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The Optimality of Two Prices: Maximizing
Revenue in a Stochastic Network

Longbo Huang, Michael J. Neely

Abstract— This paper considers the problem of pricing and
transmission scheduling for an Access Point (AP) in a wireless
network, where the AP provides service to a set of mobile users.
The goal of the AP is to maximize its own time-average profit.
We first obtain the optimum time-average profit of the AP and
prove the “Optimality of Two Prices” theorem. We then develop
an online scheme that jointly solves the pricing and transmission
scheduling problem in a dynamic environment. The scheme uses
an admission price and a business decision as tools to regulate the
incoming traffic and to maximize revenue. We show the scheme
can achieve any average profit that is arbitrarily close to the
optimum, with a tradeoff in average delay. This holds for general
Markovian dynamics for channel and user state variation, and
does not require a-priori knowledge of the Markov model. The
model and methodology developed in this paper are general and
apply to other stochastic settings where a single party tries to
maximize its time-average profit.

Index Terms— Wireless Mesh Network, Pricing, Queueing,
Dynamic Control, Lyapunov analysis, Optimization

I. INTRODUCTION

In this paper, we consider the profit maximization problem
of an access point (AP) in a wireless mesh network. Mobile
users connect to the mesh network via the AP. The AP receives
the user data and transmits it to the larger network via a
wireless link. Time is slotted with integral slot boundaries
t ∈ {0, 1, 2, . . .}, and every timeslot the AP chooses an
admission price p(t) (cost per unit packet) and announces this
price to all present mobile users. The users react to the current
price by sending data, which is queued at the AP. While the AP
gains revenue by accepting this data, it in turn has to deliver
all the admitted packets by transmitting them over its wireless
link. Therefore, it incurs a transmission cost for providing
this service (for example, the cost might be proportional to
the power consumed due to transmission). The mission of the
AP is to find strategies for both packet admission and packet
transmission so as to maximize its time average profit while
ensuring queue stability.

We assume that the expected number of new packets sent
to the AP is determined every timeslot by a demand state
variable M(t) and a user demand function F (M(t), p(t)).
Specifically, the state variable M(t) represents the current
condition of the user population that affects its aggregate
spending ability. For example, M(t) can represent the integer
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number of users present at time t, or can be a rough estimate of
the aggregate “willingness-to-pay” (such as “Low,” “Medium,”
and “High”). The demand function F (M(t), p(t)) is equal to
the expected number of packets that arrive on slot t under a
given user condition M(t) and a given price p(t). We assume
the AP knows the current demand state M(t) and the demand
function F (M(t), p(t)) for each slot t. However, M(t) is
assumed to vary according to a general finite state ergodic
Markov chain, and the transition and steady state probabilities
of M(t) may be unknown. Similarly, the condition of the
wireless channel from AP to the mesh network is potentially
time varying and is determined by a Markov modulated
channel state process S(t). The AP is assumed to know the
current channel state S(t) on each timeslot t, although the
transition and steady state probabilities of S(t) are potentially
unknown.

We develop a joint pricing and transmission scheduling
algorithm (PTSA) for the AP. The PTSA algorithm has low
complexity and can be viewed as making greedy decisions
every timeslot. Despite its simplicity, we show that PTSA
is able to dynamically react to the time varying network
conditions. It yields an average net profit that can be pushed
arbitrarily close to the optimum, with a corresponding tradeoff
in average queueing delay.

Many existing works on revenue maximization can be
found. Work in [1] [2] models the problem of maximizing rev-
enue as a dynamic program. Work in [3] and [4] model revenue
maximization as static convex optimization problems. A game
theoretic perspective is considered in [5], where equilibrium
results are obtained. Works [6], [7] and [8] also use game theo-
retic approaches with the goal of obtaining efficient strategies
for both the AP and the users. The paper [9] looks at the
problem from a mechanism design perspective, and [10], [11]
consider profit maximization with Qos guarantees. Early work
on network pricing in [12], [13], and [14] consider throughput-
utility maximization rather than revenue maximization. There,
prices play the role of Lagrange multipliers, and are used
mainly to facilitate better utilization of the shared network
resource. This is very different from the revenue maximization
problem, where the service provider is only interested in its
own profit. Indeed, the revenue maximization problem can be
much more complex due to non-convexity issues.

The above prior work does not directly solve the profit
maximization problem for APs in a wireless network for one
or more of the following reasons: (1) Most works consider
time-invariant systems, i.e. the network condition does not
change with time. (2) Works that model the problem as an
optimization problem rely heavily on the assumption that the
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user utility function or the demand function is concave. (3)
Many of the prior works adopt the flow rate allocation model,
where a single fixed operating point is obtained and used
for all time. However, in a wireless network, the network
condition can easily change due to channel fading and/or node
mobility, so that a fixed resource allocation decision may not
be efficient. Also, as has been pointed out in [15], the user
utility function does not always have the concavity property.
Indeed, profit maximization problems are often non-convex in
nature. Hence, they are generally hard to solve, even in the
static case where the channel condition, user condition, and
demand function is fixed for all time. It is also common to look
for single-price solutions in these static network problems.
Our results show that single-price solutions are not always
optimal, and that even for static problems the AP can only
maximize time average profit by providing a “regular” price
some fraction of the time, and a “reduced price” at other times.

Moreover, most network pricing work considers flow allo-
cation that neglects the packet-based nature of the traffic, and
neglects issues of queueing delay. An exception is the recent
work in [16] that considers a packet-based model for a free
market wireless network. However, [16] focuses on network-
wide efficiency and on guarantees of non-negative profit to all
participants, and does not consider the very different problem
of maximizing revenue for a single AP.

In order to enable the AP to better react to the varying
network condition, to overcome the difficulty of solving non-
convex/non-concave optimization problems, and to better oper-
ate in a packet-based setting, we propose a novel joint pricing
and transmission scheduling algorithm (PTSA). PTSA has the
same nature as the schemes proposed in [16], which are “state-
dependent” [12], although it solves a very different problem.
As we will see later, PTSA bypasses the non-concavity/non-
convexity difficulty by turning the static optimization problem
into a stochastic optimization problem. Our analysis of the
performance of PTSA uses the Lyapunov techniques and
general utility-optimization framework developed in [17] [18]
[19]. We show that PTSA can achieve a time-average profit
that is arbitrarily close to optimum, and obtain an explicit
tradeoff between profit and queuing delay.

In the next section we describe the network model. In
Section III we characterize the optimal time average profit
and prove the “Optimality of Two Prices” theorem. The PTSA
algorithm is presented in Section IV, where performance op-
timality is proven. Preliminary simulation results are provided
in Section V.

II. NETWORK MODEL

We consider the network as shown in Fig 1. The network
is assumed to operate in slotted time, i.e. t ∈ {0, 1, 2, ...}.

A. Arrival Model: The Demand Function

We first describe the packet arrival model. Let M(t) be
the demand state at time t. M(t) might be the number of
present mobile users, or could represent the current demand
situation, such as the demand being “High”, “Medium” or
“Low.” We assume that M(t) evolves according to a finite state

AP

Φ(cost(t), S(t))
F(M(t), p(t))

Network

Fig. 1. An Access Point (AP) that connects mobile users to a larger network.

ergodic Markov chain with state space M. Let πm represent
the steady state probability that M(t) = m. The value of M(t)
is assumed known at the beginning of each slot t, although
the transition and steady state probabilities are potentially
unknown.

Every timeslot, the AP first makes a business decision by
deciding whether or not to allow new data (this decision can
be based on knowledge of the current M(t) state). Let Z(t)
be a 0/1 variable for this decision, defined as:1

Z(t) =
{

1 if the AP allows new data on slot t
0 else (1)

If the AP chooses Z(t) = 1, it then chooses a per-unit price
p(t) for incoming data and advertises this price to the mobile
users. We assume that price is restricted to a compact set of
price options P , so that p(t) ∈ P for all t. We assume the
set P includes the constraint that prices are non-negative and
bounded by some finite maximum price pmax. Let R(t) be
the total number of packets that are sent by the mobile users
in reaction to this price. The income earned by the AP on slot
t is thus Z(t)R(t)p(t).

The arrival R(t) is a random variable that depends on the
demand state M(t) and the current price p(t) via a demand
function F (M(t), p(t)):

F : (M(t), p(t)) 7→ E {R(t)} (2)

Specifically, the demand function maps M(t) and p(t) into the
expected value of arrivals E {R(t)}. We further assume that
there is a maximum value Rmax, so that R(t) ≤ Rmax for
all t, regardless of M(t) and p(t). The higher order statistics
for R(t) (beyond its expectation and its maximum value)
are arbitrary. The random variable R(t) is assumed to be
conditionally independent of past history given the current
M(t) and p(t). The demand function F (m, p) is only assumed
to be continuous and to satisfy 0 ≤ F (m, p) ≤ Rmax for all
m ∈ M and all p ∈ P . The set P is assumed only to be
compact (i.e., closed and bounded), and may consist of a finite
discrete set of prices.

Example: In the case when M(t) represents the number of
mobile users in range of the AP at time t, a useful example
model for F (M(t), p(t)) is:

F (M(t), p(t)) = M(t)F̂ (p(t))

where F̂ (p) is the expected number of packets sent by a single
user in reaction to price p, a curve that is possibly obtained

1The Z(t) decisions are introduced to allow stability even in the possible
situation where user demand is so high that incoming traffic would exceed
transmission capabilities, even if price were set to its maximum value pmax.
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via empirical data. In this case, we assume that the number
of users is bounded by some value Mmax and the maximum
number of packets sent by any single user is bounded by some
value Rsingle

max , so that Rmax = MmaxRsingle
max .

In Section IV, we show that this type of demand function
(i.e, F (m, p) = mF̂ (p)) leads to an interesting situation where
the AP can make “demand state blind” pricing decisions,
where prices are chosen without knowledge of M(t).

B. Transmission Model: The Rate-Cost Function
Let S(t) represent the channel condition of the wireless

link from AP to the mesh network on slot t. We assume
that the channel state process S(t) is a finite state ergodic
Markov chain with state space S. Let πs represent the steady
state probability that S(t) = s. The transition and steady
state probabilities of S(t) are potentially unknown to the AP,
although we assume the AP knows the current S(t) value at
the beginning of each slot t.

We assume that the transmission rate of the AP’s outgoing
link is determined every timeslot by a resource allocation
decision (such as power) and by the current channel state S(t).
We model this decision completely by its cost to the AP, and
define cost(t) as the cost of the transmission decision on slot
t. We assume that cost(t) is chosen within some compact set
of costs C, and that C includes the constraint 0 ≤ cost ≤ Cmax

for some finite maximum cost Cmax. The transmission rate is
then given by rate-cost2 function µ(t) = Φ (cost(t), S(t)). In
our problem, we assume that Φ (cost, S(t)) is continuous in
the variable cost for every given S(t), and that Φ(0, S(t)) = 0
for all S(t). Further, we assume there is a finite maximum
transmission rate, so that:

Φ (cost(t), S(t)) ≤ µmax for all cost(t), S(t), t (3)

We assume that packets can be continuously split, so that
µ(t) = Φ (cost(t), S(t)) determines the portion of packets
that can be sent over the link from AP to the network on
slot t (for this reason, the rate function can also be viewed
as taking units of bits). Of course, the set C can be restricted
to a finite set of costs that correspond to integral units for
Φ(cost(t), S(t)) in systems where packets cannot be split.

C. Queueing Dynamics and other Notations
Let U(t) be the queue backlog of the AP at time t, in units

of packets.3 Note that this is a single commodity problem as we
do not distinguish packets from different users.4 We assume
the following queueing dynamics for U(t):

U (t + 1) = max [U(t)− µ(t), 0] + Z(t)R(t) (4)

where µ(t) = Φ(cost(t), S(t)). Throughout the paper, we
adopt the following notion of queue stability:

E {U} , lim sup
t→∞

1
t

t−1∑
τ=0

E {U(τ)} < ∞ (5)

2This is essentially the same as the rate-power curve in [18].
3The packet units can be fractional. Alternatively, the backlog could be

expressed in units of bits.
4Our analysis can be extended to treat multi-commodity models, although

that is omitted for brevity.

III. CHARACTERIZING THE MAXIMUM PROFIT

In this section, we characterize the optimal average profit
that is achievable over the class of all possible control polices
that stabilize the queue at the AP. We show that it suffices for
the AP to use only two prices for every demand state M(t)
to maximize its profit.

A. The Maximum Profit

To describe the maximum average profit, we use an analysis
that is similar to the analysis of the minimum average power
for stability problem in [18]. Note that the theorem in [18]
considers the problem of using minimum average power to
serve the given incoming traffic, while in our case, the AP
needs to balance between the profit from data admission and
the cost for packet transmission. The following theorem shows
that optimality can be achieved over the class of stationary ran-
domized pricing and transmission scheduling strategies with
the following structure: Every slot the AP observes M(t) = m,
and makes a business decision Z(t) by independently and
randomly choosing Z(t) = 1 with probability φ(m) (for some
φ(m) values defined for each m ∈ M). If Z(t) = 1, then the
AP allocates a price randomly from a countable collection of
prices {p(m)

1 , p
(m)
2 , p

(m)
3 , . . .}, with probabilities {α(m)

k }∞k=1.
Similarly, the AP observes S(t) = s and makes a transmission
decision by choosing cost(t) randomly from a set of costs
{cost(s)k }∞k=1 with probabilities {β(s)

k }∞k=1.
Theorem 1: (Maximum Profit with Stability) The optimal

average profit for the AP, with its queue being stable, is given
by Profitopt

av , where Profitopt
av is the solution to the following

optimization problem:

max Profitav = Incomeav − Costav (6)

s.t. Incomeav = Em

{
φ(m)

∞∑
k=1

α
(m)
k F (m, p

(m)
k )p(m)

k

}
(7)

Costav = Es

{ ∞∑
k=1

β
(s)
k cost

(s)
k

}
(8)

λav = Em

{
φ(m)

∞∑
k=1

α
(m)
k F (m, p

(m)
k )

}
(9)

µav = Es

{ ∞∑
k=1

β
(s)
k Φ

(
cost

(s)
k , s

) }
(10)

0 ≤ φ(m) ≤ 1 ∀m ∈M (11)
µav ≥ λav (12)

p
(m)
k ∈ P ∀k,∀m ∈M (13)

cost
(s)
k ∈ C, ∀k,∀s ∈ S (14)

∞∑
k=1

α
(m)
k = 1 ∀m ∈M (15)

∞∑
k=1

β
(s)
k = 1 ∀s ∈ S (16)

where Es and Em denote the expectation over the steady
state distribution for S(t) and M(t), respectively, and φ(m),
α

(m)
k , p

(m)
k , β

(s)
k , and cost

(s)
k are auxiliary variables with the

interpretation given in the text preceding Theorem 1.
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The proof of Theorem 1 contains two parts. Part I shows
that no algorithm that stabilizes the AP can achieve an average
profit that is larger than the optimal solution of the problem
(6)-(16). Part II shows that we can achieve a profit of at
least ρProfitopt

av (for any ρ such that 0 < ρ < 1) with
a particular stationary randomized algorithm that also yields
average arrival and transmission rates λav and µav that satisfy
λav < µav . The formal proof is given in Appendix A.

Because the sets P, C are compact and the functions
F (m, p) and Φ(cost, s) are continuous for all m ∈ M and
s ∈ S (where M and S have finite state space), it can
be shown that Profitopt

av can be achieved by a particular
stationary randomized algorithm.5 The following important
corollary to Theorem 1 is somewhat simpler and is useful
for analysis of the online algorithm described in Section IV.

Corollary 1: There exists a control algorithm STAT ∗ that
makes stationary and randomized business and pricing deci-
sions Z∗(t) and p∗(t) depending only on the current demand
state M(t) (and independent of queue backlog), and makes
stationary randomized transmission decisions cost∗(t) depend-
ing only on the current channel state S(t) (and independent
of queue backlog) such that:

E{Z∗(t)R∗(t)} ≤ E{µ∗(t)} (17)

E{Z∗(t)p∗(t)F (M(t), p∗(t))} − E{cost∗(t)} = Profitopt
av

(18)
where Profitopt

av is the optimal time average profit, and where
µ∗(t) = Φ(cost∗(t), S(t)). The above expectations are taken
with respect to the steady state distributions for M(t) and
S(t). Specifically:

E {Z∗(t)R∗(t)} = Em{Z∗(t)F (m, p∗(t))}
E {µ∗(t)} = Es{Φ(cost∗(t), s)} �

B. The Optimality of Two Prices

The following two theorems show that instead of consider-
ing a countably infinite collection of prices {p(m)

1 , p
(m)
2 , . . .}

for the stationary algorithm of Corollary 1, it suffices to
consider only two price options for each distinct demand state
M(t) ∈M.

Theorem 2: Let (λ(m)∗, Income(m)∗) represent any rate-
income tuple formed by a stationary randomized algorithm
that chooses Z(t) ∈ {0, 1} and p(t) ∈ P , so that:

E {Z(t)F (M(t), p(t)) | M(t) = m} = λ(m)∗

E {Z(t)p(t)F (M(t), p(t)) | M(t) = m} = Income(m)∗

Then:
a) (λ(m)∗, Income(m)∗) can be expressed as a convex

combination of at most three points in the set Ω(m), defined:

Ω(m) M= {(ZF (m, p), ZpF (m, p)) | Z ∈ {0, 1}, p ∈ P}

b) If (λ(m)∗, Income(m)∗) is on the boundary of the convex
hull of Ω(m), then it can be expressed as a convex combination

5The same theorem can be shown for discontinuous functions and non-
compact sets, but the optimum is then a supremum over all stationary
algorithms that satisfy the constraints of Theorem 1. This generalization would
not affect the results or analysis of our PTSA algorithm.

of at most two elements of Ω(m), corresponding to at most two
business-price tuples (Z1, p1), (Z2, p2).

c) If the demand function F (m, p) is continuous in p for
each m ∈ M, and if the set of price options P is connected,
then any (λ(m)∗, Income(m)∗) point (possibly not on the
boundary of the convex hull of Ω(m)) can be expressed as
a convex combination of at most two elements of Ω(m).

Proof: Part (a): It is known that for any vector random
variable ~X that takes values within a set Ω, the expected
value E{ ~X} is in the convex hull of Ω (see, for example,
Appendix 4.B in [17]). Therefore, the 2-dimensional point
(λ(m)∗; Income(m)∗) is in the convex hull of the set Ω(m). By
Caratheodory’s theorem (see, for example, [20]), any point in
the convex hull of the 2-dimensional set Ω(m) can be achieved
by a convex combination of at most three elements of Ω(m).

Part (b): We know from part (a) that (λ(m)∗, Income(m)∗)
can be expressed as a convex combination of at most three
elements of Ω(m) (say, ω1, ω2, and ω3). Suppose these
elements are distinct. Because (λ(m)∗, Income(m)∗) is on the
boundary of the convex hull of Ω(m), it cannot be in the
interior of the triangle formed by ω1, ω2, and ω3. Hence,
it must be on an edge of the triangle, so that it can be reduced
to a convex combination of two or fewer of the ωi points.

Part (c): We know from part (a) that (λ(m)∗, Income(m)∗)
is in the convex hull of the 2-dimensional set Ω(m). An
extension to Caratheodory’s theorem in [21] shows that any
such point can be expressed as a convex combination of at
most two points in Ω(m) if Ω(m) is the union of at most two
connected components. The set Ω(m) can clearly be written:

Ω(m) = {(0; 0)} ∪ {(F (m, p); pF (m, p)) | p ∈ P}

which corresponds to the cases Z = 0 and Z = 1. Let Ω̂(m)

represent the set on the right hand side of the above union, so
that Ω(m) = {(0; 0)} ∪ Ω̂(m). Because the F (m, p) function
is continuous in p for each m ∈ M, the set Ω̂(m) is the
image of the connected set P through the continuous function
(F (m, p), pF (m, p)), and hence is itself connected [22]. Thus,
Ω(m) is the union of at most two connected components.
It follows that (λ(m)∗; Income(m)∗) can be achieved via a
convex combination of at most two elements in Ω(m).

Theorem 3: (Optimality of Two Prices) Let (λ∗, Income∗)
represent the rate-income tuple corresponding to any sta-
tionary randomized policy Z∗(t), p∗(t), cost∗(t), possibly
being the policy of Corollary 1 that achieves an optimal
profit Profitopt

av . Specifically, assume the algorithm yields an
average profit Profit∗av (defined by the left hand side of (18)),
and that:

λ∗ = Em{Z∗(t)F (m, p∗(t))}
Income∗ = Em{Z∗(t)p∗(t)F (m, p∗(t))}

Then for each m ∈ M, there exists two business-price
tuples (Z(m)

1 , p
(m)
1 ) and (Z(m)

2 , p
(m)
2 ) and two probabilities
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q
(m)
1 , q

(m)
2 (where q

(m)
1 + q

(m)
2 = 1) such that:

λ∗ =
∑

m∈M
πm

2∑
i=1

[
q
(m)
i Z

(m)
i F (m, p

(m)
i )

]
Income∗ ≤

∑
m∈M

πm

2∑
i=1

[
q
(m)
i Z

(m)
i p

(m)
i F (m, p

(m)
i )

]
That is, a new stationary randomized pricing policy can be
constructed that yields the same average arrival rate λ∗ and
an average income that is greater than or equal to Income∗,
but which uses at most two prices for each user demand state
m ∈M.6

Proof: For the stationary randomized policy Z∗(t) and
p∗(t), define:

λ(m)∗ M= E {Z∗(t)F (m, p∗(t)) | M(t) = m}
Income(m)∗ M= E {Z∗(t)p∗(t)F (m, p∗(t)) | M(t) = m}

Note that the point (λ(m)∗, Income(m)∗) can be expressed
as a convex combination of at most three points ω

(m)
1 ,

ω
(m)
2 , ω

(m)
3 in Ω(m) (from Theorem 2 part (a)). Then

(λ(m)∗, Income(m)∗) is inside (or on an edge of) the triangle
formed by ω

(m)
1 , ω

(m)
2 , ω

(m)
3 . Thus, for some value δ ≥ 0 the

point (λ(m)∗, Income(m)∗ + δ) is on an edge of the triangle.
Hence, the point (λ(m)∗, Income(m)∗ + δ) can be achieved
by a convex combination of at most two of the ω

(m)
i values.

Hence, for each m ∈ M, we can find a convex combination
of two elements of Ω(m), defining a stationary randomized
pricing policy with two business-price choices (Z(m)

1 , p
(m)
1 ),

(Z(m)
2 , p

(m)
2 ) and two probabilities q

(m)
1 , q

(m)
2 . This new policy

yields exactly the same average arrival rate λ∗, and has an
average income that is greater than or equal to Income∗.

Most work in network pricing has focused on achieving
optimality over the class of single-price solutions, and indeed
in some cases it can be shown that optimality can be achieved
over this class (so that two prices are not needed). However,
such optimality requires special properties of the demand
function. Theorem 3 shows that for any demand function
F (m, p), the AP can optimize its average profit by using
only two prices for every demand state m ∈ M. In fact,
the following example shows that the number two is tight,
in that a single fixed price does not always suffice to achieve
optimality.

C. Example Demonstrating Necessity of Two Prices
For simplicity, we consider a static situation where the

transmission rate is equal to µ = 2.28 with zero cost for
all t (so that Φ(cost(t), S(t)) = 2.28 for all S(t) and all
cost(t), including cost(t) = 0). The demand state M(t) is also
assumed to be fixed for all time, so that F (m, p) can be simply
written as F (p). Let P represent the interval 0 ≤ p ≤ pmax,
with pmax = 10. We consider the following F (p) function:

F (p) =

 4 0 ≤ p ≤ 1
−6p + 10 1 < p ≤ 3

2
− 2

17p + 20
17

3
2 < p ≤ 10

(19)

6Because the new average income is greater than or equal to Income∗,
the new average profit is greater than or equal to Profit∗av when this new
pricing policy is used together with the old cost∗(t) scheduling policy.
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Fig. 2. F (p) and F (p)p, A=(5, 50
17

),B=(1.2867, 2.9285),C=(1.2867, 2.28).

The F (p) and pF (p) functions corresponding to (19) are
plotted in Fig. 2. Now consider the situation when the AP
only uses one price. First we consider the case when Z(t) = 1
for all time. Since µ = 2.28, in order to stabilize the queue,
the AP has to choose a price p such that λ = F (p) < 2.28.
Thus we obtain that p has to be greater than 1.2867 (points
B and C in Fig. 2 show F (p) and F (p)p for p = 1.2867).7

It is easy to show that in this case the best single-price is
p = 5 (point A in Fig. 2), which yields an average profit
Profitsingle of Profitsingle = 50/17 ≈ 2.9412. However,
we see that in this case the average arrival rate F (p) is only
10/17 ≈ 0.5882, which is far smaller than µ. Now consider
an alternative scheme that uses two prices p1 = 31/30 and
p2 = 5, each with probability 0.5. Then the resulting profit is:

ProfitTwo = 0.5F (p1)p1 + 0.5F (p2)p2

= 0.5(3.8 · 31
30

+
50
17

) ≈ 3.4339

> Profitsingle (20)

Further, the resulting arrival rate is only:

λTwo = 0.5F (p1) + 0.5F (p2) = 0.5(3.8 +
10
17

) ≈ 2.1941

which is strictly less than µ = 2.28. Therefore the queue is
stable under this scheme [19].

Now consider the case when the AP uses a varying Z(t)
and a single fixed price. From Theorem 1 we see that this is
equivalent to using a probability 0 < φ < 1 to decide whether
or not to allow new data for all time.8 In order to stabilize the
queue, the AP has to choose a price p such that F (p)φ < µ.
Thus the average profit in this case would be F (p)pφ < pµ.
If p ≤ 1.5, then F (p)pφ < 1.5 · 2.28 = 3.42 (note that this is
indeed just an upper bound); else if 1.5 < p ≤ 10, F (p)pφ <
F (5) · 5 = 50/17. Both are less than ProfitTwo obtained
above.

One may think that the two optimum prices chosen by the
AP are the two prices that generate the two local maximums
in the function F (p)p, i.e. p = 1 and p = 5. However, it is
easy to show that if one only uses prices p = 1 and p = 5, the

7Throughout the paper, numbers of this type are numerical results and are
accurate enough for our arguments.

8 The case when φ=0 is trivial and thus is excluded.
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maximum average profit is 3.4662. On the other hand, one can
achieve profit 3.4676 with prices p = 1 and p = 5.15. Thus
we see that even in this simple example, knowing the exact
F (p) function does not guarantee a simple way of finding the
optimal pricing strategy.

IV. ACHIEVING THE MAXIMUM PROFIT

Even though Theorem 2 and 3 show the possibility of
achieving the optimum average profit by using only two prices
for each demand state, in practice, we still need to solve the
problem in Theorem 1. This often involves a very large number
of variables and would require the exact demand state and
channel state distributions, which are usually hard to obtain.
To overcome these difficulties, here we develop the dynamic
Pricing and Transmission Scheduling Algorithm (PTSA). The
algorithm offers a control parameter V > 0 that determines
the tradeoff between the queue backlog and the proximity to
the optimal average profit.

Admission Control: Every slot t, the AP observes the cur-
rent backlog U(t) and the user demand M(t) and chooses the
price p(t) to be the solution of the following problem:

Max : V F (M(t), p)p− 2U(t)F (M(t), p)
s.t. p ∈ P (21)

If for all p ∈ P the resulting maximum is less than or equal to
zero, the AP sends the “CLOSED” signal (Z(t) = 0) and does
not accept new data. Else, it sets Z(t) = 1 and announces the
chosen p(t).

Cost/Transmission: Every slot t, the AP observes the current
channel state S(t) and backlog U(t) and chooses cost(t) to
be the solution of the following problem:

Max : 2U(t)Φ(cost, S(t))− V cost

s.t. cost ∈ C (22)

The AP then sends out packets according to µ(t) =
Φ (cost(t), S(t)).

The control policy is thus decoupled into separate al-
gorithms for pricing and transmission scheduling. Note
from (21) that a larger U(t) increases the negative term
−2U(t)F (M(t), p) in the optimization metric, and hence
tends to lead to a higher price p(t). Intuitively, such a slow
down of the packet arrival helps alleviate the congestion
in the AP. Note that the metric in (21) can be written as
F (M(t), p)

(
V p− 2U(t)

)
. This is positive only if p is larger

than 2U(t)/V . Thus, we have the following simple fact:
Lemma 1: Under the PTSA algorithm, if 2U(t)/V >

pmax, then Z(t) = 0. �

A. Performance Analysis

In this section we evaluate the performance of PTSA. The
following theorem summarizes the performance results:

Theorem 4: PTSA stabilizes the AP and achieves the fol-
lowing bounds (assuming U(0) = 0):

U(t) ≤ Umax
M=V pmax/2 + Rmax ∀ t (23)

Profitav ≥ Profitopt
av − B̃

V
(24)

where:

Profitav
M= lim inf

t→∞

1
t

t−1∑
τ=0

E {Z(τ)P (τ)R(τ)− cost(τ)}

and where Profitopt
av is the optimal profit characterized by (6)

in Theorem 1, and B̃ is defined in equation (41) of the proof,
and B̃ = O(log(V )).

The V parameter can be increased to push the profit
arbitrarily close to the optimum value, while the worst case
backlog bound grows linearly with V . In fact, we can see
from (21) and (22) that these results are quite intuitive: when
using a larger V , the AP is more inclined to admit packets
(setting p(t) to a smaller value and only requiring p(t) ≥
2U(t)/V ). Also, a larger V implies that the AP is more
careful in choosing the transmission opportunities (indeed,
Φ (cost(t), S(t)) must be more cost effective, i.e. larger than
V cost(t)/2U(t)). Therefore a larger V would yield a better
profit, at the cost of larger backlog.

We first prove (23) in Theorem 4:
Proof: ((23) in Theorem 4) We prove this by induction. It

is easy to see that (23) is satisfied at time 0. Now assume
U(t) ≤ V pmax/2 + Rmax for some integer slot t ≥ 0. We
will prove that U(t + 1) ≤ V pmax/2 + Rmax. We have the
following two cases:

(a) U(t) ≤ V pmax/2: In this case, U(t+1) ≤ V pmax/2+
Rmax by the definition of Rmax.

(b) U(t) > V pmax/2: In this case, 2U(t)/V > pmax.
Hence, by Lemma 1 the AP will decide not to admit any
new data. Therefore U(t + 1) ≤ U(t) ≤ V pmax/2 + Rmax.
�

In the following we prove (24) in Theorem 4 via a Lya-
punov analysis, using the framework of [19]. First define the
Lyaponov function L(U(t)) to be:

L(U(t)) , U2(t) (25)

Define the one-step unconditional Lyapunov drift as
∆(t)M=E{L(U(t + 1))−L(U(t))}. Squaring both sides of (4)
and rearranging the terms, we see that the drift satisfies:

∆(t) ≤ B − E{2U(t)
[
Φ(cost(t), S(t))− Z(t)R(t)

]
} (26)

where B = R2
max + µ2

max. For a given number V > 0, we
subtract from both sides the instantaneous profit (scaled by V )
and rearrange terms to get:

∆(t)− V E
{
Z(t)p(t)R(t)− cost(t)

}
≤ B − E

{
2U(t)Φ(cost(t), S(t))− V cost(t)

}
−E

{
Z(t)

[
V p(t)R(t)− 2U(t)R(t)

]}
(27)

Now we see that the PTSA algorithm is designed to mini-
mize the right hand side of the drift expression (27) over all
alternative control decisions that could be chosen on slot t.
Thus, we have that the drift of PTSA satisfies:

∆P (t)− V E
{
ZP (t)pP (t)RP (t)− costP (t)

}
≤ B − E

{
2UP (t)Φ(cost∗(t), S(t))− V cost∗(t)

}
−E

{
Z∗(t)

[
V p∗(t)R∗(t)− 2UP (t)R∗(t)

]}
(28)
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where the decisions Z∗(t), p∗(t), and cost∗(t) (and the re-
sulting random arrival R∗(t)) correspond to any other feasible
control action that can be implemented on slot t (subject to the
same constraints p∗(t) ∈ P and cost∗(t) ∈ C). Note that we
have used notation ∆P (t), ZP (t), pP (t), RP (t), and costP (t)
on the left hand side of the above inequality to emphasize that
this left hand side corresponds to the variables associated with
the PTSA policy. Note also that, because the PTSA policy has
been implemented up to slot t, the queue backlog on the right
hand side at time t is the backlog associated with the PTSA
algorithm and hence is also denoted UP (t). We emphasize
that the right hand side of the drift inequality (28) has been
modified only in those control variables that can be chosen
on slot t. Note further that R∗(t) is a random variable that
is conditionally independent of the past given the p∗(t) price
and the current value of M(t).

Now consider the alternative control policy STAT ∗ de-
scribed in Corollary 1, which chooses decisions Z∗(t), p∗(t)
and cost∗(t) on slot t as a pure function of the observed M(t)
and S(t) states and yields:

Profitopt
av = Em

{
Z∗(t)R∗(t)p∗(t)} − Es

{
cost∗(t)

}
(29)

λ∗av , Em

{
Z∗(t)R∗(t)

}
≤ µ∗av , Es

{
µ∗(t)

}
(30)

where Profitopt
av is the optimal average profit defined in The-

orem 1, µ∗(t) = Φ(cost∗(t), S(t)), and R∗(t) is the random
arrival for a given p∗(t) and M(t). Recall that Em{} and
Es{} denote expectations over the steady state distributions
for M(t) and S(t), respectively. Of course, the expectations
in (29) and (30) cannot be directly used in the right hand side
of (28) because the M(t) and S(t) distributions at time t may
not be the same as their steady state distributions. However,
regardless of the initial condition of M(0) and S(0) we have:

lim
t→∞

1
t

t−1∑
τ=0

E {Z∗(τ)p∗(τ)R∗(τ)− cost∗(τ)} = Profitopt
av

(31)
Let fP (t) represent a short-hand notation for the left-hand

side of (28), and define g∗(t) as the right hand side of (28),
so that:

g∗(t)M=B − E
{
2UP (t)[µ∗(t)− Z∗(t)R∗(t)]

}
−V E

{
Z∗(t)p∗(t)R∗(t)− cost∗(t)

}
(32)

where we have rearranged terms and have used µ∗(t) to repre-
sent Φ(cost∗(t), S(t)). Thus, the inequality (28) is equivalent
to fP (t) ≤ g∗(t). To compute a simple upper bound on g∗(t),
note that for any integer d ≥ 0, we have:

UP (t) ≤ UP (t− d) + dRmax

UP (t) ≥ UP (t− d)− dµmax

These inequalities hold since the backlog at time t is no
smaller than the backlog at time t − d minus the maximum
departures during the interval from t−d to t, and is no larger
than the backlog at time t−d plus the largest possible arrivals
during this interval. Plugging these two inequalities directly

into the definition of g∗(t) in (32) yields:

g∗(t) ≤ B + 2d(µ2
max + R2

max)
−E

{
2UP (t− d)[µ∗(t)− Z∗(t)R∗(t)]

}
−V E {Z∗(t)p∗(t)R∗(t)− cost∗(t)} (33)

Also note that (by the law of iterated expectations):

E
{
UP (t− d)

[
µ∗(t)− Z∗(t)R∗(t)

]}
= E

{
UP (t− d)E

{[
µ∗(t)− Z∗(t)R∗(t)

]
| χ(t− d)

}}
(34)

where χ(t)M=[M(t), S(t), U(t)] is the joint demand state,
channel state, and queue state of the system. Since M(t) and
S(t) are Markovian and both have well defined steady state
distributions, and the STAT ∗ policy makes p∗(t) and cost∗(t)
decisions as a stationary and random function of the observed
M(t) and S(t) states (and independent of queue backlog),
we see that the resulting processes µ∗(t) and Z∗(t)R∗(t)
are Markovian and have well defined steady state averages.
Further, they converge exponentially fast to their steady state
values [23] (one such example is provided in Appendix B). Of
course, we know the steady state averages are given by µ∗av

and λ∗av , respectively. Therefore there exist positive constants
θ1, θ2, γ1, and γ2 with 0 < γ1, γ2 < 1, such that:

E
{
µ∗(t) | χ(t− d)

}
≥ µ∗av − θ1γ

d
1 (35)

E
{
Z∗(t)R∗(t) | χ(t− d)

}
≤ λ∗av + θ2γ

d
2 (36)

Plugging (35) and (36) into (34) yields:

E
{
UP (t− d)

[
µ∗(t)− Z∗(t)R∗(t)

]}
≥ −E

{
UP (t− d)

[
θ1γ

d
1 + θ2γ

d
2

]}
(37)

where we have used the fact that λ∗av ≤ µ∗av (from (30)).
Plugging (37) directly into (33) yields:

g∗(t) ≤ B1 + 2E
{
UP (t− d)(θ1γ

d
1 + θ2γ

d
2 )

}
−V E {Z∗(t)p∗(t)R∗(t)− cost∗(t)} (38)

where B1
M=B + 2d(µ2

max + R2
max). However, the queue

backlog under PTSA is always bounded by Umax (by (23)
in Theorem 4). We now choose d large enough so that θiγ

d
i ≤

1/(2Umax) for i ∈ {1, 2}. Specifically, by choosing:

d M=

⌈
max
i=1,2

{
log

(
2θiUmax

)
log

(
1/γi

) }⌉
(39)

we have 2Umax[θ1γ
d
1 + θ2γ

d
2 ] ≤ 2. Inequality (38) becomes:

g∗(t) ≤ B1 + 2− V E {Z∗(t)p∗(t)R∗(t)− cost∗(t)} (40)

Now define B̃ as follows:

B̃ M=B1 + 2 = (2d + 1)(R2
max + µ2

max) + 2 (41)

where d is defined in (39). Because Umax = V pmax/2+Rmax

(by (23) in Theorem 4), the value of d is O(log(V )), and hence
B̃ = O(log(V )). Recalling that fP (t) ≤ g∗(t), where fP (t)
is the left hand side of (28), we have:

∆P (t)− V E
{
ZP (t)pP (t)RP (t)− costP (t)

}
≤ B̃ − V E {Z∗(t)p∗(t)R∗(t)− cost∗(t)}
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The above inequality holds for all t. Summing both
sides over τ ∈ {0, 1, . . . , t − 1} and using ∆P (t) =
E

{
L(UP (t + 1))− L(UP (t))

}
, we get:

E
{
L(UP (t))

}
− E

{
L(UP (0))

}
−V

t−1∑
τ=0

E
{
ZP (τ)pP (τ)RP (τ)− costP (τ)

}
≤ B̃t− V

t−1∑
τ=0

E {Z∗(τ)p∗(τ)R∗(τ)− cost∗(τ)}

Dividing by V t, using the fact that L(UP (t)) ≥ 0, L(U(0)) =
0, and taking limits yields:

lim inf
t→∞

1
t

t−1∑
τ=0

E
{
ZP (τ)pP (τ)RP (τ)− costP (τ)

}
≥

Profitopt
av − B̃/V (42)

where we have used (31). The left hand side of the above
inequality is the liminf time average profit of the PTSA
algorithm. This completes the proof of Theorem 4.9 �

B. Demand Blind Pricing

In the special case when the demand function F (m, p) takes
the form of F (m, p) = mF̂ (p), PTSA can in fact choose
the current price without looking at the current demand state
M(t). To see this, note in this case that (21) can be written:

Max : M(t)
[
V F̂ (p)p− 2U(t)F̂ (p)

]
s.t. p ∈ P (43)

Thus we see that the price set by the AP under PTSA
is independent of M(t). So in this case, PTSA can make
decisions just by looking at the queue backlog value U(t).

V. SIMULATION

In this section, we provide simulation results for the PTSA
algorithm. We simulate the same example that we use in
Section III. That is, the system has transmission rate µ =
2.28 for all time (with zero cost), and has a static demand
function F (p) given by (19). We compare two cases of arrival
processes. In the first case, the arrival R(t) is deterministic
and is exactly equal to F (p(t)). In the other case, we assume
that R(t) is a Bernoulli random variable, and satisfies:10

R(t) =
{

2F (p(t)) w.p. 0.5
0 w.p. 0.5 (44)

At each time slot, the AP chooses a price according to (21)
and admits all incoming packets. The simulation is conducted
with control parameters V ∈ {1, 2, 5, 10, 100, 200} and we
run each simulation over 5, 000, 000 timeslots. Figure 3 and 4
show the backlog and the average profit performances.

9In the case when F (m, p) is not necessarily continuous, the same proof
holds with Profit∗av replacing Profitopt

av , where Profit∗av represents the
profit of any particular stationary randomized algorithm. The bound (42) can
then be optimized by taking a supremum over all such Profit∗av .

10For simplicity here, we assume R(t) can take fractional values. Alterna-
tively, we could restrict packet sizes to integral units and make the probabilities
be such that E {R(t) | p(t)} = F (p(t)).
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We see from Fig. 3 that the average backlog grows linearly
in V and the average backlog is smaller than the worst case
bound V pmax/2+Rmax. We also see that the results for both
arrival processes are very close to each other. Fig. 4 shows
the achieved average profit versus the parameter V . We see
that the average profit converges quickly as V grows. The
average profits are almost indistinguishable from the optimal
value when V ≥ 100.

We also observe an interesting fact that in both cases, the
prices chosen by the PTSA algorithm exhibit a “two-value”
property, i.e. the prices switch between values that are either
1 or close to 5.15. This fact is shown in Fig. 5.

In the deterministic arrival case, we observe that the price
jumps from one to the other every time slot with some
occasional “phase inversions,” i.e., the price occasionally stays
at the same level for one more slot and then starts jumping
again. While in the random arrival case, the price sometimes
stays at a value for a few slots before jumping to the other
value, and when the price near 5.15 does not jump to the other
side, it gradually decreases until it makes the jump.

Intuitively, this happens in the random arrival case because
of the following: There is a probability of 1/2 that the AP
gets no new data even if p < 10. If at one slot the AP sets a
price p = 1 but does not get any new data, then the AP only
serves some data at that slot. Since p = 1, it follows that the
AP plans to admit new data. The plan will be preserved at
the next slot, since the AP just sends out some packets and
further reduces its queue. Thus the price would still be 1 in
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the next slot. If instead the AP sets p near 5.15, it in fact
needs to reduce the number of new packets. Thus if the AP
does not get any incoming packet at this slot, it can use that
slot to serve some packets. Therefore in the next slot, it can
lower the price and allow more new data.
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Fig. 5. The chosen prices in the first 50 slots in both cases with V=100

VI. CONCLUSION

In this paper, we first characterized the optimum average
profit for the AP, and proved the “Optimality of Two Prices”
theorem. We then developed a joint pricing and transmission
scheduling algorithm, PTSA, which can achieve any average
profit that is arbitrarily close to the optimum while ensuring
queue backlog is bounded. PTSA uses the admission price
and the business decision as tools to regulate the incoming
traffic. It also provides a parameter V to tradeoff the worst
case backlog with the profit loss. The analysis uses a Lyapunov
drift technique which jointly takes into account the stability
issue and the performance optimization issue.

APPENDIX A – PROOF OF THEOREM 1
Proof: (Part I) We prove the first part by using a similar

analysis as in [18]: Consider any rule for choosing the business
decision Z(t) ∈ {0, 1} and price p(t) ∈ P , and any rule for
choosing cost(t) ∈ C. If the policy stabilizes the AP, then:

lim sup
t→∞

1
t

t−1∑
τ=0

E {Z(τ)p(τ)R(τ)− cost(τ)} ≤ Profitopt
av (45)

where Profitopt
av is defined by the optimization in Theorem 1.

To show this, let Alg1 be a pricing and
scheduling algorithm that stabilizes the queue. Let
{(Z(0), p(0), cost(0)), (Z(1), p(1), cost(1)), . . .} be the
sequence of control decisions used by Alg1 over time. Then
there is a sub-sequence of times {Hi} such that Hi →∞ and
such that the limiting time average expected profit over times
Hi is equal to the lim sup average profit under Alg1 (defined
by the left hand side of (45)). Now define the conditional
average of income and packet rate over H slots:(
Incomem

av(H);λm
av(H)

)M=
1
H

∑H−1
τ=0 E

{(
Z(τ)R(τ)p(τ);Z(τ)R(τ)

)
| M(τ) = m

}
The above can be rewritten as:(
Incomem

av(H);λm
av(H)

)M=
1
H

H−1∑
τ=0

E
{(

Z(τ)F (m, p(τ))p(τ)

;Z(τ)F (m, p(τ)
)
| M(τ) = m

}

Lemma 2: For every H , there exist probabilities φ(m)(H),
α

(m)
k (H) and price values p

(m)
k (H) ∈ P such that:

Incomem
av(H) =

φ(m)(H)
3∑

k=1

α
(m)
k (H)F (m, p

(m)
k (H))p(m)

k (H) (46)

λm
av(H) = φ(m)(H)

3∑
k=1

α
(m)
k (H)F (m, p

(m)
k (H)) (47)

Proof: Define Ψm(Z, p) ,
(
ZF (m, p)p;ZF (m, p)

)
as a function mapping from R2 into R2. Then
(Incomem

av(H), λm
av(H)) is equal to:

1
H

H−1∑
τ=0

E {Ψm(Z(τ), p(τ)) | M(τ) = m}

The above is an expectation over points in the image of
Ψm(Z, p), and hence is in the convex hull of the image.
Hence, it can be expressed as a convex combination of
at most three elements of the image (by Caratheodory’s
theorem). Indeed, note that the image of Ψm(Z, p) con-
sists of two sets: {(0, 0)} and {(pF (m, p), F (m, p)) | p ∈
P}, corresponding to Z=0 and Z=1, respectively. Thus the
convex combination can be expressed as ρ0(H)(0, 0) +∑3

k=1 ρk(H)(p(m)
k (H)F (m, p

(m)
k (H)), F (m, p

(m)
k (H))), so

that
∑3

k=0 ρk(H) = 1 and p
(m)
k (H) ∈ P . Define φ(m)(H) =

1− ρ0(H). If ρ0(H) 6= 1, define α
(m)
k (H) = ρk(H)

1−ρ0(H) for all

k ≥ 1; else if ρ0(H) = 1 define α
(m)
k (H) = 0 for all k ≥ 1,

we see that the lemma follows.
Now define:

(Incomeav(H), λav(H))M=
∑

m∈M
πm(Incomem

av(H), λm
av(H))

Using continuity of F (p, m) and compactness of P and
following the same line of analysis as in [18], we see that
we can find a sub-subsequence {H̃i} of the subsequence of
times {Hi} such that H̃i → ∞ as i → ∞, and there exist
probabilities φ(m), α

(m)
k and price values p

(m)
k ∈ P such that:

p
(m)
k (H̃i) → p

(m)
k , α

(m)
k (H̃i) → α

(m)
k , φ(m)(H̃i) → φ(m)

λm
av(H̃i) → λm

av , F (m, p
(m)
k (H̃i)) → F (m, p

(m)
k ) (48)

It is easy to see that the p
(m)
k values satisfy (13), the φ(m)

probabilities satisfy (11), and the α
(m)
k values satisfy (15).

Further, because {πm} are the steady state values for M(t),
the corresponding λav and Incomeav values satisfy (9) and
(7). Similarly, one can take limiting time average expected
values over the same sequence of times H̃i (possibly passing
to a convergent subsequence if necessary), to define limiting
probabilities β

(s)
k and cost

(s)
k and a limiting time average

service rate µav that satisfy constraints (16), (14), (10), (8).
Finally, as in [18], because Alg1 is stable we can infer that
λav ≤ µav for these particular limiting values. Thus, we
now have a stationary randomized policy that satisfies all
constraints (7)-(16) of the optimization problem of Theorem
1, and yields an average profit that is identical to the lim sup
average profit of Alg1. However, Profitopt

av is defined as
the maximum time average profit over any such stationary



PROC. OF 45TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (INVITED PAPER), SEPT. 2007 10

randomized policy that satisfies the constraints (7)-(16), and
hence (45) holds. The proof of Part I is thus completed.

Proof: (Part II) We want to show that: if Profitopt
av > 0,

then for any arbitrary small ε > 0, the profit Profitopt
av − ε

can be achieved with an algorithm, which yields an average
arrival rate λav and an average transmission rate µav that
satisfy λav < µav .

First let Alg∗ be the stationary randomized algorithm that
solves (6) with Profitopt

av > 0. Now let λ∗av and µ∗av denote
the average arrival rate and the average transmission rate that
Alg∗ yields, let {φm∗} denote the probability values used
by Alg∗, and let Income∗av and Cost∗av denote the average
income and average of Alg∗. We see from (12) that µ∗av ≥ λ∗av .
Since Profitopt

av > 0, we see that λ∗av > 0. Consider the
following algorithm Alg2: Alg2 is a stationary randomized
algorithm that is exactly the same as Alg∗, except that it
uses probability values {φm′} = {ρφm∗}, with some constant
0 < ρ < 1.

It is easy to see that Alg2 will yield the same average
transmission rate µ∗av and average cost Cost∗av since the
business factors do not affect the transmission under both Alg∗

and Alg2. But we can see that under Alg2, the average income
and average input rate become:

IncomeAlg2
av = ρIncome∗av , λAlg2

av = ρλ∗av

Now it is easy to see that λAlg2
av < µ∗av = µAlg2

av and that:

ProfitLoss = Income∗av − IncomeAlg2
av

= (1− ρ)Income∗av

To achieve an average profit no smaller than Profitopt
av − ε

for some ε ≥ 0, we only need:

(1− ρ)Income∗av ≤ ε (49)

Since Income∗av ≤ Rmaxpmax, we see that (49) can easily
be satisfied by choosing ρ ≥ 1− ε

Rmaxpmax
.

Thus we see that Alg2 stabilizes the AP (λAlg2
av < µAlg2

av )
and achieves an average profit ProfitAlg2

av > Profitopt
av − ε.

Also, by taking ε →∞, we see that ProfitAlg2
av → Profitopt

av .
This proves Part II.

APPENDIX B – AN EXAMPLE OF EXPONENTIAL
CONVERGENCE FOR MARKOV PROCESSES

Here we provide a simple example about the exponential
convergence of a Markov process. We consider the two state
Markov chain in Fig. 6. Let the initial distribution be given by
[PON (0), POFF (0)]. It is easy to show that the probabilities
of being in state ON and OFF at time t are given by:

PON (t) =
δ

δ + ε
+

PON (0)ε− POFF (0)δ
δ + ε

(1− δ − ε)t

POFF (t) =
ε

δ + ε
− PON (0)ε− POFF (0)δ

δ + ε
(1− δ − ε)t

We thus see that PON (t) and POFF (t) converge exponentially
fast to their steady state distributions δ

δ+ε and ε
δ+ε .

ON OFF

ε
1-ε

δ
1-δ

Fig. 6. A two state Markov Chain with transition probabilities ε and δ.
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