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Abstract— We consider a one-hop wireless network with inde-
pendent time varying channels and N users, such as a multi-
user uplink or downlink. We first show that general classes
of scheduling algorithms that do not consider queue backlog
necessarily incur average delay that grows at least linearly with
N. We then construct a dynamic queue-length aware algorithm
that stabilizes the system and achieves an average delay that
is independent of N. This is the first analytical demonstration
that O(1) delay is achievable in such a multi-user wireless setting.
The delay bounds are achieved via a technique of queue grouping
together with basic Lyapunov stability and statistical multiplexing
concepts.

Index Terms— Queueing Analysis, Stability, Stochastic Con-
trol, Lyapunov Function, Satellite Communication

I. INTRODUCTION

In this paper, we investigate the fundamental delay scaling
laws in a multi-user wireless system with N time varying
data links, such as a multi-user uplink or downlink. Packets
arrive to the system according to independent stochastic arrival
streams, with one arrival stream for each link, and are stored in
separate queues to await transmission. Time is slotted, and the
system can support a transmission over at most one link per
timeslot. Channel conditions on each link vary independently
every slot according to ON/OFF Bernoulli processes, so that a
link can transmit exactly one packet during a timeslot when it
is in the ON state, and cannot transmit in the OFF state. Such
ON/OFF channel states might arise from channel fluctuations
or fading due to user mobility. Every timeslot, a network
controller views the conditions on each channel and chooses
exactly one link to transmit.

This system model is central to the study of channel-
aware (or “opportunistic”) scheduling in wireless systems,
and the model along with many generalizations have been
extensively considered in the literature [1]-[22]. Landmark
work by Tassiulas and Ephremides in [1] characterizes the
capacity region of this model, consisting of the set of all
arrival rate vectors the system can be configured to stably
support. The work in [1] also proposes the Largest Connected
Queue (LCQ) scheduling policy, and uses a Lyapunov drift
argument to show that this policy stabilizes the system (and
thus maximizes throughput) whenever input rates are interior
to the capacity region. Furthermore, the work in [1] uses a
stochastic coupling argument to show that, in the special case
of a symmetric system with identical input rates for each user
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and identical channel probabilities for each link, the LCQ
policy minimizes average delay.

This delay optimality result is generalized in [4] [10], where
a delay optimal policy is developed for selecting transmission
rates within the polytope capacity region associated with the
Gaussian multiple access channel, and in [14] where gener-
alizations to multi-server systems are considered. However,
these delay optimality results hold only in cases when the
system exhibits perfect symmetry in traffic rates and channel
statistics. Indeed, these works use the stochastic coupling
technique of [1], which seems to require this symmetry.
Further, the actual average delay achieved by these strategies
is unknown, even in these symmetric cases. Work in [7]
computes upper bounds on the delay of stabilizing largest-
queue type strategies. However, these bounds grow linearly in
the number of users N. Specifically, the delay bound is given
by O(N/(1—p)), where p is a parameter such that 0 < p < 1
and represents the fraction the input rate vector is away from
the capacity region boundary. Whether or not optimal delay
can grow sub-linearly with [V has remained an important open
question, and is a question that we resolve in this paper.

Using the simple ON/OFF channel model, we first show
that, for general classes of scheduling algorithms that use
channel state information but do not consider queue backlog,
average delay must grow at least linearly with N. We then
construct a simple dynamic control policy called Largest
Connected Group that uses both queue state and channel state
information. We apply this policy to the simple symmetric
system where all data rates and channel probabilities are
the same, and show the policy yields average delay that is
independent of N. Specifically, we Comg)ute an upper bound
on average delay that is log(l/ (=) This is the first
analytical demonstration that such delay is possible. Next,
we derive a similar result for large classes of asymmetric
systems, i.e., systems with heterogeneous traffic rates and
channel probabilities.

Previous work in the area of wireless scheduling is found
n [5][8][9] for systems with an infinite backlog of data,
and a clearing problem in a system with N links and a
fixed amount of data is treated in [11]. Stable scheduling
and queueing is considered for satellite, wireless, and ad-hoc
mobile systems in [1][2][3][6][7][12][13]. The work in [6]
develops delay optimality results in the limit as the system
loading p approaches 1, but does not provide asymptotic
results in the number of users. Indeed, the analysis in [6] uses
a fluid limit and a heavy traffic limit that may suggest each of
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the N queues is usually non-empty. In our analysis, we provide
an average delay bound for a fixed loading factor p < 1, and
obtain delay that is independent of N by scheduling to ensure
that each queue is usually empty. This provides an advantage
in the case when there are many users and p is a fixed fraction
away from the capacity region boundary. However, while our
O(W) bound in this paper has a better asymptotic
in NV than the previous O(N/(1 — p)) bound in [7], it has a
slightly worse asymptotic in p.

Much work in the area of dynamic scheduling is developed
for computer networks and switching systems, including work
in [23][24][25][26] that uses Lyapunov stability theory. The
work in [24] considers max-weight-match (MWM) scheduling
in an N x [N packet switch with i.i.d. traffic (such as Bernoulli
or Poisson), and shows that average delay is no more than
O(N/(1 — p)). Various methods of queue groupings are
used with Lyapunov functions in [26][27][28] to achieve low
complexity scheduling. While [26][27][28] does not primarily
focus on delay, it is interesting to note that if an N x N
switch is half loaded (p < 1/2) with independent Bernoulli
or Poisson inputs, then similar queue groupings together with
the Lyapunov delay technique of [24] can be used to show
that average delay is O(1/(1 — p)) under maximal match
scheduling. However, this result does not seem to extend to
cases when p > 1/2. Work in [29] uses a simple frame-
based algorithm for an N x NN switch to show it is possible
to achieve an average delay of O(log(N)/(1 — p)?), for any
value p < 1. Our results in the present paper parallel our
previous work in [29] for switch scheduling. However, the
problem formulation and solution technique is quite different
here, as the frame-based approach in [29] does not appear
tractable with stochastic channel conditions. Here, we pursue
a novel queue grouping approach, and show that the average
delay of our wireless system can be bounded independently
of the number of users N, for any value of p < 1.

In the next section, we formulate the problem and review
the system capacity region from [1]. In Section III we show
that a large class of backlog-unaware scheduling algorithms
necessarily incur average delay that grows at least linearly
with N. In Section IV we develop our backlog-aware Largest
Connected Group algorithm and show it yields average delay
that is independent of N.

II. PROBLEM FORMULATION

Consider an N queue system that evolves in discrete time
with integral timeslots ¢ € {0,1,2,...}. Let Q;(¢) represent
the number of packets in queue ¢ at the beginning of slot ¢ (for
i €{1,...,N}).Let A;(t) represent the number of new packet
arrivals during slot ¢, and let u;(t) represent the transmission
rate (in units of packets) during slot ¢. The dynamic equation
for each queue i € {1,..., N} is given by:

Qi(t + 1) = maX[Qi(t) - /J,Z'(t), 0] + Al(t) (1)

Each queue contains data that must be transmitted over
a distinct link with time varying channels. Let S;(t) €
{ON,OFF'} represent the channel state of link ¢ during slot
t. Assume these channel states are i.i.d. over timeslots and

independent across channels, and let ¢; represent the ON
probability for channel i:

The channel states are assumed to be known to the network
controller at the beginning of each slot. Every slot ¢, the
network controller chooses transmission decision variables
w(t) = (pa(t),...,un(t)) subject to the constraints:

wi(t) € {0,1} Vie {1,...,N}
SN ) <1 @)

The above constraints specify that at most one link can be
chosen for transmission on any timeslot, and that exactly one
packet can be transmitted over a given link ¢ during a timeslot
in which S;(t) = ON, while no packets can be transmitted
over a channel that is OF'F.

This system model can be used to represent a multi-user
wireless or satellite downlink, where all packets arrive to a
single node that internally stores data in separate queues for
transmission to its proper destination. Alternatively, the system
can represent a multi-user wireless uplink, where each user
has its own data that must be transmitted to a central access
point. In this uplink scenario, the queues are distributed over
the different users. It is assumed in this case that the access
point determines which user transmits on every slot by sending
permission signals over a dedicated control channel.

Definition 1: A discrete time queue @Q(t) with a general
arrival and server rate process is strongly stable if:'

. =
lin sup > ;E{Q(T)} <o
A network of queues is said to be strongly stable if each queue
is strongly stable. Throughout this paper, we use the term
“stability” to refer to strong stability. The goal is to design a
scheduling algorithm that stabilizes the system while keeping

time average backlog and average delay as small as possible.

A. The Capacity Region

Suppose arrivals A;(t) are i.i.d. over timeslots, and let \; =
E {A;(t)} represent the packet arrival rate of stream ¢ (for each
i€ {1l,...,N}). Let A = (A1,...,Ay) represent the arrival
rate vector. The network capacity region A is the closure of
the set of all rate vectors A for which a stabilizing algorithm
exists. For a system of 2 queues (/N = 2), the capacity region
is given by all rate vectors (A1, \) that satisfy:

M<q, <
M+ <a+1—-—q)ge

These inequalities are clearly necessary for stability, as oth-
erwise one or both queues would have an input rate that
exceeds the transmission rate capabilities of the system. It is

'We note that if a queue Q(t) is strongly stable and also evolves according
to an aperiodic, irreducible Markov chain, then the lim sup on the left hand
side in the stability definition above can be replaced with a regular limit that
represents the steady state backlog.
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not difficult to show that any rate vector (A1, A2) interior to
this region can be stabilized. The capacity region for a system
of N queues is shown in [1] to be the set of all rate vectors
A= (\1,...,Ay) that satisfy the inequality:

>N < 1-Thiez(l— )

€T
for each non-empty subset of indices Z C {1,..., N}. Thus,
the capacity region is described by a set of 2V — 1 inequality
constraints.

An alternate characterization of the capacity region can
be given in terms of all possible expected transmission rate
vectors that can be achieved by a stationary randomized
scheduling policy, as shown below.

Lemma 1: (Stationary Randomized Policies [17][1]) A rate
vector A = (Aq,...,An) is in the capacity region A if and
only if there exists a stationary control strategy that chooses
a transmission rate vector p(t) = (u1(t),...,un(t)) as a
(potentially random) function of the observed channel state
vector S(t) = (S1(t),...,Sn(t)) such that pu(t) satisfies (2)
for all ¢, and such that the expected transmission rate yields:

E{pi(t)} =X forallie{l,...,N}

The expectation above is with respect to the stationary dis-
tribution for the channel state vector S(¢) and the potentially
random transmission decision that depends on S(¢). OJ

Note that in the special case of a symmetric system where
gi = q forall i € {1,..., N}, then the largest symmetric rate
vector (A, A, ..., A) that is in the capacity region is given by
the vector with \; = rn/N for all ¢ € {1,..., N}, where
rn is the probability that at least one link is in the ON state
during a timeslot:

rn2l—(1—q)V 3)

This can be seen from Lemma 1 by defining the stationary
policy that chooses a transmission link independently and
uniformly over all links that are ON. Specifically, this policy
yields E{yu;(t)} = E{u;(t)} for all ¢,j by symmetry, and
also yields E{p1(t) + ... un(¢)} = rn, so that E{u;(¢)} =
ry/N forall i € {1,...,N}.

B. The Single-Queue Lower Bound

A simple lower bound on the average backlog (and hence,
by Little’s Theorem [30], average delay), can be obtained
by using the multiplexing inequality [31]. Specifically, the
multiplexing inequality states that the total queue backlog
Zf\;@i(t) in a system of N queues described by (1) is
greater than or equal to the backlog in a corresponding single
queue system with an input and service rate process given by
the sum of the processes in the multi-queue system. That is,
given a single queue system Qg;ngie(t) With dynamics:

N N
Qsingle (t + 1) = max Qsingle(t) - Z Hi (t)7 0 + Z A’L (t)
=1 i=1

then we have:
N

Z Qt(t) > Qsingle(t) for all ¢

=1

Assume the following time averages @Q; and Q exist:

single

t—1
_ 1
Q = tliglcgz%ﬂ*:{@i(ﬂ}
. 1 t—1
Qsmgle = tlggo n ; E {Qsingle (7)}

It follows that the time average backlog satisfies:
N
Z Qz > Qsingle
i=1

Defining A\jot = (A1 +. ..+ Ay) and defining W and Wsingle
as the average packet delay in the multi-queue and single-
queue system, respectively, we have by Little’s Theorem [30]:

AtotW = 27{\;1 @z 5 )\tothingle = @single
Thus, we have the following single-queue delay bound:
W 2 Wsingle

However, note that the constraints (2) specify that
>, 1i(t) € {0,1}, and can only be 1 if there exists a channel 4
such that S;(t) = ON. The Qingic(t) queue will be smallest
if we assume ), p;(t) = 1 whenever possible, and hence the
dynamics of Qgngie(t) reduce to:

Qsingle(t + 1) = maX[Qsingle(t) - Msingle(t); O] + Asum(t)
where Agum(t) = ZZ\LI Ai(t), and pgsingre(t) is an iid.
Bernoulli process with rate pi,,, where:

Mavépr[/‘single(t) = 1] =1- HzNzl(l —q)

Thus, Qsingie(t) is a simple discrete time GI/GI/1 queueing
system with a Bernoulli service process. The average backlog
and delay in such a system can be computed exactly:

Atot + E {Agum} — 2)‘%ot

Qsingle =

Q,U'av(l — p)
Wsingle = 1+ At,lot]E {Agum} — 2)X\ot
2#111}(1 — p)
where E {42, 1 =E {A.um(t)?}, and
pE Aot/ tav @

In the case when all inputs A,(t) are independent and Poisson
with rates \;, we have:

E {Aium} = /\tOt + )‘%ot
and hence the single-queue delay bound is given by:
1 — Aiot/2
ﬂav(l - p)
This specifies that the best possible average delay of any
scheduling algorithm is O(1/(1 — p)) when arrivals are in-
dependent and Poisson.

On the other hand, in the case when the inputs A;(¢) are not
independent, the best possible delay might be O(N/(1 — p)).
Specifically, if we have A;(t) = A(t) for all i € {1,..., N},
with A(t) Poisson of rate A;¢/N, then queue 1 receives k

w > Wsingle = )
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packets on slot ¢ if and only if all other queues receive k
packets that slot. It follows that E { A2} = E{N2A(t)?} =
N)iot + A2, and hence:

= N+1— Aot
WS’L"I'L le = =
J QNav(l - P)

The difference between the O(1/(1 — p)) and O(N/(1 — p))
delay bounds in (5) and (6) is due to the statistical multiplex-
ing gains arising when data streams A;(¢) are independent.
Throughout this paper, we shall assume inputs are indepen-
dent. Our goal is to develop an algorithm that yields average
delay close to the O(1/(1 — p)) delay associated with the
single-queue bound in (5).

(correlated arrival case) (6)

III. BACKLOG-UNAWARE SCHEDULING

Here we show that if scheduling algorithms are restricted
to a large class of policies that use channel state information
but do not use queue backlog information, then average delay
necessarily grows at least linearly with N. Suppose arrival
processes are stationary and ergodic with rates ;. Let X;(¢)
represent the number of packets that arrive up to time ft,
and let {X;(v)},<; denote the entire arrival history up to
time t. We consider stationary scheduling algorithms that
choose transmission rates independent of the entire arrival
history, and hence independent of current queue backlog.
Specifically, we consider the class of scheduling policies that
yield transmission rates with the following property for all
ie{l,...,N}:

E{ui(t) | {Xi(v)}oz0} = E{wi(0)} £7; @)

This is a large class of policies, including all of the
stationary randomized scheduling policies used in Lemma 1.
Periodic policies (such as round robin scheduling) can also
be included in this class if the phase of the initial period is
uniformly randomized.

Theorem 1: (Backlog Unaware Scheduling) Consider any
scheduling algorithm that satisfies (7) and stabilizes the system
with finite average backlogs @, and average delay W. Then:

(a) For all ¢, we have:

E{Qi(t)} > E{Ui(t)}

where U,(t) represents the “unfinished work™ (or fractional
packets) at time ¢ in a continuous time queueing system with
the same arrivals A;(¢) but with a constant transmission rate
7i; (and hence deterministic service times 1/7;).

(b) Suppose there are symmetric channel probabilities ¢; =
q and symmetric rates \; = Ayt /N for all 4 € {1,...,N}.
Assume \io; < 7y (Where ry21 — (1 —¢q)" is the maximum
system output rate). If the arrival streams are continuous time

Poisson processes, then average delay necessarily satisfies:
— N
W e
2rn(1—p)

where p2\ior/TN.
(c) For asymmetric systems, let 7,4, represent the maxi-
mum possible sum output rate:

rmaxé]- - H’il(l - q’L)

Let 71 and 2 be positive constants less than 1. If there are
at least 1 N arrival processes with transmission rates at least
Y2 Atot /N, then average delay is at least v2y2 N/ (2742 ), and
hence grows at least linearly with V.

Proof: See Appendix. O

IV. THE QUEUE GROUPING ALGORITHM

Here we develop a dynamic algorithm that involves queue
grouping, and we show the algorithm has average delay that
is independent of N. We first review the delay result from [7]
that provides a (loose) upper bound on the average delay of
the LCQ policy from [1]. Recall that the LCQ policy chooses
to transmit over the ON link with the largest queue backlog
(breaking ties randomly and uniformly), and is shown in [1]
to stabilize the system whenever input rates are inside the
capacity region A, and to minimize average delay in the special
case of a symmetric system.

Assume channel states are independent with probabilities g;
forie {1,...,N}. Let A = (A1,...,An) be the rate vector,
and suppose that there exists a value € > 0 such that A+e € A
(where €2 (e, ¢, ..., ¢€)). Thus, we assume X is strictly interior
to the capacity region, and that a positive value € can be added
to each component to yield another vector that is within the
capacity region.

Lemma 2: (Delay of LCQ [7])*> Suppose arrival vectors
A(t) are i.i.d. over timeslots, and that XA 4+ € € A. Then:

(a) The LCQ policy stabilizes the system and yields average
delay that is upper bounded as follows:

Atot + Zl]\; E {Af} —2 sz\; A7
2Xiot€

where E {A?} 2K {4;(¢)?}, and A\jor = Zfil ;.

(b) If arrival streams A;(t) are either Bernoulli or Poisson
with symmetric rates \; = \ot/N for ¢ € {1,...,N}, if
q; = q forall ¢ € {1,...,N}, and if A\;p;y = pry for some
value p such that 0 < p < 1 (where ry is defined in (3)), then
average delay satisfies:

W< ®)

N — /\tot/ 2
(1 —p)

Note that part (b) follows immediately from part (a) by
using € = 7y /N — Aot /N. The upper bound on average delay
is O(N/(1 — p)). The lemma holds for arrival vectors with
components that are arbitrarily correlated, and hence in this
sense the asymptotic with N is tight (recall the single-queue
bound (6) in the case of correlated arrivals).

A. Intuition for Queue Grouping

Here we assume arrival streams A;(¢) are i.i.d. over times-
lots, and also independent of each other. To provide intu-
ition on the advantages of queue grouping, define gin =
min;e 1. N} ¢i> and compare the system of IV parallel queues
(with channel probabilities ¢; > qpmin for all i € {1,...,N})

2The derivation in [7] considers a more general system with variable
transmission rates that can be any real number, and obtains a slightly different
bound in this case, but still with the O(N/(1 — p)) structure. The exact
expression (8) follows as a special case of Theorem 2 in the case N = K.
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to a single queue system with a Bernoulli server with rate ¢,
and with an arrival process given by Ay, (t), the sum of the
individual A;(¢) arrival processes. It can be shown that if the
N queue system schedules according to any work conserving
scheduling policy (i.e., a policy that always serves a non-
empty ON queue if one is available), the resulting backlog is
stochastically less than the backlog in the single queue system
(we do not require this result in our analysis, and hence omit
the proof for brevity). It follows that if Aot < Gmin, then the
average delay in the multi-queue system is no more than the
average delay in the single queue system. In particular, if the
input processes A;(t) are Poisson or Bernoulli, then we have:

1— Aot/2

dmin — Atm‘,

W<

Therefore, delay in this case does not grow linearly with N.
Further, this result holds whenever the input rate vector is
within a factor p of the capacity region boundary, for any value
p such that 0 < p < v, where Y2¢min /T'maz- To see this, note
that this result holds for any rates such that Zi i < Gunins
and let A* denote the closure of this region. It follows that:

7{A| >\207Z)\2 Srmaw}
{A| A>0az)\i<’yrmar}

where the first inclusion follows because Zi N < Toar 1S @
necessary condition for A € A (it is not necessarily sufficient).

Thus, A* contains the set yA. However, this single-queue
comparison does not apply when v < p < 1. To achieve a
larger fraction of the capacity region, we can assemble each of
the N queues of the system into K distinct groups. Intuitively
speaking, each single group can be compared to a correspond-
ing single queue system with a Bernoulli transmission rate of
Gmin- The advantage is that now we only require the sum of
transmission rates within each group to be less than ¢, (so
that larger input rate vectors can generally be supported). Each
group is then treated as a single queue, and the LCQ algorithm
is applied to that system of K “queues,” yielding an O(K)
delay result via Lemma 2. In the next section we make this
intuition precise.

N

YA

B. The Largest Connected Group (LCG) Algorithm

Below we specify the queue grouping algorithm for a
general set of groups. We then discuss intelligent ways to form
the groups for both symmetric and asymmetric systems. Let
{G1,...,Gk} represent any general grouping of the queue
indices i € {1,...,N} into disjoint sets, where K is the
number of groups. Specifically, we assume each group Gy, is a
non-empty subset of the set {1,..., N}, and the union of all
K groups is equal to the set of all queue indices {1,..., N}.

For each group index k € {1,..., K}, define:

1€G
qum,k(t) é Z Qi (t)
1€Gk
)\sum,k(t) é Z )\z
1€k

Further define the indicator function 1x(t) to take the value
1 if group Gy has at least one index 4 that corresponds to a
non-empty queue with an ON channel state, so that Q;(¢) > 0
and S;(t) = ON.

The Largest Connected Group (LCG) Algorithm: Every
timeslot ¢, the network controller observes the queue backlogs
and current channel states, and selects the group index
ke {1,..., K} that maximizes Qgsym,x(¢)1x(t), breaking ties
arbitrarily. It then chooses to transmit over any link ¢ € Gy,
that corresponds to a non-empty queue with a channel that
is ON, i.e., any non-empty connected queue of the selected
group. If there are no such queues for slot ¢, remain idle.

For all k € {1,..., K}, define:

min g;

A
mink = 1
i€Gy

Now define Ax as the K dimensional capacity region of a
system with K queues with Bernoulli ON probabilities gryin, &
for k € {1,..., K}. That is, Ak is the set of all non-negative
rate vectors w = (wq,...,wg) such that

Zwk S 1-— HkEI(l - Qmin,k)
keT

for all subsets Z C {1,..., K}.

Theorem 2: (LCG Performance for General Groups) Sup-
pose channels are independent with ON probabilities ¢; for
i € {1,...,N}, and arrival vectors A(t) are i.i.d. with rate
vector A. If there exists a value € > 0 such that:

()\sum,l + €, Asum,2 + € vy Asum,K + 6) S AK

then the system is stable, and:

|:>‘t0t + Zszl E {Agum,k} -2 Zf:l )\ium,k::|

zi:Qz' < 7e

where:
[l
Z Qi= li?ﬂ sup — Z Z E{Qi(7)}
i e =0 i=1

If arrival processes A;(t) are independent and either Bernoulli
or Poisson, then:

~— [2)‘t0t - Zf:l )\Eum,k}
> Qi< . ©
- €
Proof: The first part of the theorem is proven in the

next section using a Lyapunov drift argument. Inequality (9)
then follows immediately by noting that if Agym, x(t) =
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> icg, Ai(t) is a sum of independent Bernoulli or Poisson
processes with rates \;, then:

E {Aium,k} < )\sum,k + )‘ium,k

O

Note that the LCG algorithm breaks ties arbitrarily. How-
ever, intuition from the LCQ algorithm in [1] suggests that
serving larger queues tends to yield better delay performance.
Thus, an intuitively good tie breaking rule is to serve the queue
with the largest backlog among all ties under LCG. If there
are further ties under this rule, then break the ties randomly
and uniformly over all groups.

This tie breaking rule also ensures the vector queueing
process Q(t) evolves according to a discrete time Markov
chain, in which case Foster’s criterion [32] can be used
to ensure the chain has a valid steady state with steady
state queue occupancies Q,. If inputs are independent and
Bernoulli or Poisson, then the expression (9) can be simplified
to >, Q; < Mot/e, and hence by Little’s Theorem the
average delay satisfies W < 1/e. To simplify notation, for
the remainder of this paper we assume that such steady state
limits exist whenever the system is stable.

C. Choosing Groups for Symmetric Systems

Consider a symmetric system such that ¢; = ¢ for all 7 €
{1,..., N}, and define a loading parameter p such that 0 <
p < 1. Define the group size K as:

= Fog(Q/(l - p))w
log(1/(1 —q))

where [z] denotes the smallest integer greater than or equal
to x. Note that K is chosen independently of the number of
queues N. For simplicity, assume that N is a multiple of K,
so that we form distinct groups G, ..., Gk, each with N/K
elements. Suppose that all input rates are identical, so that
Ai = Mot/N foralli € {1,..., N}. Assume that \i,y = pry
(where rpy is given in (3)), so that the rate vector is a factor
of p away from the capacity region boundary.

Theorem 3: (Symmetric Performance) Consider a uni-
formly loaded symmetric system as described above, with a
group size K given by (10). If N is a multiple of K, and if
inputs are independent and either Bernoulli or Poisson, then
the LCG algorithm stabilizes the system and yields:

Z@ < QKAtot — )\%ot

(10)

rn(1—=p)
Therefore, average delay satisfies:
W< 2K — Aot
rn(1—p)
2log(2/(1 — p)) 2 — Aot
rn(L—p)log(L/(1—q)) ' rn(l—p)
The above result demonstrates that average delay satisfies:

<o (220/000)

L—p

This is the first analytical demonstration that average delay
does not grow with N. Recall that the single-queue lower

bound of (5) implies that no algorithm can achieve an average
delay less than O(1/(1 — p)). Hence, the LCG algorithm
performs optimally in N, and differs from the optimal per-
formance in p by a logarithmic factor log(1/(1 — p)).

Proof: (Theorem 3) Note that Ax in this case is the
capacity region associated with a symmetric system of K
queues with independent Bernoulli channels, each with ON
probability q. Define rx as the largest sum rate from this
K queue system. It follows that the symmetric rate vector
w = (rg/K,...,rx/K) is contained in Ag. Further note
that Agym k = A\ot/K for all k € {1,..., K}. To ensure that
the conditions of Theorem 2 hold, we desire to find a value
€ > 0 such that:

(/\sum,l +e€..., )\sum,K + 6) € AK

It suffices to show that Agymr + € < rx/K, which is
equivalent to showing:

Aot + €K <rg (11)

To this end, note by (10) that
Klog(1/(1 —q)) > log(2/(1 - p))

and hence:
(1-¢)f <(1-p)/2
It follows that:
rEL— (1= )% > (14 9)/2> (14 p)r/2

Therefore:

TK — Aot = TK — PN
> (I+p)rn/2—pry
= rn(1-p)/2
It follows that choosing €27y (1 — p)/(2K) ensures that (11)

is satisfied. The result follows by applying inequality (9) from
Theorem 2. |

D. Asymmetric Systems

Consider a general asymmetric system with N queues
and independent channels with ON probabilities {g;} for
i € {1,...,N}. Define ¢in = minjeq1,... ny) ¢i- Define a
loading parameter p such that 0 < p < 1, and choose the
group size K as follows:

[ezsa=en ]
log(1/(1 = gmin))

12)

Further define:
1- (1 - Qmin)K

7" A
« =
21 _vaﬂ(l _Qi)

Tmaa:

We assume that N > K. Note that 7, is the maximum output
rate in a system of K queues with independent Bernoulli
channels with probability ¢,in, and 7,4, is the maximum
output rate of the asymmetric system of N queues.

Consider heterogeneous input rates (Ay, ..., Ay ), and with-
out loss of generality assume A\; > Ao > ... > Ay. Define
Aot = Zi\; i, and assume that Aioy = Primaz, SO that the
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rate vector is at most a distance p away from the capacity
region boundary.

Place the queues into groups as follows: Define G; as the set
of all indices {1,..., M7}, where M is the smallest integer
such that ZMl /\ > Atot /K. Then define Go as the set of
all integers {M; + 1,..., My}, where My is the smallest
integer such that Zﬁle 41N = Aot/ K. Proceeding this
way, we form groups G, ..., Gk by successively packing the
inputs into groups until the last input added makes the sum
rate for that group exceed Ao/ K. It follows that all groups
ke{l,..., K} satisfy:

/\sum,k < )\tot/K + :\ (13)

where \2 max;e{1,.., N} Ai- 10 proceed, we make the follow-
ing additional assumption concerning the size of this largest
input rate \:

Note that the average size of each input is given by A\;p; /N =
Prmaz/N. Because N can be much larger than K, this
additional assumption (14) states that the largest input is upper
bounded by a number much larger than the average.

Theorem 4: (Asymmetric Performance) Consider an asym-
metric system as described above, and assume the group size
K satisfies (12). Assume that N > K, and that the largest
input rate ) satisfies (14). If inputs are independent and either
Bernoulli or Poisson, then the LCG algorithm stabilizes the
system and yields:

(14)

3K {2>\tot Zk 1 Asum k}
Tmaz(1 = p)

> Q<

%

and hence average delay satisfies:

W < Ek: 1 sum k:|
- rmar(l -

Because K satisfies (12), we again see that average delay
is O(bg(l{#), and hence is independent of N.
Proof: (Theorem 4) Similar to the proof of the symmetric
case, the inequality (12) can be used to show:
Taél - (]- - qmzn)K 2 (]- + p)/2

and hence (using (13) and (14)):

3K [2—

% - )\sum,k Z W
However, note that the capacity region associated with K
queues, each with independent Bernoulli channels with prob-
abilities ¢,;n, is a subset of Ay (this is because the set Ay
has queues with probabilities gminx > gmin for all k €
{1,..., K}). Therefore, the vector w = (r,/K,...,rq/K)
is contained in the set Ag. It follows from (15) that we can
define € as follows:

forall k € {1,..., K} (15)

p)/(6K)

The result follows by plugging this value of € into (9) of
Theorem 2. O

€ = Tmaz(1

V. LYAPUNOV ANALYSIS

Here we use Lyapunov drift theory to prove Theorem 2 of
the previous section. We begin with a simple modification of
an important Lyapunov drift result from [17][24].

A. Lyapunov Drift

Let Q(t) represent a vector process of discrete time queues
that evolves according to some probability law. Let L(Q) be a
non-negative function of the queue vector, called a Lyapunov
function. Define the conditional Lyapunov drift A(Q(t)) as
follows:?

A(Q(M))ZEAL(Q(t+1)) — L(Q(1) | Q(1)}

Lemma 3: (Lyapunov Drift [17][24]) Suppose there is a
non-negative function L(Q), a non-negative process B(t), and
a value € > 0 such that for all time ¢ and all possible Q(t),
we have:

(16)

A(Q(H) <E{B(t) —eh(t) | Q(1)}
where h(t) represents a non-negative process that might de-
pend on the queue state. Then:

E{B )}

lim sup — ZIE{h )} <limsup - Z O

t—o0 t—o0

Choosmg quadratlc Lyapunov functlons often leads to drift
expressions where h(t) is linear in Q(t), so that the above
result can be used to bound first moments of queue congestion.

B. Proof of Theorem 2

Define the Lyapunov function:

LQ)2, 5 (Z @)2

k=1 \i€Gx

Thus, we have that L(Q(t)) is the sum of squares of the total

backlog associated with each group k € {1,..., K}:
1 K
LQ®) = 5 > (Qsumx(1)?
k=1
To compute A(Q(t)), define for each k € {1,..., K}

,Usum,k(

HE S (t)

1€Gk

Because the sum transmission rate is no more than 1,
tsum, i (t) represents the transmission rate offered to group
k during slot ¢. Define fisym x(t) to be the actual number
of packets transmitted by group k during this slot (so that
Besum,k(t) € {0,1} and can only be 1 if the group has a non-
empty connected queue during slot t). For each group k, we
have:

qum,k(t + 1) = qum,k(t) - ﬂsum,k(t) + Asum,k(t)

3Strictly speaking, the conditional drift should use notation A(Q(t),t) as a
general drift may also depend on ¢, but we use the simpler notation A(Q(t))
to formally represent the right hand side of (16).
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Squaring both sides of the above equality and using the fact
that fisym k(t)? = fisum,k(t) (because the value is either 0 or
1) yields:

2 2
qum,;(t‘i“l) _ qumék(t) + Bi(t) + Quum.i (t) Asum k(1)
_qum,k(t)ﬂsum,k:(t)
where

ﬂsum,k(t) + 1431/,7‘rl,/’€(t)2 - 2Asum,k:(t)ﬂsum,k(t)

Bi(t)2 5

Taking conditional expectations and summing over all k
yields:

3 Quum e O E { fisum, (£) | Q1)) (17)

where B(t)& Zszl By(t), and where we have used the fact
that arrivals are i.i.d. over slots and hence have expected values
that are independent of the current queue state.

Given Q(t) and the channel states, the LCG algorithm
is designed to choose transmission rates that maximize the
expression » ;. Qsum,k(t) fisum,k(t) over all possible transmis-
sion decisions during slot ¢ that are subject to the constraints:

fisum.k(t) € {0,1} forall k € {1,..., K} (18)
Z}}le [Lsum,k(t) S 1 (19)
fisum k() < 1x(t) forall k€ {1,..., K} (20)

Hence, it also maximizes the conditional expectation of this
expression given Q(t). It follows that the LCG algorithm
minimizes the final term in the drift expression (17) over all
feasible transmission rate decisions that satisfy the constraints
(18)-(20) during slot t. Therefore, we have:

AQ(1) < E{B()| Q()} + X241 Qoumk (D Asum.k
— Ykt Qoum ik (DE {1 (1) | Q(1)}
where (p5(t),...,u5 (t)) represents any transmission rate
decision vector that satisfies (18)-(20).

Now recall that, according to the conditions of Theorem 2,
we have:

@

(Asum,l +e€..., )\sum,K + E) € Ax

where A is the capacity region of a virtual system with
K independent queues with channel probabilities g in, 1 for
ke {l,...,K}. Let S”(t) represent the channel states of this
virtual system (having independent entries with Pr[S}(t) =
ON] = gminsk for all k € {1,...,K}). By Lemma I,
we know there exists a stationary randomized control policy
that makes transmission decisions (uy(t),...,u%(t)) as a
(potentially random) function of S*(t), such that:

E{pl(t)} = Aeumi +€ forallke{l,....K} (22)

Now, for each group G (k € {1,...,K}), we define an
index i*(k) € Gy as follows: If Qsum, k() = 0, then choose
any queue ¢ € Gy, and label this choice i*(k). If Qgym i (t) >
0, choose any queue ¢ € Gy, such that Q;(¢) > 0, and define
this queue as i* (k).

For each £ € {1,...,K}, let H; be an independent
Bernoulli variable with Pr[Hy = 1] = qumin,k/i-(x)- Note
that this is a valid probability because gmin r < i=(k)- Now

define virtual channel states S*(t) = (SY(t),...,S%(t)) as
follows:
Sz(t) _ ON if Sz*(k)(t) = ON and Hy, =1
0 otherwise

It follows that the virtual channels S“(¢) are independent
Bernoulli channels with Pr[Sy(t) = ON]| = ¢pmin, for all
k € {1,...,K} (regardless of Q(t)), which is exactly the
right distribution to correspond with the virtual system for
the capacity region A . Furthermore, {S}, (t) = ON} implies
that {Sj-(x)(t) = ON}. Now define a virtual transmission rate
vector p¥(t) = (uy (%), ..., u%(t)) according to the stationary
randomized control policy that chooses p(t) based only on
S”(t), and yields (22). It follows that the virtual transmission
rates pj(t) yield (22) regardless of Q(t). Further, this virtual
rate vector is feasible for the virtual system, and so it has at

most one non-zero entry, and for each entry k € {1,..., K}
it satisfies pj(t) = 0 if Sy(t) = OFF.
Now choose actual transmission rates uj(t) = ph(t) if

Qsum,x(t) > 0, and pf(t) = 0 if Qsum x(t) = 0. It follows
that the (ui(t),...,u}(t)) vector satisfies the constraints
(18)-(20). Indeed, it inherits the constraints (18)-(19) from the
(uy(t), ..., u%(t)) vector. Constraint (20) is satisfied because
if pi(t) = 1, then Qgym k(t) > 0 and S (t) = ON (so that
Si=(k)(t) = ON), implying that there is at least one non-empty
connected queue in group Gy.

Furthermore, for any k£ € {1,
Qsum,k(t) > 0, we have:

E{up()1 Q1)) = E{um®) | Q1)}
= E{u(t)}

= Asum,k +e€

., K} such that

(23)
(24)
where (23) follows because the distribution of the virtual
transmission vector p(¢) does not depend on the queue state
Q(t), and (24) follows from (22). For any k € {1,..., K}
such that Qsum i (t) = 0, we clearly have E {u}(¢)| Q(¢)} =

0. Therefore, plugging these expressions for E {1} (t) | Q(t)}
into the final term on the right hand side of (21) yields:

A(Q(1) SE{B(t)| Q)} + X5 Quumk () Xsum,i
- 25:1 qum,k(t)()\sum,k + 6)
and thus:
AQ() <E{B®)| Qt)} — € ) Quumn(?)

The inequality (25) is in the exact form for application of the

(25)

Lyapunov drift lemma (Lemma 3) with A(£)2 >, Qsum.k(t),
and hence:
t—1 K
E{B(r
lim sup - Z ZE{qum (1)} < hmsup Z { )}
t—o0 7=0 k=1

Because E{Asum r(t)} = Asum.k {Afumk( )} =

E{Afmmk}, and E {fisum x(¢)} < 1 for all ¢, the process
B(t) satisfies E{B(t)} < B for all ¢ (where B is a finite
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constant). It follows that the queueing network is strongly
stable. Further, it can be shown that E{Q;(¢)/t} — 0, and

that:
t—1

. 1 -
lim sup ; Z E {Usum,k(T)} = >\su7n,k

f=oo 10
It follows that:
limsup, .o § 270 E{B(7)} =
3 Mo+ ShE{ 42,0} =250 W]

which completes the proof of Theorem 2.

VI. CONCLUSIONS

We have investigated the fundamental delay properties for
opportunistic scheduling in a multi-user wireless system with
time varying channels. It was shown that a large class of
scheduling algorithms that do not consider queue backlog
necessarily incur average delay that grows at least linearly with
the number of users V. We then proved it is possible to achieve
an average delay that is independent of N by considering
queue backlog and using a simple queue grouping technique.
The technique enables the computation of analytical delay
bounds for large scale systems in terms of smaller systems, and
may offer insight into other problems of networking analysis
and design.

APPENDIX — PROOF OF THEOREM 1

The proof closely follows our previous work in [29].

Proof: (Theorem 1 part (a)) Consider a particular queue
i, and assume that Q;(0) = 0. Consider the system viewed
in continuous time, where p;(¢) is viewed as a continuous
time process that is constant on unit intervals, so that u;(t) =
wi(|t]) for all real times ¢. Let X;(¢) represent the total
number of packets that have arrived from stream 7 up to time ¢.
Let Qq(t) represent the fractional packets in this system with
the same arrivals but operating without the timeslot structure.

It is not difficult to show that:
Q;(t) > Ql(t) for all real time ¢ (26)

and hence E{Q;(t)} > E {Qz(t)} for all ¢. Further, the value
of Q;(t) is given by:

Gi(t) = sup [Xim -xin- [

720 t—1

t ui(v)du}

Taking expectations of both sides with respect to the stochastic
arrival process X; (describing X;(u) for all w such that 0 <
u < t) yields:

—Ex.E, x, {5213 {Xi(t) - Xi(t—7)— /; ,Ui(v)dv: }

t—7

=Ex, {Sup [Xi(t) —Xi(t—7) - /t; 'uidv: }

where the first inequality follows by Jensen’s inequality to-
gether with the fact that the sup(-) operator is convex. The
final equality follows because (from property (7)), the expected
transmission rate does not depend on the arrival history and is
equal to 1z, for all time. However, note that the final expression
on the right hand side is equal to Ex,{U;(t)}, where U;(¢)
is the unfinished work in a continuous time queueing system
with the same inputs but with a constant server rate f; for all
time. Therefore, we obtain the lower bound:

E{Qi(0)} > E{Qit)} > E{Ui(1)} for all

completing the proof of part (a) of Theorem 1. |

Proof: (Theorem 1 part (b)) Suppose the system is symmet-
ric so that ¢; = g and A\; = Aypy/N foralli € {1,..., N}, and
that inputs are Poisson. By part (a), we know that E {Q;(¢)} >
E {U;(t)}, where U;(¢) is the unfinished work in an M/D/1
queue with constant service time 1/f;. Taking ¢ to infinity
yields the steady state value, and hence: Q; > U;. The steady
state unfinished work in an M/D/1 queue with arrival rate

A; and constant service time 1/7; is equal to ﬁ, which

Hii

can be computed by adding \;/(2%;), the average portion of
a packet remaining in the server, to the expression for the
average number of packets in the buffer of an M/D/1 queue

[30]. Because A\; = Aot/ N, we have:

Note that Zfil 1t; < rx (as the sum transmission rate cannot
exceed 1 — (1 — q)). Therefore, the right hand side in the
above inequality is greater than or equal to the solution to:

L N Aot /N
Minimize: )", 720”1);”/1\[)
Subject to: Zfil wi <ryn

The above optimization seeks to minimize a convex symmetric
function of (p1,...,un) over the simplex constraint, and is
minimized at the symmetric point u; = rn/N for all i €
{1,..., N}. Therefore:

N

Z @1 )\tot

p 2(rn/N = Aot /N)
_ N>\tot
~ 2rn(1—p)

where p2 )¢ /rn. Dividing both sides by Ay and using
Little’s Theorem proves the result. |

Proof: (Theorem 1 part (c)) Again from part (a), we have
that E{Q;(t)} > E{U;(t)}, where U;(t) is the unfinished
work in a queue with a packet arrival process of rate \; and
a constant server queue of rate jz;. By Little’s Theorem , the
steady state expected number of packets in the server is equal
to A;/Ti;, and hence the expected unfinished work in the server
is equal to A;/(2f;). This is certainly a lower bound on the
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expected total unfinished work in the system, and hence:

Q;, > —
i:zl 1221 27
Ny
Z inf i (27)
[(1)|Z; i <rmas] ; 2u,
1 (X 2
2 >V 28)

where (27) follows because we again have Zl i < Tmazs
and (28) holds because the solution to the convex opti-
mization problem in the previous line is given by u; =
VA (Tmaz Y ; V/A;j), which can be proven with a simple
Lagrange multiplier argument. Because there are at least
~v1 N A; values that are greater than or equal to YoAi0t/N,

the right hand side of (28) is greater than or equal to

V249N Xiot /(27 maz ). Dividing by Ao bounds the average

delay and proves the result. 0
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