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Abstract— We consider the problem of optimal scheduling
and routing in an ad-hoc wireless network with multiple traf-
fic streams and time varying channel reliability. Each packet
transmission can be overheard by a subset of receiver nodes,
with a transmission success probability that may vary from
receiver to receiver and may also vary with time. We develop a
simple backpressure routing algorithm that maximizes network
throughput and expends an average power that can be pushed
arbitrarily close to the minimum average power required for
network stability, with a corresponding tradeoff in network delay.
The algorithm can be implemented in a distributed manner using
only local link error probability information, and supports a
“blind transmission” mode (where error probabilities are not
required) in special cases when the power metric is neglected and
when there is only a single destination for all traffic streams.

Index Terms— Broadcast advantage, distributed algorithms,
dynamic control, mobility, queueing analysis, scheduling

I. INTRODUCTION

In this paper, we consider a multi-node, multi-hop wireless
network with “unreliable” channels. Each transmission link
has an associated error probability that may vary with time
due to external factors such as environment changes or user
mobility. Many previous studies assume that accurate channel
information is available so that error probabilities are relatively
small and can be neglected. However, in this work we consider
the opposite case where precise channel information is difficult
or impossible to obtain, but where simple estimates of channel
quality can be made based on limited channel feedback. A
motivating example is an underwater sensor network that uses
acoustic channels with large propagation delays. This is a
particularly challenging environment due to time varying wave
ripple, complex signal reflections between surface and ground,
and large delay spreads [1] [2]. While it may not be practical to
assume that an accurate channel quality can be determined at
the time of packet transmission, it is reasonable to estimate the
error probability based on past signal strength values and/or
ACK/NACK history from previous transmissions.

The problem of unreliable channels is also important in
other contexts, such as mobile networks where knowledge
of which receivers are within transmission range may be
uncertain, or in dense ad-hoc networks where unpredictable
transmissions of other nodes can act as random inter-channel
interference. It is imperative to develop flexible mathematical
models of such networks, and to develop robust networking
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Fig. 1. A multi-hop network with channel errors and multi-receiver diversity.
In this example there is a single destination indicated by the star node. Note
that a “closest-to-the-destination” heuristic might result in data being routed
from node 1 to 2 to 3, resulting in a deadlock.

strategies that exploit all system resources to operate efficiently
in these extreme environments.

In this paper, we design robust algorithms by exploiting
the broadcast advantage of wireless networks. Specifically,
our network model includes the fact that a single packet
transmission might be overheard by a subset of receiver nodes
within range of the transmitter. This creates a multi-receiver
diversity gain, where the probability of successful reception
by at least one node within a subset of receivers can be much
larger than the corresponding success probability of just one
receiver alone. Hence, it is desirable to design flexible routing
algorithms that do not require a single “next hop” receiver
to be specified in advance. Such algorithms can dynamically
adjust routing and scheduling decisions in response to the
random outcome of each transmission.

The wireless broadcast advantage has been used in various
contexts, for example, in [3] for the design of wireless multi-
cast algorithms, and in [4] for the design of minimum energy
disjoint paths. Our model and problem formulation is closest
to the work by Zorzi and Rao in [5], and more recently by
Biswas and Morris in [6], where efficient methods of using
multi-receiver diversity for packet forwarding are explored.
We note that such formulations inevitably involve situations
where the same packet is redundantly distributed over different
network nodes. A fundamental decision is whether to allow the
different versions of the packet to simultaneously propagate
throughout the network, or to designate only a single copy
that is allowed to proceed. The work in [5] considers the
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simple heuristic that shifts packet forwarding responsibilities
to the receiver that is closest to the destination. While this
scheme has many desirable properties, especially for large ad-
hoc networks, it is clear that for a given network of fixed
size, the “closest-to-destination” heuristic neither maximizes
throughput nor minimizes average power expenditure. Further,
this scheme can lead to an undesirable deadlock mode if data is
consistently forwarded to a particular node for which there are
no other next-hop receivers that are closer to the destination
(see Fig. 1). Thus, it is often better to route packets along
paths that temporarily take them further from the destination,
especially if these paths eventually lead to links that are more
reliable and/or that are not as heavily utilized by other traffic
streams. The work in [6] considers a routing heuristic based
on an estimated delivery cost, computed by an estimate of
the expected number of hops required to reach the destination
along a traditional shortest path. However, this method is not
necessarily optimal in terms of energy or throughput.

There are several difficulties associated with developing a
throughput optimal algorithm in this context. First, individ-
ual nodes might only know the error probabilities on their
own outgoing links, and may not know the error rates or
traffic loads on other portions of the network. Second, even
if centralized network knowledge were fully available, an
optimal algorithm would need to specify a contingency plan
for each possible random transmission outcome. For example,
suppose a given node transmits a packet for which there
are k potential receivers. There are 2k possible outcomes
of this single transmission (one for each possible subset of
successful receivers). An optimal algorithm would require a
decision for each possible outcome, perhaps also allowing for
redundant packet forwarding. Hence, the design of an optimal
algorithm must overcome these geometric complexity issues.
This is further complicated if there are multiple simultaneous
packet transmissions and multiple traffic streams sharing the
same network, and if the network topology and link error
probabilities are changing with time.

In this paper, we overcome these challenges with a simple
solution that uses the concept of backpressure routing and
Lyapunov drift. We first show that it is possible to restrict
attention to algorithms that do not allow redundant forwarding,
without loss of optimality. We then show that the optimal
packet commodity to transmit at each network node can
be determined by a backpressure index that compares the
current queue backlog of each commodity to the backlog
in the potential receivers. Once a packet from this optimal
commodity is transmitted, the responsibility of forwarding the
packet to its destination is shifted to the receiver node that
maximizes the differential backlog. Responsibility is retained
by the original transmitter if no suitable receivers are found
on a given transmission attempt.

Backpressure techniques of this type were first applied to
multi-hop wireless networks by Tassiulas and Ephremides
in [7], where throughput optimal algorithms were developed
using Lyapunov drift theory. Lyapunov theory has since been
a powerful mathematical tool for the development of stable
scheduling strategies for wireless networks and switching
systems [7]-[18], including our own work in [15]-[18] that

applies backpressure concepts to solve problems of optimal
power allocation, routing, and fair flow control in wireless
networks with mobility. Related work on energy efficient
wireless scheduling is developed in [19]-[22]. The work in
[7]-[22] does not consider the broadcast advantage of wireless
networks, and assumes that all transmissions are fully reliable.
Lyapunov scheduling for wireless MIMO downlinks with mul-
tiple transmit and receive antennas is considered in [23], and
related MIMO results are developed for channels with errors
in [24] [25]. Recent work in [26] considers backpressure tech-
niques in combination with network coding, and work in [27]
considers backpressure strategies for cooperative transmission
(where multiple nodes can transmit redundant information
simultaneously for a power enhancement at the receiver).
Complexity issues of cooperative communication under the
wireless broadcast advantage are discussed in [28]. We do
not consider network coding or cooperative transmission in
this paper, and restrict attention to the multi-user diversity
problem for networks with errors, as described above. It is
likely that our formulation can be extended to consider more
sophisticated control actions by augmenting the set of decision
options available to the network controller, in which case
redundant packet forwarding may be required for optimality.

In the next section, we develop a simple network model in
terms of (potentially time varying) link error probabilities, and
specify the control decision options for this model. In Section
III, we specify the network capacity and the minimum average
power for stability associated with this model. In Section IV
we develop the dynamic control algorithm, and in Section
VI we extend the formulation to include dynamic resource
allocation with variable rate and power options, where link
error probabilities can depend on transmission decisions.

II. THE BASIC NETWORK MODEL

We consider a timeslotted system with slots normalized to
integral units t ∈ {0, 1, 2, . . .}. There are N network nodes and
L potential transmission links (possibly a single link for each
node pair (a, b)). All data arrives randomly to the network in
packetized units, and we let A

(c)
n (t) represent the number of

packets that exogenously arrive to network node n during slot
t that are intended for delivery to network node c. All packets
destined for a particular node c are defined as commodity c
packets. Arrivals are assumed to be i.i.d. over timeslots, and we
let λ

(c)
n = E{A(c)

n (t)} represent the arrival rate of commodity
c data into source node n (in units of packets/slot). Internal
network queues store packets according to their commodities.
Each packet is assumed to have an appropriate header field
with commodity and packet number identifiers.

We assume that at most one packet can be transmitted
from any given node during a single timeslot, and let µn(t)
represent the number of packets transmitted by node n during
slot t (where µn(t) ∈ {0, 1}). Transmission opportunities are
determined by an underlying random access or time division
multiple access (TDMA) structure, and we let χn(t) represent
a 0/1 process which is 1 if and only if node n is allowed to
transmit during slot t. Each packet transmission is assumed to
expend a constant amount of power Ptran, and is successfully
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received by the other nodes of the network according to
reception probabilities qnk(t) (for n, k ∈ {1, . . . , N}). For
convenience, we define the network topology state process
S(t) as the collective process of all node transmission ca-
pabilities and link conditions at time t, so that transmission
opportunities and link probabilities can be determined as
functionals of S(t) as follows:

χn(t) = χ̂n(S(t))
qnk(t) = q̂nk(S(t))

Let Kn(t) represent the set consisting of all potential
receivers for node n during slot t (which can potentially
change from slot to slot if the network is mobile). The set
Kn(t) can generally contain all N − 1 other network nodes,
although it typically has a much smaller size and consists only
of those nodes within realistic transmission range of node n.
Error events for a single packet transmission can be correlated
over various links, and hence a more complete characterization
of each transmitter n is given by probabilities qn,Ωn(t), where
Ωn is a subset of nodes within the receiver set Kn(t), and
qn,Ωn

(t) represents the probability that the set of all nodes
that successfully receive the packet transmitted by node n
is exactly given by the subset Ωn. This probability is also
determined as a functional of the topology state process:

qn,Ωn
(t) = q̂n,Ωn

(S(t))

The error events of different packet transmissions from dif-
ferent nodes may also be correlated, and these correlations in
principle are also determined by the topology state process
S(t). However, we shall find that these additional correlations
are irrelevant to network capacity and optimal control.

For analytical purposes, the network topology state S(t)
is assumed to take values in a finite (but arbitrarily large)
state space S. We note that the success probabilities of a
given link or set of links are completely determined by the
network topology state process S(t). That is, given S(t), these
probabilities are not affected by the transmission decisions
µn(t) for n ∈ {1, . . . , N}. This assumption is reasonable
if all transmitting nodes use orthogonal signals, or if inter-
channel interference can be approximated as randomly and
independently influencing the channel probabilities. A more
general model where channel probabilities can depend on
transmission decisions is considered in Section VI.

A. A Timing Diagram for One Timeslot

The timing diagram of Fig. 2 illustrates our model of
information exchange between nodes. The events that take
place between a transmitting node n and a potential receiver
node k during a single timeslot are outlined in the diagram. At
the beginning of the timeslot, channel probability information
and any necessary control information is passed between the
two nodes. This can possibly take place over a dedicated
control channel, or might be implemented by appending header
information to packets transmitted on previous slots. Next,
the transmitter node n observes the transmission opportunity
process χ̂n(S(t)). If χ̂n(S(t)) = 0 then node n does not
transmit, while if χ̂n(S(t)) = 1 the node can decide whether

t t+1

sender
node n

receiver
node k

Control
Information Packet Transmission

ACK/NACK
Control
Information

Final
Instructions

Fig. 2. A timing diagram illustrating the events within a single timeslot.

or not it desires to transmit a packet. If it decides to transmit, it
chooses a particular packet and transmits it with power Ptran,
for a fixed amount of time as indicated in the timing diagram.

Every potential receiver node then provides immediate
ACK/NACK feedback to the transmitter, informing the trans-
mitter if the packet was successfully received. The absence
of an ACK signal is considered to be equivalent to a NACK
(this treats the case when the receiver node did not detect
any transmission). The transmitter node accumulates all of
the ACK responses, and then transmits a final message that in-
forms the successful receivers of all other successful receivers.
This final transmission possibly also provides instructions for
future packet forwarding.

The 3-part handshake of the timing diagram (transmission,
ACK/NACK, and final message) is designed to cleanly de-
scribe a system where transmission outcomes are known to all
relevant nodes at the end of a single timeslot. This facilitates
mathematical analysis. However, in practice the last two steps
of the handshake may take place by appending this information
to the packet header of future packet transmissions. This
creates a system with delayed feedback information, which
in principle does not affect throughput optimality (provided
some regularity assumptions hold concerning the timeliness
of the feedback) but may affect end-to-end network delay,
as discussed in more detail in Section VII. Throughout this
paper, we make the idealistic assumption of perfect control
information, so that the control signals themselves are not
subject to errors. In particular, for the timing diagram of Fig.
2, it is assumed that if a packet transmitted at node n was
successfully received at node k, then the channel from k to n
and from n to k is good enough for the remaining parts of the
handshake to be successful. This is a reasonable assumption if
forward and backward channels are relatively similar for the
duration of a timeslot, or if the dedicated control channel is
reliable. The possibility of control channel errors can create
another situation of delayed feedback information, and this is
also briefly discussed in more detail in Section VII.

B. Network Objective and Control Decision Variables

The goal is to design a control algorithm that stabilizes the
network whenever possible. Further, the average power cost
should be as small as possible. Specifically, for a power vector
P = (P1, . . . , PN ), we define the separable cost function
h(P ) = h1(P1) + . . . + hN (PN ), where each component
hn(Pn) is non-negative, continuous, and has the property that
hn(0) = 0. The power expended on each timeslot t is given
by the vector P (t)M=Ptran · (µ1(t), . . . , µN (t)), and the time



CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), INVITED PAPER ON OPTIMIZATION OF COMM. NETWORKS, MARCH 2006 4

average power cost h is defined:

hM= limt→∞
1
t

∑t−1
τ=0 E {h(P (τ))}

Note that choosing h(P ) =
∑N

n=1 Pn coincides with the
objective of minimizing the time average expected power ex-
penditure. Under our simple network model, we have Pn(t) ∈
{0, Ptran} for all t, so that hn(Pn(t)) ∈ {0, hn(Ptran)}.
In this case, the hn(·) function plays only a limited role in
generalizing the minimum average power objective, although
it shall be more meaningful in the extended formulation of
Section VI that considers a continuum of power options.

In Section III we show that throughput and energy optimal-
ity can be achieved without using redundant packet forward-
ing. This allows the following more detailed network queueing
variables and control decision variables to be defined. At
each timeslot t, every network node n makes a transmission
decision µn(t) subject to µn(t) ∈ {0, 1} and µn(t) = 0
whenever χn(t) = 0. It then chooses a packet commodity
to transmit by selecting control variables µ

(c)
n (t) subject to:

µ
(c)
n (t) ∈ {0, 1} ,

∑N
c=1 µ

(c)
n (t) ≤ µn(t) , µ

(c)
c (t) = 0 (1)

That is, µ
(c)
n (t) represents an opportunity for commodity c

packet transmission by node n during slot t. This can be either
0 or 1, but can be 1 for at most one commodity c. We set
µ

(c)
c (t) = 0 as it does not make sense to retransmit a packet

that has already reached its destination. We say that µ
(c)
n (t) is

a transmission opportunity because it is useful to imagine the
possibility of choosing these decision variables independent
of queue backlog. In cases when a transmission opportunity
arises but there is no commodity c packet available, then no
packet is actually transmitted.

We let Hnk(t) represent the random variable that is 1 if a
packet transmitted from node n was successfully received by
receiver k, and zero otherwise. After receiving ACK/NACK
feedback, node n selects a new node to take responsibility for
the packet (possibly choosing itself), and informs its receivers
of the choice. This is done according to control decision
variables β

(c)
nk (t), representing the number of commodity c

packets whose responsibility is shifted from node n to node
k during slot t, where:

β
(c)
nk (t) ∈ {0, 1} , β

(c)
nk (t) ≤ µ

(c)
n (t)Hnk(t)

β
(c)
nn(t) = 0 ,

∑N
k=1 β

(c)
nk (t) ≤ 1 (2)

That is, the β
(c)
nk (t) variables are either 0 or 1, can be 1 only

if a commodity c transmission opportunity occurs on slot t
and Hnk(t) = 1, and can be 1 for at most one receiver node
k (where such a node k is necessarily in the set of potential
receivers Kn(t)). If β

(c)
nk (t) = 0 for all k ∈ Kn(t), then node

n retains responsibility for the packet. It shall be convenient to
also allow these decision variables to be independent of queue
backlog, and so both β

(c)
nk (t) and µ

(c)
n (t) can potentially equal

1, regardless of whether or not node n was holding a commod-
ity c packet that it actually transmitted. In this case, the Hnk(t)
value is viewed as a random variable that is distributed the
same as if a packet had actually been transmitted. The actual
control decisions β

(c)
nk (t) in the case of no packet transmission

are irrelevant as they do not affect the system. However, it
is useful to formally allow choosing non-zero β

(c)
nk (t) values

in this case. Specifically, we find it useful for mathematical
proofs to imagine the existence of a stationary randomized
control policy that chooses decision variables independently of
queue backlog, but where no packets are actually transferred
if these decisions attempt transmission from an empty queue.

Packets are stored at every node according to their commod-
ity, and we define U

(c)
n (t) as the current number of commodity

c packets in node n at the beginning of slot t. The U
(c)
n (t)

process takes values in the set of non-negative integers, and
evolves according to the following queueing dynamics:

U
(c)
n (t + 1) ≤ max

[
U

(c)
n (t)−

∑N
k=1 β

(c)
nk (t), 0

]
+

∑N
a=1 β

(c)
an (t) + A

(c)
n (t) (3)

The expression above is an inequality rather than an equality
because the actual endogenous arrivals to node n may be less
than

∑N
a=1 β

(c)
an (t) if there are little or no actual commodity c

packets transmitted from the other nodes a 6= n. We formally
define U

(n)
n (t) to be zero for all n and all t.

III. NETWORK CAPACITY AND MINIMUM POWER

Here we define the optimal throughput and average power
cost operating points. The network layer capacity region Λ
is defined as the closure of all input rate matrices (λ(c)

n ) that
can be stabilized by the network according to some control
algorithm, perhaps an algorithm that uses redundant packet
forwarding. We note that this notion of capacity assumes that
network control actions are within the scope of the system
model described in Section II, and in particular this model
does not include the possibility of cooperative transmission or
network coding, which can potentially improve performance.

Suppose that the network topology state process S(t) takes
values on a finite state space S, and has well defined time
average probabilities πs for each s ∈ S. For each node n,
let Hn denote the set of all subsets Ωn of {1, . . . , N} − {n}.
For each subset Ωn, recall that q̂n,Ωn

(s) is the probability that
Ωn is exactly the set of all successful receivers of a packet
transmitted by node n, given such a packet is transmitted when
the topology state is given by S(t) = s.

Theorem 1: (Network Capacity and Minimum Cost) The
network capacity region Λ consists of all rate matrices (λ(c)

n )
for which there exist multi-commodity flow variables {f (c)

nk }
together with probabilities α

(c)
n (s), θ

(c)
nk (Ωn) for all n, k, c, all

topology states s ∈ S, and all subsets Ωn ∈ Hn, such that:

f
(c)
ab ≥ 0 , f

(c)
cb = 0 , f (c)

aa = 0 (4)∑
a

f (c)
an + λ(c)

n ≤
∑

b

f
(c)
nb for all n 6= c (5)

∑
c

f
(c)
nk ≤

∑
c

∑
s∈S

πsα
(c)
n (s)

[ ∑
Ωn∈Hn

q̂n,Ωn(s)θ(c)
nk (Ωn)

]
(6)

where (4) holds for all a, b, c ∈ {1, . . . , N}, (6) holds for all
links (n, k), and where the probabilities θ

(c)
nk (Ωn) satisfy for

all Ωn ∈ Hn:

θ
(c)
nk (Ωn) = 0 if k /∈ {Ωn ∪ {n}} ,

∑N
k=1 θ

(c)
nk (Ωn) = 1
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and for all s ∈ S the α
(c)
n (s) probabilities satisfy:∑N

c=1 α
(c)
n (s) ≤ 1 , α

(c)
n (s) = 0 if χ̂n(s) = 0

Furthermore, the minimum average power cost required for
network stability is given by the value h

∗
that minimizes the

following metric:

h
∗

=
∑

s∈S πs

[∑N
n=1

∑N
c=1 α

(c)
n (s)hn(Ptran)

]
over all {f (c)

nk }, α
(c)
n (s), θ(c)

nk (Ωn) variables that satisfy (4)-(6).
The above theorem is similar to the capacity theorem of

[16] [15], where the constraints (4) represent non-negativity
and flow efficiency constraints for the flow variables {f (c)

ab },
the constraints (5) represent flow conservation constraints,
and the constraints (6) represent link constraints for each
link (n, k). Each α

(c)
n (s) value can be interpreted as the

conditional probability that node n transmits a commodity
c packet given that S(t) = s. Each θ

(c)
nk (Ωn) value can be

interpreted as the conditional probability that node n shifts
packet forwarding responsibilities to node k, given that node
n transmits a commodity c packet that is heard exactly by the
subset Ωn of receivers. With this interpretation, the theorem
can be simplified according to the following corollary.

For each input rate matrix λ = (λ(c)
n ) ∈ Λ, we define Φ(λ)

as the minimum power cost h
∗

required to stabilize the system.
Suppose that the input rate matrix is interior to the capacity
region, so that there exists a positive value ε such that (λ(c)

n +
ε1(c)

n ) ∈ Λ, where 1(c)
n is an indicator function equal to 1 if

and only if n 6= c, and zero else.
Corollary 1: If the topology state S(t) is i.i.d. over times-

lots, then a rate matrix (λ(c)
n + ε1(c)

n ) is in the capacity region
Λ if and only if there exists a stationary randomized algorithm
that chooses control decision variables µ

(c)
n (t) and β

(c)
nk (t)

(according to the constraints specified in Section II-B) based
only on the current topology state S(t) (and hence independent
of current queue backlog), to yield:∑

a

E
{

β(c)
an (t)

}
+ λ(c)

n + ε ≤
∑

b

E
{

β
(c)
nb (t)

}
∀n 6= c (7)

E {h(P (t))} = Φ(λ + ε) (8)

where ε = (ε1(c)
n ) and P (t) = Ptran · (µ1(t), . . . , µN (t)).

The expectations in (7) and (8) are taken with respect to the
random topology state S(t) and the random control decisions
based on this topology state, and do not depend on queue
backlog.

The above theorem and its corollary demonstrate that for
any rate matrix (λ(c)

n ) ∈ Λ, there exists a stationary random-
ized algorithm (with probabilities precisely matched to the
network traffic rates and topology state probabilities) that can
achieve a multi-commodity flow that supports the input rate
matrix by routing all data to its proper destination, and that
incurs an average power cost exactly given by h

∗
. However,

even if all topology state probabilities πs were fully known, the
geometric complexity of the optimization problem in Theorem
1 demonstrates the extreme difficulty of directly solving for
the parameters required to implement such a policy.

Theorem 1 is proven by first showing that the constraints
(4)-(6) are necessary for network stability. The sufficiency
part of the theorem is proven by constructing a stabilizing
algorithm for any rate matrix (λ(c)

n ) that is interior to the
capacity region (so that (λ(c)

n + ε1(c)
n ) ∈ Λ, for some positive

value ε). Such stabilizing policies can be constructed with
resulting average power costs that are arbitrarily close to h

∗

(by choosing ε arbitrarily small), with a corresponding tradeoff
in end-to-end network delay. The proof of necessity uses the
finite state space assumption for the topology state variable
S(t), and is related to similar proofs of capacity and minimum
energy in [16] [17] [15] (proof omitted for brevity). Sufficiency
does not require the finite state space property, and is proven
in the next section, where a simple dynamic control algorithm
is constructed that can be implemented in real time.

IV. THE DYNAMIC CONTROL ALGORITHM

We have the following dynamic control algorithm, defined
in terms of a non-negative control parameter V that determines
the degree to which we emphasize power cost minimization.

Diversity Backpressure Routing (DIVBAR): Every timeslot
t, each network node n observes the queue backlogs in each
of its potential receiver nodes k ∈ Kn(t), and observes the
current link channel probabilities associated with its receivers.
Each node n determines if χn(t) = 1 (i.e., it determines if
a transmission opportunity is available on the current slot). If
so, it performs the following operations:

1) For each commodity c and each receiver k ∈ Kn(t),
the differential backlog weights W

(c)
nk (t) are computed as

follows:

W
(c)
nk (t) = max[U (c)

n (t)− U
(c)
k (t), 0] (9)

That is, the weight W
(c)
nk (t) is equal to the difference

between the commodity c backlog in node n and the
commodity c backlog in node k (maxed with zero).

2) The receivers k ∈ Kn(t) are priority ranked according to
the W

(c)
nk (t) weights, so that receivers with larger weights

are ordered with higher priority (breaking ties arbitrarily).
We define k(n, c, t, b) as the node k ∈ Kn(t) with the
bth largest weight W

(c)
nk (t) for commodity c. Thus, by

definition we have:

W
(c)
n,k(n,c,t,1)(t) ≥ W

(c)
n,k(n,c,t,2)(t) ≥ W

(c)
n,k(n,c,t,3)(t) . . .

3) Define φ
(c)
nk(t) as the probability that a packet transmis-

sion from node n is correctly recieved by node k, but
is not received by any other nodes k̃ ∈ Kn(t) that are
ranked with higher priority than node k according to the
commodity c rank ordering of the previous step.

4) Define the optimal commodity c∗n(t) as the commodity
c ∈ {1, . . . , N} that maximizes (breaking ties arbitrarily):

|Kn(t)|∑
b=1

W
(c)
n,k(n,c,t,b)(t)φ

(c)
n,k(n,c,t,b)(t)
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where |Kn(t)| denotes the number of nodes in the set
Kn(t). Define W ∗

n(t) as the resulting maximum value:

W ∗
n(t) =

|Kn(t)|∑
b=1

W
(c∗n)

n,k(n,c∗n,t,b)(t)φ
(c∗n)

n,k(n,c∗n,t,b)(t)

5) If W ∗
n(t) − V hn(Ptran) > 0, node n transmits a packet

of commodity c∗n(t). Else, node n remains idle for slot t.
6) After receiving ACK/NACK feedback about the success-

ful recipients of the transmission, node n shifts respon-
sibility of packet forwarding to the successful receiver k

with the largest positive differential backlog W
(c∗n(t))
nk (t).

If no successful receivers have positive differential back-
log, node n retains responsibility of the packet.

The above algorithm is fully distributed, in that each node
only requires queue backlog and link probability values for
each of its neighboring nodes (i.e., each node within Kn(t)).
The queue backlogs can be passed during the control infor-
mation phase of the timeslot, or can be based on backlog
updates received in the headers of previous packets. We note
that, as in the Dynamic Routing and Power Control (DRPC)
policy of [15] [16], the algorithm can be implemented without
loss of throughput optimality by using out of date backlog
information, provided that some regularity conditions hold
(see Chapter 4.3.6 of [15]). The link error probabilities can
be obtained based on control information exchange at the
beginning of the timeslot (such as a pilot signal and a corre-
sponding SINR measurement, as in [16]), or can be estimated
based on previous ACK/NACK history. The above algorithm
considers the general case where link error events can be
correlated. However, computation of the φ

(c)
nk(t) probabilities

can be greatly simplified under the assumption that error events
are independent over each link. In this case, φ

(c)
nk(t) is obtained

from a simple multiplication of the appropriate success or error
probabilities of the corresponding links.

A. Algorithm Performance

To facilitate mathematical analysis, we assume the network
topology state S(t) is i.i.d. over timeslots.1 Note that this also
includes the case when the topology state does not change
over time. Define the following constant µin

max to be the largest
number of endogenous packet arrivals that any single node can
receive during a timeslot. Further, define A2

max as an upper
bound on the second moment of the total exogenous arrivals
to any node during a timeslot, so that:

maxn E
{(∑N

c=1 A
(c)
n (t)

)2
}
≤ A2

max

We assume the input rate matrix is interior to the capacity
region Λ (so that stability is possible), and define εmax as the
largest scalar such that (λ(c)

n + εmax1(c)
n ) ∈ Λ.

Theorem 2: (Algorithm Performance) If topology state
variations S(t) are i.i.d. over timeslots, and if the input rate
matrix is strictly interior to the capacity region Λ, then the

1The same algorithm can be shown to be throughput optimal for non-i.i.d.
topology state variations using a similar T -slot Lyapunov drift argument, see
[16][15] for such an analysis for a related algorithm.

DIVBAR algorithm stabilizes all queues of the system (and
hence provides maximum throughput). Furthermore, average
network congestion and average power cost satisfies:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E
{

U (c)
n (τ)

}
≤ NB + V hmax

εmax

lim sup
t→∞

1
t

t−1∑
τ=0

∑
n

E {hn(µn(τ)Ptran)} ≤ h
∗

+ NB/V

where hmax
M=

∑
n hn(Ptran), and where B is defined:

B M=
(µin

max + Amax)2 + 1
2

(10)
Note that choosing the control parameter V to be zero leads

to the best congestion bound but does not lead to any power
efficiency guarantees. The parameter V can be increased to
drive average power cost arbitrarily close to the minimum cost
h
∗

required for network stability, with a corresponding linear
increase in average network congestion (and hence, by Little’s
Theorem, average delay).

B. Channel Blind Packet Transmission

In the special case when power optimization is neglected (so
that V = 0) and there is a single destination for all packets,
the DIVBAR algorithm can be significantly simplified to allow
for blind packet transmissions. Specifically, because there is
just a single commodity, the steps (1)-(5) can be avoided and
the algorithm reduces to having node n transmit a packet
whenever possible (i.e., whenever χn(t) = 1). It then receives
ACK/NACK feedback from the various receivers, and chooses
the receiver k with the largest positive differential backlog
Un(t)−Uk(t), breaking ties arbitrarily and retaining the packet
if no receiver has a positive differential backlog. Note that
the backlog of each receiver can simply be included in the
ACK/NACK signal. The algorithm thus achieves throughput
optimality without requiring channel probability information.
This is a remarkable property, and enables perfect throughput
optimality to be achieved even when channel probabilities are
rapidly changing due to dramatic node mobility. No effort is
needed to estimate error rates, or to track them if they vary
with time.

V. PERFORMANCE ANALYSIS

Here we prove Theorem 2. The proof uses the following
result from [15] [17] [18] concerning performance optimal
Lyapunov scheduling, which is a simple but important exten-
sion of classical Lyapunov stability results of [7]-[16]. Let
U(t) = (U (c)

n (t)) represent the matrix of queue backlog
values, and assume these backlogs evolve according to a
given probability law and are affected by a control process
P (t) = (P1(t), . . . , PN (t)). Let h(P ) be any non-negative
function of P , and let h∗ represent a target value for the time
average of h(P (t)). Let L(U) = 1

2

∑
n,c(U

(c)
n )2 represent a

quadratic Lyapunov function, and define the one step Lyapunov
drift ∆(U(t)) as follows:

∆(U(t))M=E {L(U(t + 1))− L(U(t)) | U(t)}
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Theorem 3: (Lyapunov Optimization [15] [17][18]) If there
exist positive constants B, V, ε such that for all timeslots t and
for all queue backlogs U(t), the Lyapunov drift satisfies:

∆(U(t)) + V E {h(P (t)) | U(t)} ≤ B − ε
∑
n,c

U (c)
n (t) + V h∗

then all queues are stable, and time average congestion and
network cost satisfies:∑

n,c

U
(c)
n

M= lim sup
t→∞

1
t

t−1∑
τ=0

∑
n,c

E
{

U (c)
n (τ)

}
≤ B + V h∗

ε

hM= lim sup
t→∞

1
t

t−1∑
τ=0

E {h(P (τ))} ≤ h∗ + B/V

The above theorem suggests the strategy of minimizing
the metric ∆(U(t)) + V E {h(P (t)) | U(t)} every timeslot t,
which is the motivation behind DIVBAR.

A. Proof of the DIVBAR Performance Theorem (Theorem 2)

The conditional Lyapunov drift can be computed from
the queue backlog expression (3) according to standard drift
techniques (see [7][15][16]), and is given by:

∆(U(t)) ≤ NB

−
∑

n,c U
(c)
n (t)E

{∑
k β

(c)
nk (t)−

∑
a β

(c)
an (t)− λ

(c)
n | U(t)

}
where B is defined in (10). Adding the cost metric to both
sides (where P (t) = Ptran · (µ1(t), . . . , µN (t))), we have:

∆(U(t)) + V E {h(P (t)) | U(t)} ≤
NB + V E {h(P (t)) | U(t)}

−
∑
n,c

U (c)
n (t)E

{∑
k

β
(c)
nk (t)−

∑
a

β(c)
an (t)− λ(c)

n | U(t)

}
(11)

The DIVBAR algorithm is designed to choose control actions
that greedily minimize the right hand side of the above
inequality over all possible choices of the control variables
µn(t), µ

(c)
n (t), and β

(c)
nk (t) that satisfy the constraints (1) and

(2). This can be seen by switching the sums to note that:∑
n,c

U (c)
n (t)E

{∑
k

β
(c)
nk (t)−

∑
a

β(c)
an (t) | U(t)

}
=

∑
ab

∑
c

E
{

β
(c)
ab (t) | U(t)

}[
U (c)

a (t)− U
(c)
b (t)

]
which reveals the differential backlog metric (details omitted
for brevity). It follows that the right hand side of (11) under the
DIVBAR algorithm is less than or equal to the corresponding
expression when the control variables are replaced with any
others, and in particular those of the stationary randomized
algorithm from (7) and (8) of Corollary 1, and so:

∆(U(t)) + V E {h(P (t)) | U(t)} ≤
NB + V Φ(λ + ε)−

∑
n,c U

(c)
n (t)ε

The above inequality is in the exact form for application of
the Lyapunov Optimization Theorem (Theorem 3), and we

thus have (noting that Φ(λ + ε) ≤ hmax):∑
n,c

U
(c)
n ≤ (NB + V hmax)/ε (12)

h ≤ Φ(λ + ε) + NB/V (13)

The above performance bounds hold for any value ε > 0 such
that (λ(c)

n +ε1(c)
n ) ∈ Λ, and hence the bounds can be optimized

separately over all such ε. Letting ε → εmax in (12) yields the
congestion bound of Theorem 2, and letting ε → 0 in (13)
yields the power cost bound of Theorem 2. �

VI. VARIABLE RATE AND POWER CONTROL

Consider now a system with variable rate and power con-
trol options, so that every timeslot the transmission rates
µ(t) = (µ1(t), . . . , µN (t)) can be chosen such that µn(t) ∈
{0, 1, . . . , µout

max} for all t (for some pre-specified integer
µout

max), and transmission power to support these rates is chosen
according a power vector P (t) = (P1(t), . . . , PN (t)), where
0 ≤ Pn(t) ≤ Ppeak for all t and all n (for some peak
transmission power Ppeak). Note that the µn(t) variable is
still integer valued, but there is no longer any multiple access
process χn(t) that places further restrictions on µn(t). Define
I(t)M=(µ(t);P (t)) as the collective transmission control de-
cisions of all network nodes during slot t, and define I as
the set of all possible options for I(t). We assume that error
probabilities are functions of I(t) and the current topology
state S(t), so that:

qn,Ωn
(t) = q̂n,Ωn

(I(t), S(t))

If m packets are transmitted by node n, then each of them is
assumed to have the same qn,Ωn

(t) probability. Correlations
in the error events of different packets within the batch of
m are arbitrary and do not affect capacity or optimal control
decisions.

The control objective of stabilizing the network and mini-
mizing h is the same as before. Using similar reasoning, it can
again be shown that it is possible to restrict to algorithms that
do not allow redundant forwarding, without loss of optimality.
A similar Lyapunov argument then leads to the following
optimal policy:

1) Compute W
(c)
nk (t) = max[U (c)

n (t)−U
(c)
k (t), 0] as before.

For each node n and each commodity c, we again rank
order the receivers k ∈ Kn(t) with priority given by
the largest values of W

(c)
nk (t), and define k(n, c, t, b) as

before. We define φ̂
(c)
nk(I(t), S(t)) as the probability that a

packet transmission from node n during slot t is correctly
received by node k, but not received by any other nodes
k̃ ∈ Kn(t) that are ranked with higher priority than node
k according to the commodity c ordering.

2) Define:

Gn,c,t,b(I(t), S(t))M=
W

(c)
n,k(n,c,t,b)(t)φ̂n,k(n,c,t,b)(I(t), S(t))

Choose a network-collaborative control action I∗(t) =
(µ∗(t),P ∗(t)) ∈ I and a collection of optimal com-
modities c∗n(t) ∈ {1, . . . , N} (for all nodes n) that jointly
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maximizes the metric:∑
n

|Kn(t)|∑
b=1

Gn,c∗n(t),t,b(I∗(t), S(t))

− V hn(P ∗n(t))


3) If

∑|Kn(t)|
b=1

[
Gn,c∗n(t),t,b(I∗(t), S(t))

]
> V hn(P ∗n(t)),

node n transmits µ∗n(t) commodity c∗n(t) packets (using
idle fill if there are not enough such packets).

4) After receiving ACK/NACK feedback from each receiver
about each of the µ∗n(t) transmitted packets, node n shifts
responsibility of each packet to the successful receiver
with the largest positive differential backlog W

(c∗n(t))
nk (t).

If no receivers of a given packet have positive differential
backlog, node n retains responsibility of the packet.

Choosing the appropriate control action I(t) = (µ(t);P (t))
effectively optimizes over all multiple access decisions, but
yields an optimization problem in step 2 that can be quite
difficult to solve and may require full centralized coordination.
However, distributed implementation is possible if all nodes
transmit with orthogonal signals, and constant factor through-
put optimality results can be achieved in a decentralized
manner for some networks models (such as the node exclusive
spectrum sharing model of [29]), if power optimization is
neglected and simple random access methods are employed.
We further note that if simple random access methods are
used as in [16][15], and if transmissions are independent
of queue backlog, the random transmissions themselves can
be viewed as part of the channel state, and the algorithm
thus achieves efficient performance with respect to this (sub-
optimal) random access.

VII. DISCUSSION OF EXTENSIONS

We note that delay can be improved by modifying the
differential backlog W

(c)
nk (t) by adding an estimated hop count

differential to the destination, as in the EDRPC policy of
[16] [15]. Optimization of general utility and fairness metrics
can also be achieved in cases when the input rate matrix is
either inside or outside of the capacity region Λ by using
the simple and optimal flow control techniques of [15] [18]
together with DIVBAR. Finally, we note that Lyapunov drift
theorems hold if drift expressions are off by an additive
constant, so that queue backlog estimates can be used in
replacement of actual queue backlogs [15]. This does not effect
throughput optimality, but may increase delay by a constant
proportional to the difference between the true and estimated
backlog values. This enables DIVBAR to be implemented with
delayed feedback, provided the feedback delay is bounded.
A queueing implementation of this would provide separate
storage for data that has been correctly received but has not
yet been acknowledged by a final instruction message from
the transmitter.
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