmetry. Further, the
actual average delay achieved by these strategies is unknown,
even in these symmetric cases. Work in [8] computes upper
bounds on the delay of stabilizing largest-queue type strategies
for heterogeneous downlinks. However, these bounds grow
linearly in the number of users N . Specifically, the delay
bound has the form cN/(1− ρ), where ρ is a parameter such
that 0 < ρ < 1 and represents the fraction the input rate
vector is away from the capacity region boundary, and c is a
constant that does not depend on ρ or N .1 In simple special
cases, such as when all channels are always ON and any work
conserving policy is used, it can be shown that average delay
can be improved to O(1/(1 − ρ)) (and hence is independent
of N ), demonstrating that the bound in [8] is not always tight.
However, whether or not optimal delay can grow sub-linearly
with N in more general cases has remained an important open
question, and is a question that we resolve in this paper.

Using the simple ON/OFF channel model, we first show
that, for general classes of scheduling algorithms that use
channel state information but do not consider queue backlog,
average delay must grow at least linearly with N . We then
construct a simple dynamic control policy called Largest
Connected Group that uses both queue state and channel
state information. We apply this policy to both symmetric
and asymmetric systems (where the asymmetric cases treat
large classes of systems with heterogeneous traffic rates and
channel probabilities). An upper bound on average delay is
derived and shown to have the form c log(1/(1−ρ))

1−ρ , where c is a
constant that is independent of ρ and N . This result can likely
be extended to treat links with more than two channel states
(provided that there is a finite transmission rate in the best

1For convenience, this paper expresses scaling laws using c to represent
a generic coefficient that is independent of ρ and N . The value of c is not
necessarily the same in the different expressions in which it appears.
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channel state), and to treat time-correlated channel and traffic
processes (possibly using the T -slot Lyapunov drift techniques
of [19] [14]), although we omit this analysis for brevity.

Previous work in the area of wireless scheduling is found
in [6][9][10] for systems with an infinite backlog of data,
and a clearing problem in a system with N links and a
fixed amount of data is treated in [12]. Stable scheduling
and queueing is considered for satellite, wireless, and ad-hoc
mobile systems in [2][3][4][7][8][13][14]. The work in [7]
develops delay optimality results in the limit as the system
loading ρ approaches 1, but does not provide asymptotic
results in the number of users. Indeed, the analysis in [7] uses
a fluid limit and a heavy traffic limit that may suggest each of
the N queues is usually non-empty. In our analysis, we provide
an average delay bound for a fixed loading factor ρ < 1, and
obtain delay that is independent of N by scheduling to ensure
that each queue is usually empty. This provides an advantage
in the case when there are many users and ρ is a fixed fraction
away from the capacity region boundary. However, while our
c log(1/(1−ρ))

1−ρ bound in this paper has a better asymptotic in
N than the previous cN/(1−ρ) bound in [8], it has a slightly
worse asymptotic in ρ.

Much work in the area of dynamic scheduling is developed
for computer networks and switching systems, including work
in [25][26][27][28] that uses Lyapunov stability theory. The
work in [26] considers max-weight-match (MWM) scheduling
in an N×N packet switch with i.i.d. traffic (such as Bernoulli
or Poisson), and shows that average delay is no more than
cN/(1 − ρ). Various methods of queue groupings are used
with Lyapunov functions in [28][29][30][31] to achieve low
complexity scheduling. While [28][29][30][31] does not pri-
marily focus on delay, it is interesting to note that if an N×N
switch is half loaded (ρ < 1/2) with independent Bernoulli or
Poisson inputs, then similar queue groupings together with the
Lyapunov delay technique of [26] can be used to show that
average delay is c/(1− 2ρ) under maximal match scheduling.
However, this result does not seem to extend to cases when
ρ > 1/2. Work in [32] uses a simple frame-based algorithm
for an N × N switch to show it is possible to achieve an
average delay of c log(N)/(1− ρ)2, for any value ρ < 1. Our
results in the present paper parallel our previous work in [32]
for switch scheduling. However, the problem formulation and
solution technique is quite different here, as the frame-based
approach in [32] does not appear tractable with stochastic
channel conditions. Here, we pursue a novel queue grouping
approach, and show that the average delay of our wireless
system can be bounded independently of the number of users
N , for any value of ρ < 1.

We note that a different approach to showing that average
delay does not grow with N is recently considered for sym-
metric systems in [16]. Specifically, work in [16] extends the
results in [15] to show that average delay under an optimal
algorithm in a system with symmetric Poisson traffic and 2N
symmetric links is less than or equal to the corresponding
average delay in a system with only N links. Our analysis
uses a different technique that yields explicit delay bounds
while also applying to asymmetric systems with traffic that is
i.i.d. over slots but possibly non-Poisson.

In the next section, we formulate the problem and review
the system capacity region from [2]. In Section III we show
that a large class of backlog-unaware scheduling algorithms
necessarily incur average delay that grows at least linearly
with N . In Section IV we develop our backlog-aware Largest
Connected Group algorithm and show it yields average delay
that is independent of N .

II. PROBLEM FORMULATION

Consider an N queue system that evolves in discrete time
with integral timeslots t ∈ {0, 1, 2, . . .}. Let Qi(t) represent
the number of packets in queue i at the beginning of slot t (for
i ∈ {1, . . . , N}). Let Ai(t) represent the number of new packet
arrivals during slot t, and let µi(t) represent the transmission
rate (in units of packets) during slot t. The dynamic equation
for each queue i ∈ {1, . . . , N} is given by:

Qi(t+ 1) = max[Qi(t)− µi(t), 0] +Ai(t) (1)

Each queue contains data that must be transmitted over
a distinct link with time varying channels. Let Si(t) ∈
{ON,OFF} represent the channel state of link i during slot
t. Assume these channel states are i.i.d. over timeslots and
independent across channels, and let qi represent the ON
probability for channel i:2

qi
M=Pr[Si(t) = ON ]

The ON/OFF channel states are assumed to be known to the
network controller at the beginning of each slot. Every slot t,
the network controller chooses transmission decision variables
µ(t) = (µ1(t), . . . , µN (t)) subject to the constraints:

µi(t) ∈ {0, 1} ∀i ∈ {1, . . . , N}
µi(t) = 0 if Si(t) = OFF∑N

i=1 µi(t) ≤ 1 (2)

The above constraints specify that at most one link can be
chosen for transmission on any timeslot, and that exactly one
packet can be transmitted over a given link i during a timeslot
in which Si(t) = ON , while no packets can be transmitted
over a channel that is OFF .

This system model can be used to represent a multi-user
wireless or satellite downlink, where all packets arrive to a
single node that internally stores data in separate queues for
transmission to the appropriate destination. Alternatively, the
system can represent a multi-user wireless uplink, where each
user has its own data that must be transmitted to a central
access point. In this uplink scenario, the queues are distributed
over the different users. It is assumed in this case that the
access point receives queue backlog updates every slot, and
determines which user transmits by sending permission signals
over a dedicated control channel.

2Extensions to time-correllated arrival and channel processes can be treated
using the T -slot Lyapunov drift techniques of [19] [14].
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Definition 1: A discrete time queue Q(t) with a general
arrival and server rate process is strongly stable if:3

lim sup
t→∞

1
t

t−1∑
τ=0

E {Q(τ)} <∞

A network of queues is said to be strongly stable if each queue
is strongly stable. Throughout this paper, we use the term
“stability” to refer to strong stability. The goal is to design a
scheduling algorithm that stabilizes the system while keeping
time average backlog and average delay as small as possible.

A. The Capacity Region

Suppose arrivals Ai(t) are i.i.d. over timeslots, and let λi =
E {Ai(t)} represent the packet arrival rate of stream i (for each
i ∈ {1, . . . , N}). Let λ = (λ1, . . . , λN ) represent the arrival
rate vector. The network capacity region Λ is the closure of
the set of all rate vectors λ for which a stabilizing algorithm
exists. For a system of 2 queues (N = 2), the capacity region
is given by all rate vectors (λ1, λ2) that satisfy:

λ1 ≤ q1 , λ2 ≤ q2

λ1 + λ2 ≤ q1 + (1− q1)q2

These inequalities are clearly necessary for stability, as
otherwise one or both queues would have an input rate that
exceeds the transmission rate capabilities of the system. It is
not difficult to show that any rate vector (λ1, λ2) interior to
this region can be stabilized. The capacity region for a system
of N queues is shown in [2] to be the set of all rate vectors
λ = (λ1, . . . , λN ) that satisfy the inequalities:∑

i∈I
λi ≤ 1−Πi∈I(1− qi)

for each non-empty subset of indices I ⊂ {1, . . . , N}. Thus,
the capacity region is described by a set of 2N − 1 inequality
constraints. An alternate characterization of the capacity region
can be given in terms of all possible expected transmission
rate vectors that can be achieved by a stationary randomized
scheduling policy, as shown below.

Lemma 1: (Stationary Randomized Policies [19][2]) A rate
vector λ = (λ1, . . . , λN ) is in the capacity region Λ if and
only if there exists a stationary control strategy that chooses
a transmission rate vector µ(t) = (µ1(t), . . . , µN (t)) as a
(potentially random) function of the observed channel state
vector S(t) = (S1(t), . . . , SN (t)) such that µ(t) satisfies (2)
for all t, and such that the expected transmission rate yields:

E {µi(t)} = λi for all i ∈ {1, . . . , N}

The expectation above is with respect to the stationary dis-
tribution for the channel state vector S(t) and the potentially
random transmission decision that depends on S(t). �

Note that in the special case of a symmetric system where
qi = q for all i ∈ {1, . . . , N}, then the largest symmetric rate
vector (λ, λ, . . . , λ) that is in the capacity region is given by

3We note that if a queue Q(t) is strongly stable and also evolves according
to an ergodic Markov chain with a countably infinite state space, then the
lim sup on the left hand side in the stability definition above can be replaced
with a regular limit that represents the steady state backlog.

the vector with λi = rN/N for all i ∈ {1, . . . , N}, where
rN is the probability that at least one link is in the ON state
during a timeslot: rN M=1− (1− q)N .

B. The Single-Queue Lower Bound

A simple lower bound on the average backlog (and hence,
by Little’s Theorem [33], average delay), can be obtained
by comparing the multi-queue system to a corresponding
single-queue system with a sum arrival and channel process.
Specifically, define the single-queue system to have queue
backlog Qsingle(t) with dynamics:

Qsingle(t+ 1) = max[Qsingle(t)− µsingle(t), 0] +Asum(t)

where Asum(t)M=
∑N
i=1Ai(t), and where µsingle(t) ∈ {0, 1},

and is 1 if and only if Si(t) = ON for at least one channel i ∈
{1, . . . , N}. It is easy to show that Qsingle(t) ≤

∑N
i=1Qi(t)

for all time t, regardless of the scheduling policy used for the
multi-queue system. Thus, the average backlog and average
delay in the multi-queue system is lower bounded by the
corresponding single queue averages. Specifically, assuming
averages exist, we have:

W ≥W single ,
∑N
i=1Qi ≥ Qsingle

where W is the average delay in the multi-queue system, Qi is
the average backlog in queue i of the multi-queue system, and
W single and Qsingle are the delay and backlog averages in the
single-queue system. Note that the single-queue system is a
discrete time GI/GI/1 queue with a Bernoulli service process
with service probability µav M=1 − ΠN

i=1(1 − qi). The average
delay in such a system can be computed exactly:

W single =
1 + 1

λtot
E
{
A2
sum

}
− 2λtot

2µav(1− ρ)
(3)

where E
{
A2
sum

} M=E
{
Asum(t)2

}
, λtot

M=
∑N
i=1 λi, and

ρM=λtot/µav . In the case when all inputs Ai(t) are independent
and Poisson with rates λi, we have: E

{
A2
sum

}
= λtot +λ2

tot.
Hence, the single-queue delay bound for Poisson traffic is
given by:

W ≥W single =
2− λtot

2µav(1− ρ)
(4)

This specifies that the best possible average delay of any
scheduling algorithm is O(1/(1 − ρ)) when arrivals are in-
dependent and Poisson.

On the other hand, in the case when the inputs Ai(t) are not
independent, the lower bound can be cN/(1− ρ), where c is
a constant that is independent of ρ and N . Specifically, if we
have Ai(t) = A(t) for all i ∈ {1, . . . , N}, with A(t) Poisson
of rate λtot/N , then queue 1 receives k packets on slot t if and
only if all other queues receive k packets that slot. It follows
that E

{
A2
sum

}
= E

{
N2A(t)2

}
= Nλtot + λ2

tot and hence:

W single =
N + 1− λtot
2µav(1− ρ)

(correlated arrival case) (5)

The difference between the c/(1 − ρ) and cN/(1 − ρ) delay
bounds in (4) and (5) is due to the statistical multiplexing
gains that arise when data streams Ai(t) are independent. In
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this paper we focus on the case when inputs are independent.
Our goal is to develop an algorithm that yields average delay
close to the c/(1− ρ) lower bound in (4).

III. BACKLOG-UNAWARE SCHEDULING

Here we show that if scheduling algorithms are restricted
to a large class of policies that use channel state information
but do not use queue backlog information, then average delay
necessarily grows at least linearly with N . Suppose arrival
processes are stationary and ergodic with rates λi. Let Xi(t)
represent the number of packets that arrive up to time t, and
let {Xi(v)}v≥0 denote the entire sample-path arrival history
over time. We consider stationary scheduling algorithms that
choose transmission rates independent of the entire arrival
history, and hence independent of current queue backlog.
Specifically, we consider the class of scheduling policies that
yield transmission rates with the following property for all
i ∈ {1, . . . , N}:

E {µi(t) | {Xi(v)}v≥0} = E {µi(0)} M=µi (6)

This is a large class of policies, including all of the
stationary randomized scheduling policies used in Lemma 1.
Periodic policies (such as round robin scheduling) can also
be included in this class if the phase of the initial period is
uniformly randomized, as in [32].

Theorem 1: (Backlog Unaware Scheduling) Consider any
scheduling algorithm that satisfies (6) and stabilizes the system
with finite average backlogs Qi and average delay W . Then:

(a) For all t, we have:

E {Qi(t)} ≥ E {Ui(t)}

where Ui(t) represents the “unfinished work” (or fractional
packets) at time t in a continuous time queueing system with
the same arrivals Ai(t) but with a constant transmission rate
µi (and hence deterministic service times 1/µi).

(b) Suppose there are symmetric channel probabilities qi =
q and symmetric rates λi = λtot/N for all i ∈ {1, . . . , N}.
Assume λtot ≤ rN (where rN M=1− (1− q)N is the maximum
system output rate). If the arrival streams are continuous time
Poisson processes, then average delay necessarily satisfies:

W ≥ N

2rN (1− ρ)

where ρM=λtot/rN .
(c) For asymmetric systems, let rmax represent the maxi-

mum possible sum output rate:

rmax
M=1−ΠN

i=1(1− qi)

Let γ1 and γ2 be positive constants less than 1. If there are
at least γ1N arrival processes with transmission rates at least
γ2λtot/N , then average delay is at least γ2

1γ2N/(2rmax), and
hence grows at least linearly with N .

Proof: See Appendix A.
Note that the assumptions on γ1 and γ2 in part (c) of

the theorem precludes the case of a fixed number of users
dominating the total arrival rate. In that case, it is possible
for total average delay to be independent of N because the
majority of packets can have small delay averages.

IV. THE QUEUE GROUPING ALGORITHM

Here we develop a dynamic algorithm that involves queue
grouping, and show that the algorithm has average delay that
is independent of N . We first review the delay result from [8]
that provides a (loose) upper bound on the average delay of
the LCQ policy from [2]. Recall that the LCQ policy chooses
to transmit over the ON link with the largest queue backlog
(breaking ties randomly and uniformly), and is shown in [2]
to stabilize the system whenever input rates are inside the
capacity region Λ, and to minimize average delay in the special
case of a symmetric system.

Assume channel states are independent with probabilities qi
for i ∈ {1, . . . , N}. Let λ = (λ1, . . . , λN ) be the rate vector,
and suppose that there exists a value ε > 0 such that λ+ε ∈ Λ
(where εM=(ε, ε, . . . , ε)). Thus, we assume λ is strictly interior
to the capacity region, and that a positive value ε can be added
to each component to yield another vector that is within the
capacity region.

Lemma 2: (Delay of LCQ [8])4 Suppose arrival vectors
A(t) are i.i.d. over timeslots, and that λ+ ε ∈ Λ. Then:

(a) The LCQ policy stabilizes the system and yields average
delay that is upper bounded as follows:

W ≤
λtot +

∑N
i=1 E

{
A2
i

}
− 2

∑N
i=1 λ

2
i

2λtotε
(7)

where E
{
A2
i

} M=E
{
Ai(t)2

}
, and λtot M=

∑N
i=1 λi.

(b) If arrival streams Ai(t) have symmetric rates λi =
λtot/N for i ∈ {1, . . . , N} (possibly with different variances),
if qi = q for all i ∈ {1, . . . , N}, and if λtot = ρrN for some
value ρ such that 0 < ρ < 1 (where rN M=1− (1− q)N ), then
average delay satisfies:

W ≤
N
[
1 + 1

λtot

∑N
i=1 σ

2
i

]
− λtot

2rN (1− ρ)
(8)

where σ2
i

M=E
{
A2
i

}
− λ2

i is the variance of Ai(t).
Note that part (b) follows immediately from part (a) by

using ε = rN/N − λtot/N , so that: ε = rN (1 − ρ)/N .
The upper bound on average delay has the form cN/(1− ρ).
The lemma holds for arrival vectors with components that are
arbitrarily correlated, and hence in this sense the asymptotic
with N is tight (recall the single-queue bound (5) in the case
of correlated arrivals). Specifically, note that for Poisson traffic
we have σ2

i = λi for all i, so that 1
λtot

∑N
i=1 σ

2
i = 1. Hence,

from (8) we have:

W ≤ 2N − λtot
2rN (1− ρ)

This is roughly a factor of 2 larger than the single queue lower
bound in (5) for the case of correlated Poisson arrivals. Further
note that for independent arrivals, if N is treated as a fixed
constant (that does not scale) but ρ scales to 1, this LCQ policy
achieves the optimal O(1/(1 − ρ)) scaling with respect to ρ
(from the lower bound (4)).

4The derivation in [8] considers a more general system with variable
transmission rates that can be any real number, and obtains a slightly different
bound in this case, but still with the cN/(1 − ρ) structure. The expression
(7) follows as a special case of Theorem 2 in the case N = K.
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A. Intuition for Queue Grouping

Here we assume arrival streams Ai(t) are i.i.d. over times-
lots and are also independent of each other. To provide
intuition on the advantages of queue grouping, define qmin =
mini∈{1,...,N} qi, and compare the system of N parallel queues
(with channel probabilities qi ≥ qmin for all i ∈ {1, . . . , N})
to a single queue system with a Bernoulli server with rate qmin
and with an arrival process given by Asum(t), the sum of the
individual Ai(t) arrival processes. It can be shown that if the
N queue system schedules according to any work conserving
scheduling policy (i.e., a policy that always serves a non-
empty ON queue if one is available), the resulting backlog
is stochastically less than the backlog in the single queue
system (this result is not required in our analysis below, but
is of independent interest and is proven in Appendix B). It
follows that if λtot < qmin, then the average delay in the
multi-queue system is no more than the average delay in the
single queue system. In particular, if the input processes Ai(t)
are independent and Poisson, then we have:

W ≤ 2− λtot
2(qmin − λtot)

Therefore, delay in this case does not grow linearly with N .
Further, this result holds whenever the input rate vector is
within a factor ρ of the capacity region boundary, for any value
ρ such that 0 < ρ < γ, where γ M=qmin/rmax. To see this, note
that this result holds for any rates such that

∑
i λi < qmin,

and let Λ∗ denote the closure of this region. It follows that:

γΛ ⊂ γ

{
λ | λ ≥ 0,

∑
i

λi ≤ rmax

}

=

{
λ | λ ≥ 0,

∑
i

λi ≤ γrmax

}
= Λ∗

where the first inclusion follows because
∑
i λi ≤ rmax is a

necessary condition for λ ∈ Λ (it is not necessarily sufficient).
Thus, Λ∗ contains the set γΛ. However, this single-queue

comparison does not apply when γ ≤ ρ < 1. To achieve a
larger fraction of the capacity region, we can assemble each of
the N queues of the system into K distinct groups. Intuitively
speaking, each single group can be compared to a correspond-
ing single queue system with a Bernoulli transmission rate of
qmin. The advantage is that now we only require the sum of
transmission rates within each group to be less than qmin (so
that larger input rate vectors can generally be supported). Each
group is then treated as a single queue, and the LCQ algorithm
is applied to that system of K “queues,” yielding an O(K)
delay result via Lemma 2. In the next section we make this
intuition precise.

B. The Largest Connected Group (LCG) Algorithm

Below we specify the queue grouping algorithm for a
general set of groups. We then discuss intelligent ways to form
the groups for both symmetric and asymmetric systems. Let
{G1, . . . ,GK} represent any general grouping of the queue
indices i ∈ {1, . . . , N} into disjoint sets, where K is the
number of groups. We assume each group Gk is a non-empty

subset of {1, . . . , N}, groups are disjoint, and the union of all
K groups is equal to the set of all queue indices {1, . . . , N}.
For each group index k ∈ {1, . . . ,K}, define:

Asum,k(t) M=
∑
i∈Gk

Ai(t)

Qsum,k(t) M=
∑
i∈Gk

Qi(t)

λsum,k(t) M=
∑
i∈Gk

λi

Further define the indicator function 1k(t) to take the value
1 if group Gk has at least one index i that corresponds to a
non-empty queue with an ON channel state on slot t, so that
Qi(t) > 0 and Si(t) = ON .

The Largest Connected Group (LCG) Algorithm: Every
timeslot t, the network controller observes the queue backlogs
and current channel states, and selects the group index
k ∈ {1, . . . ,K} that maximizes Qsum,k(t)1k(t), breaking ties
arbitrarily. It then chooses to transmit over any link i ∈ Gk
that corresponds to a non-empty queue with a channel that
is ON , i.e., any non-empty connected queue of the selected
group. If there are no such queues for slot t, remain idle.

For all k ∈ {1, . . . ,K}, define:

qmin,k
M= min

i∈Gk

qi

Now define ΛK as the K dimensional capacity region of a
system with K queues with Bernoulli ON probabilities qmin,k
for k ∈ {1, . . . ,K}. That is, ΛK is the set of all non-negative
rate vectors ω = (ω1, . . . , ωK) such that∑

k∈I

ωk ≤ 1−Πk∈I(1− qmin,k)

for all subsets I ⊂ {1, . . . ,K}.
Theorem 2: (LCG Performance for General Groups) Sup-

pose channels are independent with ON probabilities qi for
i ∈ {1, . . . , N}, and arrival vectors A(t) are i.i.d. over slots
with rate vector λ. If there exists a value ε > 0 such that:

(λsum,1 + ε, λsum,2 + ε, . . . , λsum,K + ε) ∈ ΛK

then the system is stable, and:

∑
i

Qi ≤

[
λtot +

∑K
k=1 E

{
A2
sum,k

}
− 2

∑K
k=1 λ

2
sum,k

]
2ε

where: ∑
i

Qi
M= lim sup

t→∞

1
t

t−1∑
τ=0

N∑
i=1

E {Qi(τ)}

Further, if arrival processes Ai(t) are independent of each
other, then:

∑
i

Qi ≤

[
λtot +

∑N
i=1 σ

2
i −

∑K
k=1 λ

2
sum,k

]
2ε

(9)

where σ2
i

M=E
{
A2
i

}
− λ2

i for i ∈ {1, . . . , N}.
Proof: The first part of the theorem is proven in the next

section using a Lyapunov drift argument. We note that this
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argument uses a novel comparison between the drift of LCG
and the drift of another queue-length dependent algorithm.
Inequality (9) then follows immediately by noting that if
arrivals from different streams are independent, then:

E
{
A2
sum,k

}
= (λsum,k)2 +

∑
i∈Gk

σ2
i

Note that the LCG algorithm breaks ties arbitrarily. How-
ever, intuition from the LCQ algorithm in [2] suggests that
serving larger queues tends to yield better delay performance.
Thus, an intuitively good tie breaking rule is to serve the queue
with the largest backlog among all ties under LCG. If there
are further ties under this rule, then break the ties randomly
and uniformly over all groups.

This tie breaking rule also ensures the vector queueing
process Q(t) evolves according to a discrete time Markov
chain, in which case Foster’s criterion [34] can be used to
ensure the chain has a valid steady state with steady state
queue occupancies Qi and hence an average delay W =

1
λtot

∑N
i=1Qi. To simplify notation, for the remainder of this

paper we assume that such steady state limits exist whenever
the system is stable.

C. Choosing Groups for Symmetric Systems

Consider a symmetric system such that qi = q for all i ∈
{1, . . . , N}, and define a loading parameter ρ such that 0 <
ρ < 1. Define the group size K as:

K =
⌈

log(2/(1− ρ))
log(1/(1− q))

⌉
(10)

where dxe denotes the smallest integer greater than or equal
to x. Note that K is chosen independently of the number of
queues N . For simplicity, assume that N is a multiple of K,
so that we form distinct groups G1, . . . ,GK , each with N/K
elements. Suppose that all input rates are identical, so that
λi = λtot/N for all i ∈ {1, . . . , N}. Assume that λtot ≤ ρrN
(where rN = 1− (1− q)N ), so that the rate vector is at least
a factor of ρ away from the capacity region boundary.

Theorem 3: (Symmetric Performance) Consider a uni-
formly loaded symmetric system as described above, with a
group size K given by (10). If N is a multiple of K, if Ai(t)
is i.i.d. over slots for all i ∈ {1, . . . , N}, and if all input
streams are independent of each other, then the LCG algorithm
stabilizes the system and yields:

∑
i

Qi ≤
K
[
λtot +

∑N
i=1 σ

2
i

]
− λ2

tot

rN (1− ρ)

Therefore, average delay satisfies:

W ≤
K
[
1 + 1

λtot

∑N
i=1 σ

2
i

]
− λtot

rN (1− ρ)
(11)

≤
log(2/(1− ρ))

[
1 + 1

λtot

∑N
i=1 σ

2
i

]
rN (1− ρ) log(1/(1− q))

+
1 + 1

λtot

∑N
i=1 σ

2
i − λtot

rN (1− ρ)

The term 1
λtot

∑N
i=1 σ

2
i is typically O(1). Indeed, for Pois-

son traffic it is exactly equal to 1, and for any traffic that
satisfies Ai(t) ≤ Amax for all i (for some finite bound Amax)
it is less than Amax. Thus, the above result demonstrates
that average delay satisfies W ≤ c log(1/(1−ρ))

1−ρ , where c is
a constant independent of ρ and N . This demonstrates that
average delay does not grow with N . Recall that the single-
queue lower bound of (4) implies that all algorithms must have
average delay at least c/(1 − ρ). Hence, the LCG algorithm
scales optimally with N , and differs from the optimal scaling
in ρ by at most a logarithmic factor log(1/(1− ρ)).

Proof: (Theorem 3) Note that ΛK in this case is the
capacity region associated with a symmetric system of K
queues with independent Bernoulli channels, each with ON
probability q. Define rK as the largest sum rate from this
K queue system. It follows that the symmetric rate vector
ω = (rK/K, . . . , rK/K) is contained in ΛK . Further note
that λsum,k = λtot/K for all k ∈ {1, . . . ,K}. To ensure that
the conditions of Theorem 2 hold, we desire to find a value
ε > 0 such that:

(λsum,1 + ε, . . . , λsum,K + ε) ∈ ΛK

It suffices to show that λsum,k + ε ≤ rK/K, which is
equivalent to showing:

λtot + εK ≤ rK (12)

To this end, note by (10) that

K log(1/(1− q)) ≥ log(2/(1− ρ))

and hence:
(1− q)K ≤ (1− ρ)/2

It follows that:

rK
M=1− (1− q)K ≥ (1 + ρ)/2 ≥ (1 + ρ)rN/2

Therefore (using the fact that λtot ≤ ρrN ):

rK − λtot ≥ rK − ρrN ≥ (1 + ρ)rN/2− ρrN
= rN (1− ρ)/2

It follows that choosing εM=rN (1− ρ)/(2K) ensures that (12)
is satisfied. The result follows by applying inequality (9) from
Theorem 2.

D. Asymmetric Systems

Consider a general asymmetric system with N queues
and independent channels with ON probabilities {qi} for
i ∈ {1, . . . , N}. Define qmin = min[i∈{1,...,N}] qi. Define a
loading parameter ρ such that 0 < ρ < 1, and choose the
group size K as follows:

K =
⌈

log(2/(1− ρ))
log(1/(1− qmin))

⌉
(13)

Further define:

ra
M= 1− (1− qmin)K

rmax
M= 1−ΠN

i=1(1− qi)
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Note that ra is the maximum output rate in a system of K
queues with independent Bernoulli channels with probability
qmin, and rmax is the maximum output rate of the asymmetric
system of N queues. We assume that N ≥ K.

Consider heterogeneous input rates (λ1, . . . , λN ). Define
λtot as the sum of all rates, and assume that λtot = ρrmax.
Define λ̃M= maxi∈{1,...,N} λi. Form K groups G1, . . . ,GK by
packing indices to groups in any manner that ensures all
groups are disjoint, non-empty, and that:

λsum,k ≤ λtot/K + λ̃ for all k ∈ {1, . . . ,K} (14)

This is easily accomplished as follows: Place the first K
indices individually into each of the K groups (so that all
groups have at least one index), and then sequentially place
the remaining indices into any group for which the current
sum of rates in that group does not yet exceed λtot/K.

To proceed, we make the following additional assumption
concerning the size of the largest input rate λ̃:

λ̃ ≤ (1− ρ)rmax/(3K) (15)

Note that the average size of each input is given by λtot/N =
ρrmax/N . Because N can be much larger than K, this
additional assumption (15) states that the largest input is upper
bounded by a number much larger than the average.5

Theorem 4: (Asymmetric Performance) Consider an asym-
metric system as described above, and assume the group size
K satisfies (13). Assume that N ≥ K, and that the largest
input rate λ̃ satisfies (15). If inputs are independent of each
other, then the LCG algorithm stabilizes the system and yields:

∑
i

Qi ≤
3K

[
λtot +

∑N
i=1 σ

2
i −

∑K
k=1 λ

2
sum,k

]
rmax(1− ρ)

Hence, average delay satisfies:

W ≤
3K

[
1 + 1

λtot

∑N
i=1 σ

2
i − 1

λtot

∑K
k=1 λ

2
sum,k

]
rmax(1− ρ)

Because K satisfies (13), we again see that average delay
is c log(1/(1−ρ))

1−ρ , and so is independent of N .
Proof: (Theorem 4) Similar to the proof of the symmetric

case, the inequality (13) can be used to show:

ra
M=1− (1− qmin)K ≥ rmax(1 + ρ)/2

and hence (using (14), (15) and the fact that λtot = ρrmax):

ra
K
− λsum,k ≥

rmax(1− ρ)
6K

for all k ∈ {1, . . . ,K} (16)

However, note that the capacity region associated with K
queues, each with independent Bernoulli channels with prob-
abilities qmin, is a subset of ΛK (this is because the set ΛK
has queues with probabilities qmin,k ≥ qmin for all k ∈
{1, . . . ,K}). Therefore, the vector ω = (ra/K, . . . , ra/K)
is contained in the set ΛK . It follows from (16) that we can
define ε as follows: ε = rmax(1−ρ)/(6K). The result follows
by plugging this value of ε into (9) of Theorem 2.

5The proof of Theorem 4 is unchanged if the condition (15) is replaced by
the weaker condition that δ ≤ (1 − ρ)rmax/(3K), where δ is defined as
the smallest value such that λsum,k ≤ λtot/K + δ for all k ∈ {1, . . . ,K}.
Hence, it is desirable to pack the K groups as evenly as possible.

V. LYAPUNOV ANALYSIS

Here we use Lyapunov drift theory to prove Theorem 2 of
the previous section. We begin with a simple but important
Lyapunov drift result from [19] [35].

A. Lyapunov Drift

Let Q(t) represent a vector process of discrete time queues
that evolves according to some probability law. Let L(Q)
be a non-negative function of the queue vector. Define the
conditional Lyapunov drift ∆(Q(t)) as follows:6

∆(Q(t))M=E {L(Q(t+ 1))− L(Q(t)) | Q(t)} (17)

Lemma 3: (Lyapunov Drift [19] [35]) Suppose there is a
non-negative function L(Q), a value ε > 0, and two processes
B(t) and h(t) such that for all time t and all possible Q(t),
we have:

∆(Q(t)) ≤ E {B(t)− εh(t) | Q(t)}

Then:

lim sup
t→∞

1
t

t−1∑
τ=0

E {h(τ)} ≤ lim sup
t→∞

1
t

t−1∑
τ=0

E {B(τ)}
ε

�

B. Proof of Theorem 2

Define the Lyapunov function:

L(Q)M=
1
2

K∑
k=1

(∑
i∈Gk

Qi

)2

=
1
2

K∑
k=1

(Qsum,k(t))2

Thus, L(Q(t)) is the sum of squares of the total backlog
associated with each group k ∈ {1, . . . ,K}. To compute
∆(Q(t)), define for each k ∈ {1, . . . ,K}

µsum,k(t)M=
∑
i∈Gk

µi(t)

Because the sum transmission rate is no more than 1,
µsum,k(t) represents the transmission rate offered to group
k during slot t. Define µ̃sum,k(t) to be the actual number
of packets transmitted by group k during this slot (so that
µ̃sum,k(t) ∈ {0, 1} and can only be 1 if the group has a non-
empty ON queue during slot t). For each group k, we have:

Qsum,k(t+ 1) = Qsum,k(t)− µ̃sum,k(t) +Asum,k(t)

Squaring both sides of the above equality and using the fact
that µ̃sum,k(t)2 = µ̃sum,k(t) ∈ {0, 1} yields:

Qsum,k(t+1)2

2 = Qsum,k(t)2

2 +Bk(t) +Qsum,k(t)Asum,k(t)
−Qsum,k(t)µ̃sum,k(t)

where

Bk(t)M=

[
µ̃sum,k(t) +Asum,k(t)2 − 2Asum,k(t)µ̃sum,k(t)

2

]
6Strictly speaking, the conditional drift should use notation ∆(Q(t), t) as a

general drift may also depend on t, but we use the simpler notation ∆(Q(t))
to formally represent the right hand side of (17).



IEEE TRANSACTIONS ON NETWORKING, VOL. 16, NO. 5, PP. 1188-1199, OCT. 2008 8

Taking conditional expectations and summing over all k
yields:

∆(Q(t)) = E {B(t) | Q(t)}+
∑K
k=1Qsum,k(t)λsum,k

−
∑K
k=1Qsum,k(t)E {µ̃sum,k(t) | Q(t)} (18)

where B(t)M=
∑K
k=1Bk(t), and where we have used the fact

that arrivals are i.i.d. over slots and hence have expected values
that are independent of the current queue state.

Given Q(t) and the channel states, the LCG algorithm
is designed to choose transmission rates that maximize the
expression

∑
kQsum,k(t)µ̃sum,k(t) over all possible transmis-

sion decisions during slot t that are subject to the constraints:

µ̃sum,k(t) ∈ {0, 1} for all k ∈ {1, . . . ,K} (19)∑K
k=1 µ̃sum,k(t) ≤ 1 (20)

µ̃sum,k(t) ≤ 1k(t) for all k ∈ {1, . . . ,K} (21)

Hence, it also maximizes the conditional expectation of this
expression given Q(t). It follows that the LCG algorithm
minimizes the final term in the drift expression (18) over all
feasible transmission rate decisions that satisfy the constraints
(19)-(21) during slot t. Therefore, we have:

∆(Q(t)) ≤ E {B(t) | Q(t)}+
∑K
k=1Qsum,k(t)λsum,k

−
∑K
k=1Qsum,k(t)E {µ∗k(t) | Q(t)} (22)

where (µ∗1(t), . . . , µ∗K(t)) represents any transmission rate
decision vector that satisfies (19)-(21).

Now recall that, according to the conditions of Theorem 2,
we have:

(λsum,1 + ε, . . . , λsum,K + ε) ∈ ΛK

where ΛK is the capacity region of a virtual system with
K independent queues with channel probabilities qmin,k for
k ∈ {1, . . . ,K}. Let Sv(t) represent the channel states of this
virtual system (having independent entries with Pr[Svk(t) =
ON ] = qmin,k for all k ∈ {1, . . . ,K}). By Lemma 1,
we know there exists a stationary randomized control policy
that makes transmission decisions (µv1(t), . . . , µvK(t)) as a
(potentially random) function of Sv(t), such that:

E {µvk(t)} = λsum,k + ε for all k ∈ {1, . . . ,K} (23)

Now, for each group Gk (k ∈ {1, . . . ,K}), we define an
index i∗(k) ∈ Gk as follows: If Qsum,k(t) = 0, then choose
any queue i ∈ Gk and label this choice i∗(k). If Qsum,k(t) >
0, choose any queue i ∈ Gk such that Qi(t) > 0, and define
this queue as i∗(k).

For each k ∈ {1, . . . ,K}, let Hk be an independent
Bernoulli variable with Pr[Hk = 1] = qmin,k/qi∗(k). Note
that this is a valid probability because qmin,k ≤ qi∗(k). Now
define virtual channel states Sv(t) = (Sv1 (t), . . . , SvK(t)) as
follows:

Svk(t) =
{
ON if Si∗(k)(t) = ON and Hk = 1
0 otherwise

It follows that the virtual channels Sv(t) are independent
Bernoulli channels with Pr[Svk(t) = ON ] = qmin,k for all
k ∈ {1, . . . ,K} (regardless of Q(t)), which is exactly the

right distribution to correspond with the virtual system for
the capacity region ΛK . Furthermore, {Svk(t) = ON} implies
that {Si∗(k)(t) = ON}. Now define a virtual transmission rate
vector µv(t) = (µv1(t), . . . , µvK(t)) according to the stationary
randomized control policy that chooses µv(t) based only on
Sv(t), and yields (23). It follows that the virtual transmission
rates µvk(t) yield (23) regardless of Q(t). Further, this virtual
rate vector is feasible for the virtual system, and so it has at
most one non-zero entry, and for each entry k ∈ {1, . . . ,K}
it satisfies µvk(t) = 0 if Svk(t) = OFF .

Now choose actual transmission rates µ∗k(t) = µvk(t) if
Qsum,k(t) > 0, and µ∗k(t) = 0 if Qsum,k(t) = 0. It follows
that the (µ∗1(t), . . . , µ∗K(t)) vector satisfies the constraints
(19)-(21). Indeed, it inherits the constraints (19)-(20) from the
(µv1(t), . . . , µvK(t)) vector. Constraint (21) is satisfied because
if µ∗k(t) = 1, then Qsum,k(t) > 0 and Svk(t) = ON (so that
Si∗(k)(t) = ON ), implying that there is at least one non-empty
connected queue in group Gk.

Furthermore, for any k ∈ {1, . . . ,K} such that
Qsum,k(t) > 0, we have:

E {µ∗k(t) | Q(t)} = E {µvk(t) | Q(t)}
= E {µvk(t)} (24)
= λsum,k + ε (25)

where (24) follows because the distribution of the virtual
transmission vector µv(t) does not depend on the queue state
Q(t), and (25) follows from (23). Plugging the expression for
for E {µ∗k(t) | Q(t)} from (25) into the final term on the right
hand side of (22) yields:

∆(Q(t)) ≤ E {B(t) | Q(t)}+
∑K
k=1Qsum,k(t)λsum,k

−
∑K
k=1Qsum,k(t)(λsum,k + ε)

and thus:

∆(Q(t)) ≤ E {B(t) | Q(t)} − ε
∑K
k=1Qsum,k(t) (26)

The inequality (26) is in the exact form for application of the
Lyapunov drift lemma (Lemma 3) with h(t)M=

∑
kQsum,k(t),

and hence:

lim sup
t→∞

1
t

t−1∑
τ=0

K∑
k=1

E {Qsum,k(τ)} ≤ lim sup
t→∞

1
t

t−1∑
τ=0

E {B(τ)}
ε

Because E {Asum,k(t)} = λsum,k, E
{
A2
sum,k(t)

}
=

E
{
A2
sum,k

}
, and E {µ̃sum,k(t)} ≤ 1 for all t, the process

B(t) satisfies E {B(t)} ≤ B for all t (where B is a finite
constant). It follows that the queueing network is strongly
stable and hence E {Qi(t)/t} → 0 [18]. Thus:

lim
t→∞

1
t

t−1∑
τ=0

E {µ̃sum,k(τ)} = λsum,k

It follows that:

lim supt→∞
1
t

∑t−1
τ=0 E {B(τ)} =

1
2

[
λtot +

∑
k E
{
A2
sum,k

}
− 2

∑
k λ

2
sum,k

]
which completes the proof of Theorem 2.



IEEE TRANSACTIONS ON NETWORKING, VOL. 16, NO. 5, PP. 1188-1199, OCT. 2008 9

APPENDIX A — PROOF OF THEOREM 1
The proof closely follows our previous work in [32].
Proof: (Theorem 1 part (a)) Consider a particular queue

i, and assume that Qi(0) = 0. Consider the system viewed
in continuous time, where µi(t) is viewed as a continuous
time process that is constant on unit intervals, so that µi(t) =
µi(btc) for all real times t. Let Xi(t) represent the total
number of packets that have arrived from stream i up to time t.
Let Q̃i(t) represent the fractional packets in this system with
the same arrivals but operating without the timeslot structure.
It is not difficult to show that:

Qi(t) ≥ Q̃i(t) for all real time t (27)

and hence E {Qi(t)} ≥ E
{
Q̃i(t)

}
for all t. Further, the value

of Q̃i(t) is given by:

Q̃i(t) = sup
τ≥0

[
Xi(t)−Xi(t− τ)−

∫ t

t−τ
µi(v)dv

]
Taking expectations of both sides with respect to the stochastic
arrival process Xi (describing Xi(u) for all u such that 0 ≤
u ≤ t) yields:

E
{
Q̃i(t)

}
= EXi

Eµi|Xi

{
sup
τ≥0

[
Xi(t)−Xi(t− τ)−

∫ t

t−τ
µi(v)dv

]}
≥ EXi

{
sup
τ≥0

[
Xi(t)−Xi(t− τ)−

∫ t

t−τ
E {µi(v) | Xi} dv

]}
= EXi

{
sup
τ≥0

[
Xi(t)−Xi(t− τ)−

∫ t

t−τ
µidv

]}
where the first inequality follows by Jensen’s inequality to-
gether with the fact that the sup(·) operator is convex. The
final equality follows because (from property (6)), the expected
transmission rate does not depend on the arrival history and is
equal to µi for all time. However, note that the final expression
on the right hand side is equal to EXi

{Ui(t)}, where Ui(t)
is the unfinished work in a continuous time queueing system
with the same inputs but with a constant server rate µi for all
time. Therefore, we obtain the lower bound:

E {Qi(t)} ≥ E
{
Q̃i(t)

}
≥ E {Ui(t)} for all t

completing the proof of part (a) of Theorem 1.
Proof: (Theorem 1 part (b)) Suppose the system is symmet-

ric so that qi = q and λi = λtot/N for all i ∈ {1, . . . , N}, and
that inputs are Poisson. By part (a), we know that E {Qi(t)} ≥
E {Ui(t)}, where Ui(t) is the unfinished work in an M/D/1
queue with constant service time 1/µi. Taking t to infinity
yields the steady state value, and hence: Qi ≥ U i. The steady
state unfinished work in an M/D/1 queue with arrival rate
λi and constant service time 1/µi is equal to λi

2(µi−λi)
, which

can be computed by adding λi/(2µi), the average portion of
a packet remaining in the server, to the expression for the
average number of packets in the buffer of an M/D/1 queue
[33]. Because λi = λtot/N , we have:

N∑
i=1

Qi ≥
N∑
i=1

λtot/N

2(µi − λtot/N)

Note that
∑N
i=1 µi ≤ rN (as the sum transmission rate cannot

exceed 1 − (1 − q)N ). Therefore, the right hand side in the
above inequality is greater than or equal to the solution to:

Minimize:
∑N
i=1

λtot/N
2(µi−λtot/N)

Subject to:
∑N
i=1 µi ≤ rN

The above optimization seeks to minimize a convex symmetric
function of (µ1, . . . , µN ) over the simplex constraint, and is
minimized at the symmetric point µi = rN/N for all i ∈
{1, . . . , N}. Therefore:

N∑
i=1

Qi ≥
λtot

2(rN/N − λtot/N)
=

Nλtot
2rN (1− ρ)

where ρM=λtot/rN . Dividing both sides by λtot and using
Little’s Theorem proves the result.

Proof: (Theorem 1 part (c)) Again from part (a), we have
that E {Qi(t)} ≥ E {Ui(t)}, where Ui(t) is the unfinished
work in a queue with a packet arrival process of rate λi and
a constant server queue of rate µi. By Little’s Theorem , the
steady state expected number of packets in the server is equal
to λi/µi, and hence the expected unfinished work in the server
is equal to λi/(2µi). This is certainly a lower bound on the
expected total unfinished work in the system, and hence:

N∑
i=1

Qi ≥
N∑
i=1

λi
2µi

≥ inf
[(µi)|Pi µi≤rmax]

N∑
i=1

λi
2µi

(28)

=
1

2rmax

(
N∑
i=1

√
λi

)2

(29)

where (28) follows because we again have
∑
i µi ≤ rmax,

and (29) holds because the solution to the convex opti-
mization problem in the previous line is given by µi =
rmax

√
λi/(

∑
j

√
λj), which can be proven with a simple

Lagrange multiplier argument. Because there are at least γ1N
values of λi that are greater than or equal to γ2λtot/N ,
the right hand side of (29) is greater than or equal to
γ2

1γ2Nλtot/(2rmax). Dividing by λtot bounds the average
delay and proves the result.

APPENDIX B — STOCHASTIC INEQUALITIES

Here we derive the stochastic comparison result stated in
Section IV-A. We first review basic stochastic inequality facts
for any random variables X and Y (see [36]).

Definition 2: A random variable X is said to be stochasti-
cally less than a random variable Y (written X ≤

st.
Y ) if:

Pr[X > ω] ≤ Pr[Y > ω] for all real values ω
Lemma 4: (Stochastic Coupling [36]) X ≤

st.
Y if and only if

there exists a third random variable X̂ (that lies on the same
probability space as X), such that X ≤ X̂ , and X̂ has the
same probability distribution as Y .

Now let Ai(t) denote the number of packets that arrive to
queue i of the multi-queue system during slot t. We view
{Ai(t)}Ni=1 as a general set of discrete time arrival processes,
possibly correlated over timeslots and across queues. Let Si(t)
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represent the ON/OFF state of channel i during slot t, assumed
to be independent over timeslots and across queues with
Pr[Si(t) = ON ] = qi for all t and for each i ∈ {1, . . . , N}.
Consider any arbitrary server allocation policy, and let Qi(t)
represent the resulting number of packets in queue i during slot
t under this policy. Define the total sum backlog as follows:
Qsum(t)M=

∑N
i=1Qi(t).

Define qmin
M= mini∈{1,...,N} qi. Consider a single discrete

time queue with i.i.d. Bernoulli service opportunities with
rate qmin, and with arrival process: Asum(t)M=

∑N
i=1Ai(t).

That is, the arrivals to this single queue are identical to the
sum arrival process of the multi-queue system. Let Qsingle(t)
represent the number of packets in the single queue system at
time t. Assume that both the single and multi-queue systems
are initially empty, so that Qsum(0) = Qsingle(0) = 0.

Theorem 5: (Stochastic Inequality) If the multi-queue sys-
tem uses any work conserving scheduling policy, i.e., any
policy that always places a server to a non-empty ON queue
if there is one available, then for all t ∈ {0, 1, 2, . . .}:

Qsum(t) ≤
st.
Qsingle(t)

Proof: Consider a new multi-queue system with queues
Q̂i(t), i ∈ {1, . . . , N}. The new queueing system is initially
empty and has exactly the same arrival processes Ai(t) and
channel state processes Si(t) as the original multi-queue
system. However, it has a different server allocation rule,
described as follows: At any slot t, if Qsum(t) = 0 (that
is, if the original multi-queue system is empty), then define
i∗ as the smallest index such that Q̂i∗(t) > 0 (define i∗ M=1
if all queues of the new system are also empty). The new
multi-queue system independently allocates a server to queue
i∗ with probability qmin/qi∗ , and else remains idle. Note that
this server is allocated independent of the channel state Si∗(t).
If this channel is ON, the new multi-queue system has a
service opportunity. It follows that this service opportunity
arises independently with probability qmin.

Similarly, at any slot t in which Qsum(t) > 0, define Θ(t)
to be the set of non-empty queue indices of the original multi-
queue system. Define q(t) as the probability that at least one
of these non-empty queues has an ON channel state:

q(t)M=1−Πi∈Θ(t)(1− qi)

Note that qmin ≤ q(t) for all t such that Qsum(t) > 0. If
the original multi-queue system does not serve any packet
during this slot, then the new multi-queue system also remains
idle on this slot. If the original multi-queue system serves a
packet from a queue i during this slot, then independently with
probability qmin/q(t) the new multi-queue system allocates a
server to queue i. Else, the new multi-queue system remains
idle. It follows that this service opportunity in the new system
also arises independently with probability qmin.

Claim 1: Qi(t) ≤ Q̂i(t) for all t ∈ {0, 1, 2, . . .} and all
i ∈ {1, . . . , N}.

This claim follows because whenever Qi(t) is non-empty
but no packet is served from this queue, then no packet is
served from queue Q̂i(t). It is not difficult to show this implies
that Qi(t) ≤ Q̂i(t) for all t, proving Claim 1.

Now define Q̂sum(t)M=
∑N
i=1 Q̂i(t), and note by Claim 1

that for all t ∈ {0, 1, 2, . . .}:

Qsum(t) ≤ Q̂sum(t) (30)

Claim 2: For all timeslots t ∈ {0, 1, 2, . . . , }, Q̂sum(t) has
the same probability distribution as Qsingle(t).

This claim follows because the single queue system is
initially empty, has arrival process Asum(t), and whenever it
is non-empty it independently serves a packet with probability
qmin. Likewise, the new multi-queue system is initially empty
and has arrival process Asum(t). Further, whenever it is non-
empty, it independently serves a packet with probability qmin.
Thus, the two processes are stochastically equivalent.

Claim 2 and (30) together prove the result.
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