
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 1

Super-Fast Delay Tradeoffs for Utility Optimal
Fair Scheduling in Wireless Networks

Michael J. Neely

Abstract— We consider the fundamental delay tradeoffs for
utility optimal scheduling in a general network with time varying
channels. A network controller acts on randomly arriving data
and makes flow control, routing, and resource allocation deci-
sions to maximize a fairness metric based on a concave utility
function of network throughput. A simple set of algorithms are
constructed that yield total utility within O(1/V) of the utility-
optimal operating point, for any control parameter V > 0,
with a corresponding end-to-end network delay that grows only
logarithmically in V . This is the first algorithm to achieve such
“super-fast” performance. Furthermore, we show that this is
the best utility-delay tradeoff possible. This work demonstrates
that the problem of maximizing throughput utility in a data
network is fundamentally different than related problems of
minimizing average power expenditure, as these latter problems
cannot achieve such performance tradeoffs.

Index Terms— Fairness, flow control, wireless networks, queue-
ing analysis, optimization, delay, network capacity

I. INTRODUCTION

We consider the fundamental tradeoff between network
utility and network delay for a wireless network with time
varying channels. Traffic arrives to the network randomly,
and we assume input rates exceed network capacity. Such a
situation is typical for modern networks where growing user
demands can quickly overload physical system resources. It
is essential to establish simple solutions that maintain low
network congestion and delay while providing fair access to
all users. In this paper, we evaluate fairness according to a
general concave utility function of the long term throughput
of each user. The goal is to design a controller that drives total
utility towards its maximum value, considering all possible
methods of flow control, routing, and resource allocation,
while ensuring an optimal tradeoff in network delay.

In our previous work on the network fairness problem, we
constructed a set of algorithms indexed by a control parameter
V > 0 that yield total network utility within O(1/V) of the
utility-optimal operating point, with a corresponding end-to-
end delay tradeoff that is linear in V [2] [3]. This result
suggests that delay necessarily increases when utility is pushed
toward optimality, although the existence of such a tradeoff
and the form of the optimal utility-delay curve were left as
open questions. In this paper we explore these questions and
characterize the fundamental tradeoff curve. Specifically, we
consider a particular class of overloaded systems, where user

Michael J. Neely is with the Department of Electrical Engineering, Uni-
versity of Southern California, Los Angeles, CA 90089 USA (email: mjneely
AT usc.edu, web: http://www-rcf.usc.edu/∼mjneely).

This work was presented in part at the IEEE INFOCOM conference,
Barcelona, Spain, April 2006.

This material is based upon work supported in part by the National Science
Foundation under grant OCE 0520324.

ε

ε
ε

ε

λ

Fig. 1. An example network of 5 nodes, and an illustration of a capacity
region (shown in two dimensions) with an input rate vector that strictly
dominates the optimal operating point.

data rates strictly dominate the optimally fair operating point.
We then develop a novel algorithm that deviates from the
optimal utility by no more than O(1/V) while ensuring that
average network delay is less than or equal to O(log(V)).
Further, for the special case of one-hop networks, we prove
that no algorithm can achieve a better asymptotic tradeoff.
This establishes a fundamental relationship between utility and
delay, and demonstrates the unexpected result that logarithmic
delay is possible for systems with any concave utility metric.

Related work in [5] considers the tradeoff between energy
and delay for a single queue that stores data for transmission
over a single fading channel. There, it is shown that any
scheduling policy yielding average energy expenditure within
O(1/V) of the minimum energy required for stability must
also have average queueing delay greater than or equal to
Ω(
√

V). Strategies for achieving this tradeoff are proposed
in [5] using the concept of buffer partitioning, and a recent
result in [33] shows that the same square-root tradeoff applies
to the minimum energy problem for multi-user networks.

In this paper, we combine the technique of buffer parti-
tioning with the recently developed technique of performance
optimal Lyapunov scheduling [2] [3] [4] [34]. Specifically, in
[2] [3] [4] [34] Lyapunov drift theorems are developed that
treat stability and performance optimization simultaneously,
leading to simple and robust control strategies. Here, we
extend the theory to treat optimal utility-delay tradeoffs. The
result is a novel set of Lyapunov scheduling algorithms that
can be used for general networks, without requiring a-priori
knowledge of traffic rates or channel statistics. The algorithms
use weights that aggressively switch ON and OFF in order
to achieve optimal delay tradeoffs. We find that the special
structure of the long-term fairness objective allows for a
“super-fast” logarithmic delay tradeoff that cannot be achieved
in related problems of minimizing energy expenditure.

It is important to distinguish the tradeoffs we explore here
to the capacity-delay tradeoffs recently explored for ad-hoc
mobile networks in [2], [6]-[10]. These tradeoffs are quite

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 2

different, in that they consider the “opposite end” of the per-
formance curve. Indeed, in this paper we consider the impact
of pushing network utility arbitrarily close to optimal, whereas
the work in [2], [6]-[10] considers the opposite scenario where
network utility (which is measured by throughput) is dramat-
ically reduced with the goal of also reducing network delay.
These antipodal ends of the tradeoff curve are conceptually
different and involve completely different analytical methods.

Previous work in the area of utility-optimal scheduling is
closely tied to the theory of convex optimization and La-
grangian duality. In [11], a network flow problem is formulated
in terms of a network utility function, and a technique of intro-
ducing Lagrange multipliers as “shadow prices” was shown to
offer distributed solution strategies. The relationship between
convex duality theory and TCP-like congestion control algo-
rithms is explored in [12]. Convex optimization approaches to
static wireless network problems are considered in [13]-[21].
Stability problems for stochastic networks are treated in [22]-
[28] using Lyapunov stability theory, and recent approaches to
stability and performance optimization are considered in [29]-
[32] using fluid models and/or stochastic gradient algorithms
to transform a stochastic problem into one that is similar to a
static problem. A detailed comparison between static gradient
algorithms and stable Lyapunov scheduling is presented in [27]
[2], and a Lyapunov method for performance optimization is
developed in [2] [3] [4] [34] that yields results similar to those
of stochastic gradient algorithms and also provides explicit
performance and delay bounds.

The stochastic scheduling techniques we use in this paper
are quite new, and go beyond the gradient algorithms sug-
gested by classical optimization theory. The resulting utility-
delay tradeoff that we achieve extends the field of stochastic
optimal networking and demonstrates that significant perfor-
mance gains are possible through simple scheduling policies.

An outline of this paper is as follows: In the next section we
introduce the system model, emphasizing one-hop networks
for simplicity. In Sections III and IV we specify the control
objective and design the network control algorithm. Optimality
of our O(log(V)) delay result for one-hop networks is proven
in Section V. Extensions to multi-hop networks are considered
in Section VI.

II. PROBLEM FORMULATION

Consider a one-hop data network with M links. The net-
work operates in slotted time with timeslots t ∈ {0, 1, 2, . . .},
and every timeslot data randomly enters the network. We
define Am(t) as the amount of new data (in units of bits)
that arrive for transmission over link m during slot t (for m ∈
{1, . . . ,M}). For simplicity of exposition, we assume arrivals
are i.i.d. over timeslots, with arrival rates λm = E {Am(t)}.
These arrival rates are not necessarily known to the network
controller. Let ~λ = (λ1, . . . , λM) represent the vector of
arrival rates for each link. This one-hop system model can be
used, for example, to represent a single transmission node with
M downlink channels, a single access point with M uplink
channels, or a collection of distributed links in a multi-node
ad-hoc network (as in Fig. 1). We assume throughout that
λm > 0 for all sessions m ∈ {1, . . . ,M}.

A. Flow Control

Data is not immediately admitted into the network. Rather,
we assume that data from stream Am(t) is first placed into
a distinct transport layer storage reservoir at its source node
(see Fig. 1). Define Lm(t) as the amount of data currently
stored in the type-m reservoir (for m ∈ {1, . . . ,M}). Every
timeslot, a network controller for stream m makes flow control
decisions by choosing Rm(t), the amount of type m data
allowed to enter the network on slot t. Note that Rm(t) ≤
Am(t) + Lm(t). Any newly arriving data that is not admitted
to the network is placed into the storage reservoir, or dropped
if there is no room for storage. These transport layer storage
buffers can either be infinite (so that no data is ever dropped),
or finite (possibly zero). Of particular interest is the case of
a “size-zero” reservoir, in which case any data that is not
immediately admitted into the network is necessarily dropped.

B. Resource and Rate Allocation

Admitted data from stream m is stored in a network layer
queue to await transmission over link m. Let Um(t) represent
the amount of type-m data (or unfinished work) in network
queue m at the beginning of slot t (in units of bits), and
let µm(t) represent the transmission rate over link m during
slot t (in units of bits/slot).1 The process Um(t) thus evolves
according to the following queueing law:

Um(t + 1) = max[Um(t)− µm(t), 0] + Rm(t) (1)

In wireless systems, the transmission rate might depend on
resource allocation decisions (such as bandwidth or power
allocation), and on time varying and uncontrollable channel
conditions (due to environmental effects, fading, or user
mobility). Hence, for a general system we define ~S(t) =
(S1(t), . . . , SM (t)) as the channel state vector at time t,
representing the uncontrollable properties of the channel that
effect transmission. We assume that the number of channel
states is finite, and that channel state vectors are i.i.d. over
timeslots.2 For each state vector ~S, define Ω~S as the compact
set of all feasible transmission rate vectors ~µ = (µ1, . . . , µM)
available for resource allocation decisions when ~S(t) = ~S.
Every timeslot, the network controller observes the current
channel state vector ~S(t) and chooses a transmission rate
vector ~µ(t) = (µ1(t), . . . , µM (t)) such that ~µ(t) ∈ Ω~S(t).
We assume each set Ω~S has the property that if ~µ ∈ Ω~S then
setting any entry of ~µ to 0 yields a vector that is also in Ω~S .

In networks with general inter-channel interference proper-
ties, this control decision may require full coordination of all
transmission links. However, in cases where channels can be
decoupled into a collection of K independent sets, we have:

Ω~S = Ω1
~S1 × . . .× ΩK

~SK (2)

where ~Sk represents the channel states of data links within
the kth independent set. In such a network, resource al-
location decisions can be made separately within each set.

1It is often convenient to use units of packets and packets/slot in cases
when data arrives according to fixed length packets and all transmission rates
are integral multiples of the packet size.

2Extensions to non-i.i.d. systems can be treated via the methods in [2] [27].

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 3

Alternatively, subsets Ω̃~S can be defined as the effective rate
options available under a particular distributed multiple access
structure specified in advance. Note that for networks without
channel variations, Ω can represent the set of all link activation
vectors available for scheduling decisions, as in [22].

III. NETWORK CAPACITY AND THE CONTROL OBJECTIVE

The network capacity region Λ is defined as the closure of
all arrival rate vectors ~λ that the network can stably support.
Specifically, if we assume that the flow controllers allow all
arriving data directly into the network, then ~λ /∈ Λ implies
that no resource allocation algorithm that meets the system
constraints specified in the previous section can stabilize all
queues of the network. However, if ~λ is strictly interior to Λ,
then there must exist an algorithm that stabilizes the network
and thereby achieves a throughput vector equal to the input
rate vector ~λ. The capacity region Λ is described for a general
multi-hop network in [2] [27] [34], from which the following
special case result for one-hop networks immediately follows.

Theorem 1: (Capacity of One-Hop Networks) An input rate
vector ~λ is in the capacity region Λ if and only if there
exists a stationary randomized resource allocation algorithm
that chooses transmission rates ~µ(t) ∈ Ω~S(t) based only on
the current channel state ~S(t), and satisfies for all slots t:

E {µm(t)} = λm for all m ∈ {1, . . . ,M} (3)
The expectation in (3) is taken over the probability dis-

tribution of the current channel state vector ~S(t) and the
distribution of the randomized resource allocation decisions
that depend on ~S(t). Because channel states are i.i.d. from
slot to slot, the above expectation is the same every timeslot,
and does not depend on system history from previous slots.
The above capacity region is always compact and convex [2].

A. The Control Objective

Let rm represent the long term rate that data from stream
Am(t) is delivered to the network by its flow controller,
and let ~r = (r1, . . . , rM). Clearly rm ≤ λm for all m.
Further, to ensure network stability we must have ~r ∈ Λ.
As a conventional measure of the total utility associated with
supporting a traffic rate rm, for each stream m we define a
utility function gm(r). Utility functions are assumed to be non-
negative, non-decreasing, concave, and to have the property
that gm(0) = 0 for all m (so that zero throughput for a
given stream implies zero utility for that stream). Such utility
functions are often used as a quantitative measure of network
fairness [35] [11] [19] [17] [14] [30] [3] [2], and different
choices of gm(r) lead to different fairness properties [36].
We further assume that all utility functions have finite right
derivatives. The optimal network utility g∗ is defined as the
solution of the following problem:

Maximize:
∑M

m=1 gm(rm) (4)
Subject to: ~r ∈ Λ

rm ≤ λm for all m ∈ {1, . . . ,M}

Note that no control algorithm that stabilizes the network
can achieve an overall utility larger than g∗. The goal is

to develop a joint algorithm for flow control, routing, and
resource allocation that stabilizes the network and yields a
total utility that can be pushed arbitrarily close to the optimal
utility g∗, with a corresponding optimal tradeoff in end-to-end
network delay.

Because the capacity region Λ is compact and the utility
functions are continuous, there exists a (potentially non-
unique) optimal rate vector ~r∗ such that

∑
m gm(r∗m) = g∗.

We refer to such a rate vector as an optimally fair operating
point. Note that if ~λ is strictly interior to the capacity region,
then ~r∗ = ~λ, and hence the exact optimal utility can be
achieved simply by stabilizing the network. This can be
accomplished with finite average delay (for both one-hop and
multi-hop networks) using the DRPC algorithm of [2] [27]
[34]. Hence, the notion of a fundamental utility-delay tradeoff
only makes sense in the case when the input rate vector is
either on the boundary or strictly outside of Λ.

In this paper, we focus on the case when the rate vector is
strictly outside of Λ. More precisely, we shall assume there
exists a positive value εmax and an optimally fair operating
point ~r∗ such that λm ≥ r∗m + εmax for all sessions m ∈
{1, . . . ,M}. Such a scenario occurs, for example, when all
sessions have infinite storage reservoirs that are infinitely
backlogged so that there is always data to send (as in [30]
[29] [19] [11] [21]), or when input rates are sufficiently large
so that the vector ~λ dominates the optimally fair operating
point ~r∗ in each entry (see Fig. 1). Under this assumption, in
the next section we show that a “super-fast” logarithmic delay
tradeoff is possible, improving upon the linear tradeoff shown
to be achievable for all rate matrices in [3].

IV. THE DYNAMIC CONTROL ALGORITHM

To motivate the control algorithm, first note that the opti-
mization problem (4) is equivalent to the following:

Maximize:
∑M

m=1 gm(γm) (5)
Subject to: rm ≥ γm for all m (6)

~r ∈ Λ (7)
rm ≤ λm for all m (8)

The additional linear constraint (6) acts to decouple the
throughput values ~r from the new optimization variables ~γ.
To build intuition, suppose we have a network algorithm
controlling the system that stabilizes all queues and yields well
defined time averages for throughput and transmission rates.
Note that any such algorithm will have a throughput vector
~r that automatically satisfies (7) and (8). Now define µm as
the time average transmission rate offered over link m, and let
µ̂m represent the time average rate that actual data is delivered
over link m (assuming for now that such time averages exist).
Note that µ̂m ≤ µm, where strict inequality is possible due
to “edge effects” that arise when the queue backlog Um(t) is
frequently zero or near-zero so that the offered transmission
rate µm(t) is under-utilized. The time average departure rate
of bits from link m must be less than or equal to the admitted
input rate to this link, and hence:

rm ≥ µ̂m (9)

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 4

However, if we can by some means ensure that edge events
arise very infrequently, then µ̂m ≈ µm, and hence for some
small value δ > 0 we have:

rm + δ ≥ µm (10)

Hence, if we can design a stabilizing control algorithm that
maximizes (5), keeps queues far away from the edge region,
and that satisfies the following constraints for all m:

µm ≥ γm (11)

then from (10) we have that the constraint (6) will be within
δ of being satisfied, and so the resulting network utility will
be close to the optimal utility g∗. Proximity to the optimal
solution thus relies entirely on our ability to avoid edge effects.
We note that this technique of indirectly satisfying inequality
(6) through the inequality (11) is quite novel, as we cannot
achieve “super-fast” delay tradeoffs by working directly with
the inequality (6).

To design such a control policy, we use a novel combination
of stochastic optimal Lyapunov scheduling (developed in [2]
[3] [4] [34]), together with the concept of buffer partitioning
from [5]. In particular, for a particular threshold parameter
Q > 0 (to be determined later), we consider a policy that tends
to decrease the queue backlog Um(t) when this backlog is
greater than or equal to Q, and tends to increase queue backlog
when Um(t) < Q. This ensures stability while also keeping
backlog sufficiently far from the edge region. However, choos-
ing a large value of Q will also directly increase average queue
backlogs within the network. Actually, in this special case
of one-hop networks, we find that it suffices to consider Q
as an absolute threshold, so that network queues Um(t) can
be treated as having finite buffers of size Q. The multi-hop
networking case (treated in Section VI) uses a related method
that does not have finite buffer network queues.

A. Lyapunov Functions and Virtual Queues

Let ~U(t) = (U1(t), . . . , UM (t)) represent the vector of
current queue backlogs, and assume these queues have maxi-
mum buffer size Q, so that the queueing dynamics of (1) are
modified as follows:

Um(t + 1) = min[max[Um(t)− µm(t), 0] + Rm(t), Q] (12)

Thus, Um(t) ≤ Q for all t. Any excess data admitted to the
network layer according to the Rm(t) process but which does
not fit into the network layer queue Um(t) (due to the finite
buffer constraint) is simply placed back into the transport layer
storage reservoir, or dropped if there is no room for transport
layer storage.

For given parameters Q > 0, ω > 0 (to be determined later),
we define the following non-negative Lyapunov function:

L(~U)M=
M∑

m=1

[
eω(Q−Um) − 1

]
(13)

This Lyapunov function achieves its minimum value of
L(~U) = 0 when Um = Q for all m, and increases expo-
nentially when the backlog in any queue deviates from the

Q threshold. Minimizing the drift of this Lyapunov function
from one timeslot to the next thus tends to maintain all queue
backlogs near the Q threshold, and we shall find that the
resulting edge probabilities decay exponentially in Q.

Next, we must ensure that the constraints (11) are satisfied.
To this end. we use the concept of a virtual queue developed
in [4]. For each session m ∈ {1, . . . ,M}, we define a virtual
queue Zm(t) with a dynamic update equation as follows:

Zm(t + 1) = max[Zm(t)− µm(t), 0] + γm(t) (14)

where µm(t) and γm(t) are control decision variables used by
the network controller. Note that the above update equation
can be viewed as the dynamic equation of a discrete time
queue with input process γm(t) and server process µm(t).
Now define time averages γm(t), µm(t) as follows:

γm(t)M=
1
t

t−1∑
τ=0

E {γm(τ)} , µm(t)M=
1
t

t−1∑
τ=0

E {µm(τ)}

Further define µmax as the maximum possible transmission
rate out of any link, considering all possible channel states
and resource allocations.

Lemma 1: If the network controller stabilizes all virtual
queues Zm(t), then:

lim inf
t→∞

[µm(t)− γm(t)] ≥ 0 (15)
Proof: The proof follows directly from the fact that if a

queue with a bounded transmission rate is stable, then the
lim inf of the difference between the time average transmission
rate and arrival rate is non-negative [37].

The above lemma ensures that stabilizing all virtual queues
yields inequalities similar to (11).

B. The Tradeoff-Optimal Control Policy

Assume that exogenous arrivals to any link are bounded by
a value Amax every slot, so that Am(t) ≤ Amax for all t. Let
Rmax be any value greater than or equal to Amax. Recall that
Lm(t) is the current data in transport reservoir m. We have
the following control algorithm, defined in terms of positive
constants ω, Q, V (to be specified later in Section IV-C).

Utility-Delay Optimal Algorithm (UDOA One Hop): Ini-
tialize all virtual queues so that Zm(0) = 0 for all m. The
control policy is decoupled into the following policies for flow
control and resource allocation, implemented every timeslot:
• Flow Control: The flow controller for each link m ob-

serves Um(t) and Zm(t) and makes these decisions:
1) Choose Rm(t) = min[Am(t) + Lm(t), Rmax].
2) Choose γm(t) = γm, where γm solves:

Maximize: V gm(γm)− 2Zm(t)γm

Subject to: 0 ≤ γm ≤ Rmax

The virtual queues Zm(t) are then updated according to
(14), using the γm(t) values computed above and the
µm(t) values computed by the following resource allo-
cation algorithm. The actual queues Um(t) are updated
according to the finite buffer queueing law (12). Note that
any admitted data that would cause the network layer

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 5

queue to exceed its buffer constraint Q is placed back
in the transport layer reservoir, or dropped if there is no
room for storage.

• Resource Allocation: Every timeslot t the network con-
trollers observe the current channel state vector ~S(t) and
allocate transmission rates ~µ(t) = (µ1(t), . . . , µm(t)),
where ~µ(t) solves the following optimization problem:

Maximize:
∑M

m=1 Wm(t)µm

Subject to: ~µ ∈ Ω~S(t)

where: Wm(t)M=− eω(Q−Um(t)) + 2
ω Zm(t)

The flow control and resource allocation layers are de-
coupled, but the algorithms effect each other through key
parameters that are passed between layers. The flow control
algorithm can be implemented separately at each link using
only queue length information of that link. Note that the
computation of γm(t) for each link m is a simple convex
optimization of one variable, and can easily be solved in real
time for any concave utility function.

Note that the resource allocation maximizes a weighted sum
of instantaneous transmission rates, as in [22] [25] [26] [27]. It
may be difficult to precisely implement the resource allocation
algorithm when links are distributed over a multi-node net-
work, although distributed implementations exist when links
can be grouped into independent sets as in (2), and distributed
approximations can be implemented (often to within a constant
factor) using methods similar to those given in [34] [38] [39]
[40] [2] [27]. The particular weights Wm(t) above include
the virtual queues Zm(t), and are designed to complement
the flow control decisions. Below we show that the algorithm
yields a “super-fast” utility-delay tradeoff curve.

C. Algorithm Performance

Let ~r∗ represent an optimally fair operating point that
solves (4). We assume that the arrival rate vector ~λ strictly
dominates the optimally fair operating point ~r∗. Specifically,
we define εmax as the largest value of ε that satisfies ε ≤
min[λm/2, λm − r∗m] for all m ∈ {1, . . . ,M}, and assume
that εmax > 0 (see Fig. 1). To analyze the UDOA algorithm,
it is useful to define δmax as the largest possible change in
the individual queue backlog at any link during a timeslot:

δmax
M=max[Rmax, µmax]

Define time averages Um(t) and rm(t) as follows:

Um(t)M=
1
t

t−1∑
τ=0

E {Um(τ)} , rm(t)M=
1
t

t−1∑
τ=0

E
{
Radmit

m (τ)
}

where Radmit
m (τ) is the amount of data actually admitted to

the network layer queue m during slot t (which is equal to
Rm(t) minus the excess data (if any) that did not fit into the
network layer queue Um(t) due to the finite buffer size Q)).

Theorem 2: (One-Hop UDOA Performance) Fix parameters
V , ε such that V > 0 and 0 < ε ≤ εmax, and choose any
positive value ω that satisfies:

ωδmaxeωδmax ≤ 2ε/δmax (16)

Further define:3

QM=
2
ω

log(V) (17)

Then the UDOA algorithm stabilizes all actual and virtual
queues of the system, and yields:

Um(t) ≤ Q = O (log(V)) for all t

lim inf
t→∞

∑
m

gm (rm(t)) ≥ g∗ −O(1/V)

Proof: See Appendix A.
Because V is an arbitrary control parameter, it can be made

as large as desired, pushing total system utility arbitrarily close
to the optimal utility g∗ with a corresponding logarithmic in-
crease in average congestion (and hence, by Little’s Theorem,
average delay). Note that this performance holds regardless
of the transport layer reservoir buffer size. Thus, a non-zero
reservoir buffer does not contribute to achieving these super-
fast tradeoffs. However, large transport layer reservoirs can be
used in practice to preserve data from individual streams and
maintain FIFO packet admission.

Note that if the ω parameter is chosen as follows:

ω M=
2ε

δ2
max

e−2ε/δmax

then the inequality (16) is necessarily satisfied. This follows
directly from the fact that for any positive value c, the
inequality xex ≤ c is satisfied by the variable x = ce−c.

V. OPTIMALITY OF THE LOGARITHMIC TRADEOFF

Here we show that it is not possible to improve upon
the O(log(V)) delay characteristic, and hence our scheduling
algorithm captures the tightest tradeoff. We again consider a
one-hop network with M links. We further assume the network
has the following characteristics:

1) Flow control reservoirs have zero buffer space, so that
admission/rejection decisions are made immediately upon
packet arrival.4

2) Arrivals are i.i.d. over timeslots and independent of
channel states, and there exists a probability p > 0 that
no new packets arrive from any data stream.

3) Channel states are i.i.d. over timeslots, and there exists
a rate θ and a probability q such that: For each link
m, with probability at least q a channel state arises that
would allow link m to transmit with rate at least θ (if all
resources were to be completely devoted to link m).

4) If it is possible to transmit with rates (µ1(t), . . . , µM (t))
during slot t, then it is also possible to transmit with rates
(µ̃1(t), . . . , µ̃M (t)) during slot t, where µ̃m(t) ≤ µm(t)
for all m ∈ {1, . . . ,M}.

Assume that utility functions gm(r) are differentiable,
strictly increasing, and concave, and that the input rate vector
~λ is finite and outside of the capacity region. Recall that
µmax is the maximum possible transmission rate, and define
β M=minm∈{1,...,M}

dgm(µmax)
dr , which is a lower bound on the

3All log(·) functions in this paper denote the natural logarithm.
4The same result can be proven when all transport layer flow control

reservoirs have finite buffers, but the result is not true in the case when
reservoirs have infinite buffers.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 6

minimum possible slope of any utility function over the rate
region of interest. Note that our assumptions imply that β > 0.
Further, we restrict attention to the class of scheduling policies
that are ergodic with well defined steady state averages.

Theorem 3: If a control policy of the type described above
yields a total utility that differs from the optimal utility by no
more than 1/V , then average congestion must be greater than
or equal to Ω(log(V)).

Proof: Consider an ergodic control policy that yields
total throughput within 1/V of the optimal throughput∑

m gm(r∗m), where (r∗1 , . . . , r∗M) solves (4). Let (r1, . . . , rM)
represent the throughput vector achieved by this policy. Thus:

1/V ≥
∑M

m=1 gm(r∗m)−
∑M

m=1 gm(rm) (18)

Note that (r1, . . . , rM) ∈ Λ, and rm ≤ λm for all m. Because
~λ /∈ Λ, there must be a link k ∈ {1, . . . ,M} such that λk >
rk. Define θ̃ = min[θ, (λk − rk)].

Let U denote the total average bit occupancy in the system.
Define T = 2d2U/θ̃ + Me. Let U1(t), . . . , UM (t) represent
the queue backlogs in a particular slot t. We say that a T slot
interval beginning at time t is an edge interval if the following
sequence of events occurs:
• The total queue backlog U1(t)+. . .+UM (t) in the system

at time t is less than or equal to 2U .
• There are no new arrivals to any queue of the system

during the T slot interval.
• For the first dU1(t)/θ̃e slots, channel states arise that

would allow link 1 to transmit at rate at least θ. For
the next dU2(t)/θ̃e slots, channel states arise that would
allow link 2 to transmit at rate at least θ, and so forth,
so that all links sequentially would be able to transmit
their full starting load, taking up a total of dU1(t)/θ̃e+
. . .+dUM (t)/θ̃e timeslots. This is called the first phase of
the interval. For all remaining timeslots up to T , channel
states arise that would allow the special link k to transmit
at rate at least θ.

Assuming the system is in steady state at the beginning of
an edge interval, by the Markov inequality for non-negative
random variables we have:

Pr[
∑

m Um(t) ≤ 2U] ≥ 1/2

Let δ represent the steady state probability of a particular
set of T slots being an edge interval. We thus have:

δ ≥ 1
2
(pq)T ≥ 1

2
(pq)(4U/θ̃+2M+2) (19)

Note that the number of timeslots in the first phase of an
edge interval satisfies:

M∑
m=1

dUm(t)/θ̃e ≤
M∑

m=1

(Um(t)/θ̃ + 1)

≤ 2U/θ̃ + M

≤ T/2

Hence, this phase takes up at most half of the slots of an
edge interval. Further, if the controller knew in advance that
this was an edge interval, it could clearly schedule so that all
initial backlog is cleared during this first phase. In particular, it

is possible to make a sequence of transmission decisions that
yields a per-slot empirical average transmission rate during the
first T/2 slots that is exactly equal to the per-slot empirical
average throughput of the actual control policy over the full
T slots.

Consider now an alternate transmission strategy that runs
on a “parallel” system with the same channel states: The
timeline t ∈ {0, 1, 2, . . .} is partitioned into successive dis-
joint intervals of T slots. If the current interval is an edge
interval, during the first phase we transmit to yield a per-
slot empirical average transmission rate exactly equal to the
per-slot empirical average throughput attained by the actual
control policy over the full T slots. During the second phase,
we remain idle until slot T/2, after which we transmit only
over link k, with an exact transmission rate of θ̃ until the
T slot interval expires. If the current interval is not an edge
interval, each link transmits with a rate exactly equal to the
amount of bits delivered over the link on that timeslot by the
original policy. Note that this alternate transmission strategy is
non-causal as it requires knowledge of future events to make
the transmission decisions. However, the capacity region of
the system contains all long term average transmission rate
vectors achieved by either causal or non-causal policies [2]
[27], and hence the resulting time average transmission rate
vector (r̂1, . . . , r̂M) achieved by this alternate policy is within
the capacity region Λ.

Further note that:

r̂m = rm for all m 6= k (20)
r̂k = rk + δθ̃/2 (21)

where the second equality follows because, on any edge
interval, the alternate policy yields a total average transmission
rate on link k that is exactly θ̃/2 beyond the link k average
throughput of the control policy over this interval. From (20)
it follows that r̂m ≤ λm for all m 6= k. From (21) it follows
that r̂k ≤ rk + δ min[θ, (λk − rk)] ≤ rk + (λk − rk) and so
r̂k ≤ λk.

It follows that (r̂1, . . . , r̂M) satisfies the constraints of the
optimization problem (4), and so its utility is less than or equal
to the optimal utility. Hence, from (18):

1/V ≥
M∑

m=1

gm(r∗m)−
M∑

m=1

gm(rm)

≥
M∑

m=1

gm(r̂m)−
M∑

m=1

gm(rm)

= gk(rk + δθ̃/2)− gk(rk)

where the last line follows by (20) and (21). Using the
definition of β, we have:

1/V ≥ βδθ̃/2

Using the inequality (19), we have:

1
V
≥ 1

4
βθ̃(pq)(4U/θ̃+2M+2) (22)

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 7

Taking the logarithm of both sides and shifting terms yields:

U ≥ θ̃

4

(
log(V βθ̃/4)
log(1/(pq))

− 2M − 2

)
Hence, average backlog grows at least logarithmically in V .

VI. MULTI-HOP NETWORKS

Consider now a multi-hop network with N nodes. Data
arrives randomly at each node and must be delivered to a
specific other node. We define all data destined for a particular
node c ∈ {1, . . . , N} to be commodity c data, regardless of its
source. Let A

(c)
n (t) represent the amount of new commodity

c bits that exogenously enter node n during timeslot t. The
A

(c)
n (t) process is assumed to be i.i.d. over slots with rate

λ
(c)
n = E

{
A

(c)
n (t)

}
. Let λ = (λ(c)

n) represent the arrival
rate matrix. As before, we assume all data is first placed
into a transport layer storage reservoir, and we let L

(c)
n (t) and

R
(c)
n (t) represent the current commodity c data in the reservoir

at node n, and the amount admitted to the network layer at
node n, respectively. Flow control decisions must satisfy the
constraints R

(c)
n (t) ≤ A

(c)
n (t) + L

(c)
n (t) for all t.

Let S(t) = (Sab(t)) represent the channel state matrix,
specifying the state of all potential links (a, b) between each
node pair (a, b). Let µ(t) = (µab(t)) represent the current
transition rate matrix, chosen such that µ(t) ∈ ΩS(t), where
ΩS(t) specifies the set of all feasible transmission rate matrix
options under channel state S(t).

Let µ
(c)
ab (t) represent routing control variables, specifying

the transmission rate offered to commodity c data over link
(a, b) during slot t. These new control variables satisfy the
following constraints:

∑
c µ

(c)
ab (t) ≤ µab(t) for all (a, b), and

µ
(c)
ab (t) = 0 if (a, b) /∈ Lc, where Lc denotes the set of all links

acceptable for commodity c data to traverse. Note that such
Lc sets can also model one-hop networks by constraining each
traffic session to its appropriate single-hop link. Let U

(c)
n (t)

represent the amount of commodity c bits currently stored in
network node n during slot t. The queueing dynamics satisfy:

U (c)
n (t + 1) ≤ max[U (c)

n (t)−
∑

b

µ
(c)
nb (t), 0]

+R(c)
n (t) +

∑
a

µ(c)
an(t) (23)

Thus, each network queue can receive both exogenous and
endogenous data. Note that µ

(c)
ab (t) may be less than the actual

commodity c data transmitted over link (a, b) during slot t if
there is not enough of this commodity to transmit. We assume
that U

(n)
n (t) = 0 for all t, as data that reaches its destination

is removed from the network. Further, let K represent the set
of all (n, c) pairs for which it is possible to have a non-zero
U

(c)
n (t) value, and let |K| denote the number of such pairs.

We assume that λ
(c)
n = 0 whenever (n, c) /∈ K.

The network capacity region Λ, consisting of all stabilizable
rate matrices λ, is described in [2] [27] [34]. Our goal is to
support an optimally fair throughput matrix, where optimality
is defined according to utility functions g

(c)
n (r). Specifically,

we seek to maximize
∑

(n,c)∈K g
(c)
n (r(c)

n) subject to (r(c)
n) ∈ Λ

and r
(c)
n ≤ λ

(c)
n for all (n, c) ∈ K. Let (r∗(c)n) represent an

optimally fair throughput matrix that solves this problem, and
define g∗ M=

∑
(n,c)∈K g

(c)
n (r∗(c)n). As in the one-hop network

problem, we use auxiliary variables γ
(c)
n and modify the opti-

mization problem to maximizing
∑

(n,c)∈K g
(c)
n (γ(c)

n), with a

new constraint r
(c)
n ≥ γ

(c)
n . Analogous to the one-hop network

inequality (9), we note that: r
(c)
n +

∑
a µ

(c)
an ≥

∑
b µ̂

(c)
nb , where

µ
(c)
ab and µ̂

(c)
ab represent the time average transmission rate

offered to commodity c data over link (a, b), and the time
average rate of actual commodity c data transfered over this
link, respectively. If edge events are rare, then µ

(c)
ab ≈ µ̂

(c)
ab , and

the constraint r
(c)
n ≥ γ

(c)
n is close to being satisfied provided

that we ensure for all (n, c) ∈ K:∑
b

µ
(c)
nb −

∑
a

µ(c)
an ≥ γ(c)

n

which is analogous to the one-hop constraint (11). To satisfy
this constraint, we define virtual queues Z

(c)
n (t) for all (n, c) ∈

K, where Z
(c)
n (0) = 0 and evolves as follows:

Z(c)
n (t+1) = max[Z(c)

n (t)−
∑

b

µ
(c)
nb (t), 0]+γ(c)

n (t)+
∑

a

µ(c)
an(t)

(24)

A. Multi-Hop Assumptions for O(log(V)) Delay Tradeoffs

To establish O(log(V)) delay tradeoffs, it is important to
make the following fully active assumption: If (n, c) ∈ K, then
session A

(c)
n (t) is active with a non-zero input rate λ

(c)
n . That

is, if it is possible to send commodity c data to node n (where
n 6= c), then node n also has its own independent input stream
of commodity c data. This is a reasonable assumption in the
case of one-hop networks, as discussed in earlier sections, as
the network can be defined in terms of only those links that
are active. This assumption also applies to multi-hop networks
for which there are one or more commodities, and all network
nodes are sources of independent traffic streams for each of
these commodities (as in a “uniform all-to-all” situation).

However, the assumption can be quite restrictive for general
multi-hop networks, as it does not include the simple case of a
single node sending data to a single destination over multiple
relay nodes (without having each of these relays also sending
data to the same destination). This is a new assumption and is
not required in the cross layer control algorithms of [2] [3] [34]
that achieve a [O(1/V), O(V)] utility-delay tradeoff. How-
ever, it is essential in our analysis for demonstrating “super-
fast” [O(1/V), O(log(V)] tradeoffs.5 We conjecture that in
particular special cases (such as non-stochastic networks), it is
also possible to achieve logarithmic tradeoffs without this new
assumption, although the general stochastic problem seems
quite difficult and perhaps un-achievable in some cases.

5The original conference version of this paper [1] used this assumption
implicitly in the proofs (where it was assumed that the set of all active sessions
was the same as the set of all valid network queues), but did not state this
assumption explicitly. We would like to thank the reviewers for their helpful
comments that led us to clarify this issue.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 8

B. The Multi-Hop Lyapunov Function

For given parameters Q > 0, ω > 0 (to be determined later),
we define the following bi-modal Lyapunov function:

L(U)M=
∑

(n,c)∈K

[
eω(Q−U(c)

n) + eω(U(c)
n −Q) − 2

]
This Lyapunov function achieves its minimum value of
L(U) = 0 when U

(c)
n = Q for all (n, c) ∈ K, and increases

exponentially when the backlog in any queue deviates from the
Q threshold either to the right or to the left. Let X M=[U,Z] be
the combined system state, and define the Lyapunov function
Ψ(X)M=L(U) +

∑
(n,c)∈K(Z(c)

n)2. Using (23) and (24) the
Lyapunov drift can be calculated in a manner similar to that
of the one-hop network. Specifically, define δ

(c)
n (t) as follows:

δ(c)
n (t)M=

∑
b

µ
(c)
nb (t)−

∑
a

µ(c)
an(t)−R(c)

n (t)

For ε, ω parameters specified in Section VI-C, the drift satisfies
(see [1] for details):

∆(X(t))− V E

 ∑
(n,c)∈K

g(c)
n (γ(c)

n (t)) | X(t)

 ≤ C

−ω
∑

(n,c)∈K

1(c)R
n (t)eω(U(c)

n (t)−Q)
[
E
{

δ(c)
n (t) | X(t)

}
− ε

2

]
−ω

∑
(n,c)∈K

1(c)L
n (t)eω(Q−U(c)

n (t))
[
E
{
−δ(c)

n (t) | X(t)
}
− ε

2

]

−2
∑

(n,c)∈K

Z(c)
n (t)E

{∑
b

µ
(c)
nb (t)−

∑
a

µ(c)
an(t) | X(t)

}

+2
∑

(n,c)∈K

Z(c)
n (t)E

{
γ(c)

n (t) | X(t)
}

−V E

 ∑
(n,c)∈K

g(c)
n (γ(c)

n (t)) | X(t)


for some positive constant C, and where indicator functions
1(c)L

n (t) and 1(c)R
n (t) are defined for all (n, c) ∈ K as follows:

1(c)L
n (t)M=

{
1 if U

(c)
n (t) < Q

0 if U
(c)
n (t) ≥ Q

and 1(c)R
n (t) = 1 − 1(c)L

n (t). That is, if (n, c) ∈ K, then
1(c)L

n (t) and 1(c)R
n (t) take the value 1 if and only if the

corresponding queue backlog is to the “Left” and “Right”
of the Q threshold, respectively. For convenience, for all
(n, c) /∈ K we define 1(c)R

n (t) = 1(c)L
n (t) = Z

(c)
n (t) = 0 for

all t, and g
(c)
n (r) = 0 for all r. This allows the summations

“
∑

(n,c)∈K” in the above drift bound to be replaced with
“
∑N

n=1

∑N
c=1.” Designing a control policy to minimize the

right hand side of this drift expression every timeslot leads to
the following Multi-Hop UDOA Algorithm:

Multi-Hop UDOA Algorithm: The control policy is decou-
pled into the following policies for flow control, routing, and
resource allocation, implemented every timeslot:

• Flow Control: The flow controller at each node n ob-
serves U

(c)
n (t) and Z

(c)
n (t) and makes the following

decisions for each commodity c such that (n, c) ∈ K:
1) If U

(c)
n (t) ≥ Q, then choose R

(c)
n (t) = 0. Next, list all

remaining (n, c) streams at node n in order of increas-
ing U

(c)
n (t), and sequentially assign R

(c)
n (t) to be as

large as possible for the commodities c with the small-
est values of U

(c)
n (t) (noting that R

(c)
n (t) ≤ A

(c)
n (t) +

L
(c)
n (t)), subject to the constraint

∑
c R

(c)
n (t) ≤ Rmax.

2) Choose γ
(c)
n (t) = γ

(c)
n , where γ

(c)
n solves:

Maximize: V g
(c)
n (γ(c)

n)− 2Z
(c)
n (t)γ(c)

n

Subject to: 0 ≤ γ
(c)
n ≤ Rmax

The virtual queues Z
(c)
n (t) are then updated according

to (24), using the γ
(c)
n (t) values computed above and the

µ
(c)
an(t), µ

(c)
nb (t) values computed by the following routing

and resource allocation algorithms.
• Routing: The controller at each node n observes the

queue backlogs of its neighboring nodes, and for each
neighbor node b and each commodity c such that (n, b) ∈
Lc, it computes W

(c)
nb (t), defined as follows:

W
(c)
nb (t)M=

[
1(c)R

n (t)eω(U(c)
n (t)−Q) − 1(c)R

b (t)eω(U
(c)
b (t)−Q)

]
−
[
1(c)L

n (t)eω(Q−U(c)
n (t)) − 1(c)L

b (t)eω(Q−U
(c)
b (t))

]
+

2
ω

[
Z(c)

n (t)− Z
(c)
b (t)

]
(recall that 1(b)R

b (t) = 1(b)L
b (t) = 0, Z

(b)
b (t) = 0 for all

t and b ∈ {1, . . . , N}). The optimal commodity c∗nb(t) is
then chosen as the commodity c∗ that maximizes W

(c)
nb (t)

over all c ∈ {1, . . . , N} such that (n, b) ∈ Lc (ties are
broken arbitrarily). Define W ∗

nb(t)
M=max[W (c∗)

nb (t), 0].
Routing variables are then chosen as follows:

µ
(c)
nb (t) =

{
0 if W ∗

nb(t) = 0 or c 6= c∗nb(t)
µnb(t) otherwise

where the transmission rates µnb(t) are computed by the
resource allocation algorithm below.

• Resource Allocation: Every timeslot t the network con-
trollers observe the current channel state matrix S(t) and
allocate transmission rates (µab(t)) = (µab), where (µab)
solves the following optimization problem:

Maximize:
∑

ab W ∗
ab(t)µab

Subject to: (µab) ∈ ΩS(t)

where the W ∗
ab(t) weights are obtained from the above

routing algorithm.
The flow control algorithm can be implemented separately

at each node using only queue length information and utility
functions associated with that node. The routing algorithm can
also be implemented in a distributed manner provided that
nodes are aware of the backlog levels of their neighbors. It
is interesting to note that if a given node has backlog that
is below the Q threshold, the weights are impacted negatively
which tends to reduce the amount of data transmitted from this

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 9

node and increase the amount of data transmitted to this node.
The opposite occurs in the case when backlog is above the Q
threshold. The resource allocation policy is the most complex
part of the Multi-Hop UDOA algorithm, and is identical to
that of One-Hop UDOA.

C. Algorithm Performance

Assume that exogenous arrivals to any node are bounded by
a value Amax on every timeslot, so that:

∑
c A

(c)
n (t) ≤ Amax

for all n ∈ {1, . . . , N}. Let Rmax be any value greater than or
equal to Amax. We further make the fully active assumption
discussed in Section VI-A. Specifically, we assume that there
is an optimally fair operating point (r∗(c)n) with r

∗(c)
n > 0

for all (n, c) ∈ K, and that the input rate matrix λ strictly
dominates this operating point. Define εmax as the largest
value of ε such that ε ≤ r

∗(c)
n ≤ λ

(c)
n − ε for all sessions

(n, c) ∈ K (see Fig. 1). It is also useful to define δmax as the
largest possible change in the total queue backlog at any node
during a timeslot:

δmax
M=max[Rmax + µin

max, µout
max]

Define time averages U
(c)

n (t) and r
(c)
n (t) as follows:

U
(c)

n (t)M=
1
t

t−1∑
τ=0

E
{

U (c)
n (τ)

}
, r(c)

n (t)M=
1
t

t−1∑
τ=0

E
{

R(c)
n (τ)

}
Theorem 4: (Multi-Hop UDOA Performance) Fix parame-

ters V , ε such that V > 0 and 0 < ε ≤ εmax, and choose any
positive value ω that satisfies:

ωδmaxeωδmax ≤ ε/δmax

Further define:

QM=
2
ω

log(V)

Then the Multi-Hop UDOA algorithm stabilizes all actual and
virtual queues of the system, and yields:

lim sup
t→∞

1
|K|

∑
(n,c)∈K

U
(c)

n (t) ≤ O (log(V))

lim inf
t→∞

∑
(n,c)∈K

g(c)
n

(
r(c)

n (t)
)

≥ g∗ −O(1/V)

Proof: The proof is similar to that of the One-Hop UDOA
algorithm (see [1] for details).

Simulation results illustrating the [O(1/V), O(log(V))] per-
formance of the UDOA algorithm for a simple two-queue
downlink are presented in [1] (omitted here for brevity), where
simple modifications that yield (constant factor) improvements
are also discussed. It was noted that average queue congestion
is quite close to the Q threshold. Further, the magnitude of
Q was chosen to ensure a sufficiently small edge probability.
However, our analysis was conservative and various simula-
tions revealed that queues never re-entered the edge region
after leaving it. Constant factor delay improvements were thus
observed by appropriately decreasing the value of Q, without
significantly effecting the edge probability or network utility.

VII. CONCLUSIONS

This work presents a theory of utility and delay tradeoffs
for general data networks with stochastic channel conditions
and randomly arriving traffic. A novel control technique was
developed and shown to push total system utility arbitrarily
close to the optimal operating point, with a corresponding
logarithmic tradeoff in average end-to-end network delay. The
algorithm is decoupled into separate strategies for flow control,
routing, and resource allocation, and can be implemented with-
out requiring knowledge of traffic rates or channel statistics.
Further, we proved that no other algorithm can improve upon
the logarithmic tradeoff curve. This work establishes a new
and important relationship between utility and delay, and intro-
duces fundamentally new techniques for performance optimal
scheduling. These techniques can likely be applied in other
areas of stochastic optimization and control to yield simple
solutions that offer significant performance improvements.

APPENDIX A — PERFORMANCE ANALYSIS

Here we prove the performance bounds expressed in The-
orem 2 for the One-Hop UDOA control algorithm. We first
review a central result from [2] [3] [4] [34] concerning
performance optimal Lyapunov analysis, presented here in a
modified form. Consider any queueing network with queue
backlogs expressed as a vector ~X(t) = (X1(t), . . . , XM (t)).
Let ~R(t) = (R1(t), . . . , RM (t)) represent an associated con-
trol process confined to some compact control space. Let g(~r)
be any non-negative, concave utility function, and let g(~r∗)
represent a target utility value for the time average of the
~R(t) process. Define gmax as the maximum of g(~R(t)) over
the control space. Let Ψ(~X) be a non-negative function of the
queue backlog vector. We call Ψ(~X) a Lyapunov function, and
define the conditional Lyapunov drift ∆(~X(t)) as follows:

∆(~X(t))M=E
{

Ψ(~X(t + 1))−Ψ(~X(t)) | ~X(t)
}

Lemma 2: (Lyapunov Drift with Performance Optimiza-
tion) If there exist positive values B, ε, V and a non-negative
function f(~X) such that every timeslot t and for all possible
~X(t), the conditional Lyapunov drift satisfies:

∆(~X(t))− V E
{

g(~R(t)) | ~X(t)
}
≤ B − εf(~X(t))− V g(~r∗)

then we have:

lim sup
t→∞

1
t

t−1∑
τ=0

E
{

f(~X(τ))
}

≤ B + V gmax

ε

lim inf
t→∞

g(r1(t), . . . , rM (t)) ≥ g(~r∗)−B/V

where

rm(t) M=
1
t

t−1∑
τ=0

E {Rm(τ)} for m ∈ {1, . . . ,M}

Proof: The proof is almost identical to the proofs of similar
statements in [2] [3] [4] [34], and is omitted for brevity.

If V is a free control variable, then the lemma shows that
total utility can be pushed arbitrarily close to the target utility
value, with a corresponding linear increase in the time average

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 10

of f(~X(t)). Below we construct a Lyapunov function and
show that the UDOA control law yields a drift similar to the
form given in the lemma above.

A. Computing the Drift
Define ~X(t)M=[~U(t); ~Z(t)] as the collective state of the

actual and virtual queues of the system. Consider the Lyapunov
function L(~U) defined in (13), and let ∆L(~X(t)) represent
the conditional drift. Note that this is a function of the full
system state because control decisions that effect the drift
can, in general, depend on both ~U(t) and ~Z(t). To compute
∆L(~X(t)), for notational convenience we define the following
set of variables δm(t):

δm(t)M=µm(t)−Rm(t) (25)

Note by definition that |δm(t)| ≤ δmax.
Lemma 3: For any ω > 0, we have:∑M

m=1 eω(Q−Um(t+1)) ≤ M

+
∑M

m=1 eω(Q−Um(t))
[
1 + ωδm(t) + ω2δ2

max

2 eωδmax

]
Proof: From the finite buffer queueing law (12) we have:

Um(t + 1) ≥ min[Um(t)− δm(t), Q]

We thus have:

e−ωUm(t+1) ≤ e−ωQ + e−ωUm(t)eωδm(t)

≤ e−ωQ +

e−ωUm(t)

[
1 + ωδm(t) +

ω2δ2
max

2
eωδmax

]
where the final inequality follows by the Taylor expansion
of eωδ , noting that |δm(t)| ≤ δmax. Summing the above
inequality over all links m and multiplying by eωQ proves
the lemma.

Lemma 4: If ω satisfies (16), then:

∆L(~X(t)) ≤ M

−ω
∑

m eω(Q−Um(t))
[
E
{
−δm(t) | ~X(t)

}
− ε
]

Proof: Note that if ω satisfies (16), then:
ω2δ2

max

2
eωδmax ≤ ωε

Substituting this inequality into the expressions of Lemma 3
and shifting terms yields the result.

Lemma 4 establishes the drift of the Lyapunov function
L(~U(t)) associated with the actual queues of the system. Now
let ~Z(t) = (Z1(t), . . . , ZM (t)) represent the vector of virtual
queue processes, and define an additional Lyapunov function
H(~Z(t)) as follows:

H(~Z(t))M=
M∑

m=1

(Zm(t))2

Define ∆H(~X(t)) as the conditional drift of the Lyapunov
function H(~Z(t)). Using the update equation (14) for the
Zm(t) queues together with a standard computation for
quadratic Lyapunov drift, we have (see, for example, [34]):

∆H(~X(t)) ≤ M(µ2
max + R2

max)

−2
∑
m

Zm(t)E
{

µm(t)− γm(t) | ~X(t)
}

(26)

B. Controlling the Drift

Define an aggregate Lyapunov function Ψ(~X(t)) =
L(~U(t))+H(~Z(t)), and let ∆(~X(t)) represent the conditional
drift. Thus:

∆(~X(t))− V E
{∑

m gm(γm(t)) | ~X(t)
}

= ∆L(~X(t))

+∆H(~X(t))− V E
{∑

m gm(γm(t)) | ~X(t)
}

where we have subtracted the same term from both sides
of the above equality. Using the bounds on ∆L(~X(t)) and
∆H(~X(t)) given in Lemma 4 and in (26), we have:

∆(~X(t))− V E

{∑
m

gm(γm(t)) | ~X(t)

}
≤ MB

−ω
∑
m

eω(Q−Um(t))
[
E
{
−δm(t) | ~X(t)

}
− ε
]

−2
∑
m

Zm(t)E
{

µm(t)− γm(t) | ~X(t)
}

−V E

{∑
m

gm(γm(t)) | ~X(t)

}
(27)

where B M=1 + µ2
max + R2

max.
The UDOA algorithm is derived directly from the drift

bound (27). Indeed, the flow control and resource allocation
algorithms of UDOA were constructed specifically to minimize
the right hand side of (27) over all possible choices of
the control variables γm(t), µm(t), and Rm(t). We show
this in more detail below by isolating the control variables
corresponding to each layer of the algorithm.

Flow Control: Isolating the γm(t) variables that occur on
the right hand side of (27), we have:

E
{

2Zm(t)γm(t)− V gm(γm(t)) | ~X(t)
}

The UDOA flow control algorithm minimizes these terms for
each link m by choosing γm(t) to maximize V gm(γm) −
2Zm(t)γm over 0 ≤ γm ≤ Rmax.

Likewise, isolating the Rm(t) variables in (27) using the
definition δm(t)M=µm(t)−Rm(t) from (25), we have:

E
{

Rm(t) | ~X(t)
}

ω
[
−eω(Q−Um(t))

]
These terms are negative and hence are minimized by the
UDOA algorithm that selects the largest Rm(t) that satisfies
the constraint Rm(t) ≤ min[Am(t) + Lm(t), Rmax]. In par-
ticular, this flow control policy yields a lower drift expression
than any randomized flow control policy that chooses Rm(t)
as a random fraction of the current arrivals Am(t).

Resource Allocation: Isolating the µm(t) variables in the
right hand side of (27) (using the definition of δm(t)) we have:∑

m

E
{

µm(t)
∣∣∣ ~X(t)

}[
−2Zm(t) + ωeω(Q−Um(t))

]
which is minimized by the UDOA algorithm over all possible
choices of the transmission rate vector subject to the current
channel condition: ~µ(t) ∈ Ω~S(t).

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 11

C. Computing Time Averages

As the UDOA algorithm chooses control variables
γm(t), µm(t), Rm(t) that minimize the right hand side of
the drift expression (27), we can establish a simpler bound
by plugging in decision variables γ∗m(t), µ∗m(t), R∗

m(t) corre-
sponding to alternative control policies.

To this end, consider the simple alternative flow control
policy of choosing R∗

m(t) = Am(t) for all m and all t (so
that all new arrivals are immediately admitted), and choosing
γ∗m(t) = 0, µ∗m(t) = 0 for all m and all t. It follows that
E
{
−δ∗m(t) | ~X(t)

}
= E {Am(t)− 0} = λm for all m. Thus,

plugging these alternative control decisions into the right hand
side of the drift bound (27) preserves the inequality and yields:

∆(~X(t))− V E

{∑
m

gm(γm(t)) | ~X(t)

}
≤ MB

−ω
∑
m

eω(Q−Um(t)) [λm − ε] (28)

The above inequality is in the exact form for application of
Lemma 2 (Lyapunov Optimization), and hence:

lim sup
t→∞

1
t

t−1∑
τ=0

∑
m

(λm−ε)E
{

eω(Q−Um(t))
}
≤ MB + V gmax

ω

(29)

D. Deriving the Edge Probability Bound

Define αE
m(t)M=Pr[Um(t) < µmax], and note that:

E
{

eω(Q−Um(t))
}
≥ αE

m(t)eω(Q−µmax)

It follows that eω(Q−Um) ≥ αE
meω(Q−µmax), where:

eω(Q−Um) M= lim sup
t→∞

1
t

t−1∑
τ=0

E
{

eω(Q−Um(t))
}

αE
m

M= lim sup
t→∞

1
t

t−1∑
τ=0

αE
m(t)

Using this inequality together with (29) yields:

αE
m ≤

[
MB + V gmax

ω(λm − ε)

]
eωµmaxe−ωQ

≤
[
MB + V gmax

ω(λm/2)

]
eωµmax

1
V 2

= O(1/V) (30)

where we have used the fact that Q = 2
ω log(V) and that

ε ≤ εmax ≤ λm/2.

E. Deriving the Utility Bound

We now consider an alternative choice of control vari-
ables γ∗m(t), µ∗m(t), R∗

m(t) to derive the utility bound. Let
~r∗ represent the optimal solution of (4). Because ~r∗ ∈ Λ,
we know by Theorem 1 that there must exist a stationary
randomized resource allocation policy that chooses variables
µ∗m(t) independently of queue backlog, and yields:

E
{

µ∗m(t) | ~X(t)
}

= r∗m for all m ∈ {1, . . . ,M} (31)

Now consider the flow control policy that chooses:

γ∗m(t) = r∗m for all t and all m (32)

Further, consider the flow control algorithm that makes inde-
pendent probabilistic admission decisions R∗

m(t) every times-
lot and for each m as follows:

R∗
m(t) =

{
Am(t) with probability pm

0 otherwise

where pm = (r∗m + ε)/λm. These are valid probabilities
because of the assumption that r∗m +ε ≤ λm for all m. Hence,
we have:

E
{

R∗
m(t) | ~X(t)

}
= r∗m + ε (33)

Using (33) and (31) in the definition of δm(t) (given in (25)),
we have: E

{
−δ∗m(t) | ~X(t)

}
= r∗m + ε − r∗m = ε. Plugging

these alternative decisions (including (32) and (31)) into the
right hand side of the drift expression (27) thus yields:

∆(~X(t))− V E

{∑
m

gm(γm(t))
∣∣∣ ~X(t)

}
≤ MB

−V
∑
m

gm(r∗m)

Using Lemma 2 on the above drift expression yields:

lim inf
t→∞

∑
m

gm(γm(t)) ≥
∑
m

gm(r∗m)− MB

V
(34)

where γm(t)M= 1
t

∑t−1
τ=0 E {γm(τ)}.

We now use the following lemmas relating γm(t) and rm(t)
(where rm(t)M= 1

t

∑t−1
τ=0 E

{
Radmit

m (τ)
}

).
Lemma 5: All virtual queues are stable and satisfy:

Zm(t) ≤ V g′m(0)/2 + Rmax for all t
Lemma 6: Under UDOA, we have:

lim sup
t→∞

max[γm(t)− rm(t), 0] ≤ µmaxαE
m

Proof: (Lemma 5) To show that the virtual queues are
bounded, note that γm(t) is chosen to maximize V gm(γ) −
2Zm(t)γ over 0 ≤ γ ≤ Rmax. It follows that γm(t) = 0
whenever 2Zm(t) > V g′m(0). It follows from (14) that Zm(t)
cannot further increase if this condition is satisfied, so that
Zm(t) ≤ V g′m(0)/2 + Rmax, proving Lemma 5.

Proof: (Lemma 6) Define time average edge probability
αE

m(t) as follows: αE
m(t) = 1

t

∑t−1
τ=0 Pr[Um(τ) < µmax]. It

is not difficult to show (see [1] for details):

rm(t) ≥ µm(t)− αE
m(t)µmax (35)

However, because all virtual queues are stable (Lemma 5), we
have that the lim inf expression (15) from Lemma 1 holds.
Substituting (35) into (15) yields:

lim inf
t→∞

[
rm(t) + µmaxαE

m(t)− γm(t)
]
≥ 0 (36)

The inequality (36) directly implies that:

lim sup
t→∞

(γm(t)− rm(t)) ≤ µmaxαE
m

which implies the conclusion of the lemma.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 8, PP. 1489-1501, AUG. 2006 12

Now define ν to be the largest right derivative of any utility
function. We thus have for all m:

gm(rm(t)) = gm (γm(t)− [γm(t)− rm(t)])
≥ gm(γm(t))− ν max[0, γm(t)− rm(t)]

We thus have:∑
m

gm(rm(t)) ≥
∑
m

gm(γm(t))

−ν
∑
m

max[0, γm(t)− rm(t)]

Taking the lim inf and using Lemma 6 and (30) yields:

lim inf
t→∞

∑
m

gm(rm(t)) ≥ lim inf
t→∞

∑
m

gm(γm(t))−O(1/V)

≥
∑
m

gm(r∗m)−O(1/V)

where the final inequality follows by (34). This proves the
utility bound and completes the proof of Theorem 2.

REFERENCES

[1] M. J. Neely. Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks. Proceedings of IEEE INFOCOM, April 2006.

[2] M. J. Neely. Dynamic Power Allocation and Routing for Satellite
and Wireless Networks with Time Varying Channels. PhD thesis,
Massachusetts Institute of Technology, LIDS, 2003.

[3] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. Proceedings of IEEE INFOCOM,
March 2005.

[4] M. J. Neely. Energy optimal control for time varying wireless networks.
Proceedings of IEEE INFOCOM, March 2005.

[5] R. Berry and R. Gallager. Communication over fading channels with
delay constraints. IEEE Transactions on Information Theory, vol. 48,
no. 5, pp. 1135-1149, May 2002.

[6] M. J. Neely and E. Modiano. Improving delay in ad-hoc mobile networks
via redundant packet transfers. Proc. of the Conference on Information
Sciences and Systems, Johns Hopkins University: March 2003.

[7] M. J. Neely and E. Modiano. Capacity and delay tradeoffs for ad-hoc
mobile networks. IEEE Transactions on Information Theory, vol. 51,
no. 6, pp. 1917-1937, June 2005.

[8] A. El Gammal, J. Mammen, B. Prabhakar, and D. Shah. Throughput-
delay trade-off in wireless networks. IEEE Proc. of INFOCOM, 2004.

[9] S. Toumpis and A. J. Goldsmith. Large wireless networks under fading,
mobility, and delay constraints. IEEE Proceddings of INFOCOM, 2004.

[10] X. Lin and N. B. Shroff. The fundamental capacity-delay tradeoff in
large mobile ad hoc networks. Purdue University Tech. Report, 2004.

[11] F.P. Kelly, A.Maulloo, and D. Tan. Rate control for communication
networks: Shadow prices, proportional fairness, and stability. Journ. of
the Operational Res. Society, 49, p.237-252, 1998.

[12] S. H. Low. A duality model of tcp and queue management algorithms.
IEEE Trans. on Networking, Vol. 11(4), August 2003.

[13] L. Xiao, M. Johansson, and S. Boyd. Simultaneous routing and resource
allocation for wireless networks. Proc. of the 39th Annual Allerton Conf.
on Comm., Control, Comput., Oct. 2001.

[14] D. Julian, M. Chiang, D. O’Neill, and S. Boyd. Qos and fairness
constrained convex optimization of resource allocation for wireless
cellular and ad hoc networks. Proc. INFOCOM, 2002.

[15] P. Marbach. Priority service and max-min fairness. IEEE Proceedings
of INFOCOM, 2002.

[16] P. Marbach and R. Berry. Downlink resource allocation and pricing for
wireless networks. IEEE Proc. of INFOCOM, 2002.

[17] R. Berry, P. Liu, and M. Honig. Design and analysis of downlink
utility-based schedulers. Proceedings of the 40th Allerton Conference
on Communication, Control, and Computing, Oct. 2002.

[18] B. Krishnamachari and F. Ordonez. Analysis of energy-efficient, fair
routing in wireless sensor networks through non-linear optimization.
IEEE Vehicular Technology Conference, Oct. 2003.

[19] J. W. Lee, R. R. Mazumdar, and N. B. Shroff. Downlink power
allocation for multi-class cdma wireless networks. IEEE Proceedings of
INFOCOM, 2002.

[20] R. Cruz and A. Santhanam. Optimal routing, link scheduling, and
power control in multi-hop wireless networks. IEEE Proceedings of
INFOCOM, April 2003.

[21] M. Chiang. Balancing transport and physical layer in wireless multihop
networks: Jointly optimal congestion control and power control. IEEE
J. Sel. Area Comm., Jan. 2005.

[22] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transacations on Automatic Control,
Vol. 37, no. 12, Dec. 1992.

[23] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel
queues with randomly varying connectivity. IEEE Trans. on Inform.
Theory, vol. 39, pp. 466-478, March 1993.

[24] P.R. Kumar and S.P. Meyn. Stability of queueing networks and
scheduling policies. IEEE Trans. on Automatic Control, Feb. 1995.

[25] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, and P. Whiting.
Providing quality of service over a shared wireless link. IEEE Commu-
nications Magazine, 2001.

[26] M. J. Neely, E. Modiano, and C. E. Rohrs. Power allocation and routing
in multi-beam satellites with time varying channels. IEEE Transactions
on Networking, Feb. 2003.

[27] M. J. Neely, E. Modiano, and C. E Rohrs. Dynamic power allocation and
routing for time varying wireless networks. IEEE Journal on Selected
Areas in Communications, January 2005.

[28] E. M. Yeh and A. S. Cohen. Throughput optimal power and rate
control for multiaccess and broadcast communications. Proc. of the
International Symposium on Information Theory, June 2004.

[29] X. Liu, E. K. P. Chong, and N. B. Shroff. A framework for opportunistic
scheduling in wireless networks. Computer Networks, vol. 41, no. 4, pp.
451-474, March 2003.

[30] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless networks
using queue-length-based scheduling and congestion control. IEEE
Proceedings of INFOCOM, March 2005.

[31] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Queueing Systems, vol. 50, pp. 401-457,
2005.

[32] J. W. Lee, R. R. Mazumdar, and N. B. Shroff. Opportunistic power
scheduling for dynamic multiserver wireless systems. IEEE Transactions
on Wireless Communications, vol. 5, no.6, pp. 1506-1515, June 2006.

[33] M. J. Neely. Optimal energy and delay tradeoffs for multi-user wireless
downlinks. Proceedings of IEEE INFOCOM, April 2006.

[34] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, Vol. 1, no. 1., pp. 1-149, 2006.

[35] F. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 1997.

[36] A. Tang, J. Wang, and S. Low. Is fair allocation always inefficient. IEEE
Proceedings of INFOCOM, March 2004.

[37] M. J. Neely. Energy optimal control for time varying wireless networks.
IEEE Transactions on Information Theory, July 2006.

[38] X. Lin and N. B. Shroff. The impact of imperfect scheduling on cross-
layer rate control in wireless networks. IEEE Proceedings of INFOCOM,
2005.

[39] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through
maximal scheduling in wireless networks. Proceedings of 43rd An-
nual Allerton Conference on Communication Control and Computing,
September 2005.

[40] L. Bui, E. Eryilmaz, R. Srikant, and X. Wu. Joint asynchronous
congestion control and distributed scheduling for multi-hop wireless
networks. IEEE Proc. of INFOCOM, 2006.

Michael J. Neely received B.S. degrees in both
Electrical Engineering and Mathematics from the
University of Maryland, College Park, in 1997. He
was then awarded a 3 year Department of Defense
NDSEG Fellowship for graduate study at the Mas-
sachusetts Institute of Technology, where he received
an M.S. degree in 1999 and a Ph.D. in 2003, both in
Electrical Engineering. During the Summer of 2002,
he worked in the Distributed Sensor Networks group
at Draper Labs in Cambridge. In 2004 he joined the
faculty of the Electrical Engineering Department at

the University of Southern California, where he is currently an Assistant
Professor. His research is in the area of stochastic network optimization
for satellite and wireless networks, mobile ad-hoc networks, and queueing
systems. Michael is a member of Tau Beta Pi and Phi Beta Kappa.

