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Abstract

Satellite and wireless networks operate over time varying channels that depend on atten-
uation conditions, power allocation decisions, and inter-channel interference. In order to
reliably integrate these systems into a high speed data network and meet the increasing
demand for high throughput and low delay, it is necessary to develop efficient network
layer strategies that fully utilize the physical layer capabilities of each network element. In
this thesis, we develop the notion of network layer capacity and describe capacity achiev-
ing power allocation and routing algorithms for general networks with wireless links and
adaptive transmission rates. Fundamental issues of delay, throughput optimality, fairness,
implementation complexity, and robustness to time varying channel conditions and chang-
ing user demands are discussed. Analysis is performed at the packet level and fully considers
the queueing dynamics in systems with arbitrary, potentially bursty, arrival processes.

Applications of this research are examined for the specific cases of satellite networks
and ad-hoc wireless networks. Indeed, in Chapter 3 we consider a multi-beam satellite
downlink and develop a dynamic power allocation algorithm that allocates power to each
link in reaction to queue backlog and current channel conditions. The algorithm operates
without knowledge of the arriving traffic or channel statistics, and is shown to achieve
maximum throughput while maintaining average delay guarantees. At the end of Chapter
4, a crosslinked collection of such satellites is considered and a satellite separation principle
is developed, demonstrating that joint optimal control can be implemented with separate
algorithms for the downlinks and crosslinks.

Ad-hoc wireless networks are given special attention in Chapter 6. A simple cell-
partitioned model for a mobile ad-hoc network with N users is constructed, and exact
expressions for capacity and delay are derived. End-to-end delay is shown to be O(N), and
hence grows large as the size of the network is increased. To reduce delay, a transmission
protocol which sends redundant packet information over multiple paths is developed and
shown to provide O(v/N) delay at the cost of reducing throughput. A fundamental rate-
delay tradeoff curve is established, and the given protocols for achieving O(N) and O(v/N)
delay are shown to operate on distinct boundary points of this curve.

In Chapters 4 and 5 we consider optimal control for a general time-varying network. A
cross-layer strategy is developed that stabilizes the network whenever possible, and makes
fair decisions about which data to serve when inputs exceed capacity. The strategy is
decoupled into separate algorithms for dynamic flow control, power allocation, and routing,
and allows for each user to make greedy decisions independent of the actions of others. The



combined strategy is shown to yield data rates that are arbitrarily close to the optimally
fair operating point that is achieved when all network controllers are coordinated and have
perfect knowledge of future events. The cost of approaching this fair operating point is an
end-to-end delay increase for data that is served by the network.
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