
Appendix A

Convexity in Queueing Systems

In this chapter we examine a work conserving ∗/ ∗ /1 queue and develop fundamental

monotonicity and convexity properties of unfinished work and packet waiting time in the

queue as a function of the packet arrival rate λ. The “*/*” notation refers to the fact that

the input process has arbitrarily distributed and correlated interarrival times and packet

lengths. (This differs from the standard GI/GI description, where interarrival times and

packet lengths are independent and identically distributed).1 The arrival process consists of

the superposition of two component streams: an arbitrary and uncontrollable background

input of the ∗/∗ type, and a rate-controllable packet stream input (Fig. A-1). The rate-

controllable stream contains a collection of indistinguishable ∗/∗ substreams, and its rate is

varied in discrete steps by adding or removing these substreams as inputs to the queue. We

show that any moment of unfinished work is a convex function of this input rate. Under

the special case of FIFO service, we show that waiting time moments are also convex.

µ

(Uncontrollable 
 background input)

X(t)

θ(t)

1
2

M

Collection of Controllable
Inputs {X  , X  , ..., X   }M21

Figure A-1: A work conserving queue with server linespeed µ, a ∗/∗ background input θ(t),
and rate-controllable ∗/∗ inputs X(t) = {X1(t), . . . , XM (t)}.

1We avoid the ambiguous notation G/G/1, as different texts use this to mean either ∗/ ∗ /1 or GI/GI/1.

215



We then extend the convexity result to address the problem of optimally routing input

streams over a parallel collection of N queues with different linespeeds (µ1, ..., µN ). We show

that cost functions consisting of convex combinations of unfinished work moments in each

of the queues are convex in the N -dimensional rate tuple (λ1, ..., λN ). In the symmetric case

where the N queues are weighted equally in the cost function and have identical background

processes, this convexity result implies that the uniform rate allocation minimizes cost. In

the case of an asymmetric collection of N parallel queues, we present a sequentially greedy

routing algorithm that is optimal.

The convexity results and optimization methods are extended to treat queues with

time-varying linespeeds (µ1(t), ..., µN (t)). We show that the amount of unprocessed bits in

the multi-queue system remains convex in the input rate vector (λ1, ..., λN ). However, we

demonstrate that waiting times are not necessarily convex for general time varying linespeed

problems. For simplicity of exposition, we postpone the time-varying analysis until Section

A.6.

Convexity properties of single and parallel collections of queues have been developed

previously with respect to various parameters and with various assumptions about the

nature of the input processes and service time processes. In [82], queues with a large

number of i.i.d. input streams are analyzed in the large deviations regime, and the buffer

requirement to meet a specified overflow rate is shown to be convex in the server rate µ.

The result is extended in [83] to address more general input processes. In [59] a convexity

theory of “multi-modular functions” is developed and used to establish an optimal admission

control sequence for arrivals to an exponential server, given that a fixed ratio of packets

must be accepted. Extensions to queues and tandems with fixed batch arrivals are treated

in [4] [2].

In [112] [101], the authors analyze the expected packet occupancy in tree networks of

deterministic service time queues. It is shown that expected occupancy of any interior queue

of the tree is a concave function of the multiple exogenous input rates, while occupancy

in queues on the edge of the network is shown to be convex. Convexity properties of

parallel GI/GI/1 queues with packet-based probabilistic “Bernoulli” routing are developed

in [56] [25] [66], where it is shown under various models and independence assumptions that

backlog moments in each queue are convex functions of the Bernoulli splitting probability,

and hence uniform Bernoulli splitting minimizes expected backlog in homogeneous systems

216



among the class of all Bernoulli splittings. A related result for homogeneous systems in [80]

shows that uniform splitting is optimal for arbitrary arrivals in a system of parallel queues

with equal exponential servers (i.e., ∗/M inputs), and stochastically minimizes the total

workload at every instant of time.

Our treatment of the convexity problem for streams of ∗/∗ inputs is an important

feature, since packets from a single source often must be routed together to maintain pre-

dictability and to prevent out-of-order delivery. Such situations occur, for example, when

we have N streams carrying voice traffic from individual users. In this case, convexity

properties are considered with respect to the integer number of streams routed to a queue.2

However, we also treat the packet-based routing method of [56] [25] [66] [80] in a more gen-

eral (yet simpler) context. Rather than emphasizing the differences between packet-based

and stream-based routing, we discover a fundamental similarity. We consider packet-based

routing of a general ∗/∗ input stream whose rate can be split according to a continuous

rate parameter, using a splitting method such as the probabilistic “Bernoulli” splitting in

[56] [25] [66] [80]. We find that convexity for this general packet-based routing problem is

a consequence of our stream-based results.

Our analysis is carried out by introducing a new function of the superposition of two

input streams that we call the blocking function. Properties of the blocking function are

developed by examining sample paths of work conserving queues, and each property corre-

sponds to an intuitive comparison of two different queueing system configurations. These

properties are then used to establish the convexity and optimal routing results. As a special

case of this analysis applied to the problem of routing over a homogeneous set of queues,

we obtain the uniform splitting optimality result of [56] [25] [66] under the more general

context of ∗/∗ inputs (as well as time varying server rates). The analytical techniques used

to prove the results in this chapter are novel and can likely be used in other contexts.

In the next section, we review related work in the area of convexity and monotonicity

in queueing systems. In Section A.2 we define the blocking function. In Section A.3 we

establish convexity properties of unfinished work and waiting time with respect to a discrete

rate parameter corresponding to adding an integer number of indistinguishable ∗/∗ streams

as inputs to a queue. Convexity properties in terms of a continuous rate splitting parameter

2This problem is related to general admission control problems, where convexity properties are essential
to establishing the structural properties of an optimal policy, see [128].

217



are developed in Section A.4, and in Section A.5 we consider example applications to the

problem of optimal routing over a parallel set of queues. Time varying server rates are

treated in Section A.6.

A.1 Related Work on Monotonicity and Convexity in Queue-

ing Systems

It is often possible to use stochastic inequalities to compare the relative performance of two

different queueing systems, even in cases where the exact performance of both systems is

unknown or has no closed form analytical expression. For example, Stoyan develops a simple

monotonicity result in [129], where it is shown that if a Markov process X1(t) has a step-by-

step transition probability distribution that is stochastically larger3 than the corresponding

transition distribution for another process X2(t), and if the initial value X1(0) for the first

process is greater than or equal to the initial value of the second, then at any particular

instant of time t∗ the random variable X1(t∗) is stochastically greater than or equal to

the random variable X2(t∗). For queueing systems, such Markov processes correspond to

queues with Poisson inputs and independent service times (so called “M/GI/1” queues), and

the monotonicity theorem establishes the classical result that if two queues with identical

exponential servers and service rates λ1 and λ2 are compared, then at every instant of time

the number of packets in the first queue is stochastically less than the number in the second

whenever λ1 ≤ λ2 and the initial backlog of the first queue is less than or equal to that of

the second.

Ross develops a similar monotonicity result in [119] by using the max(a− b, 0) operator

to propogate waiting time distributions in a GI/GI/1 queue that is initially empty. It is

shown that if two queues with the same arrival and service rates are compared, the waiting

times in the first queue will be stochastically less than the waiting times in the second

whenever the interarrival times and service times of the first queue are stochastically less

bursty than the second. Baccelli and Brémaud present similar monotonicity results with

respect to the unfinished work in a GI/GI/1 queue [see Ex. 4.2.6, pp.283 in [7]], and to the

waiting time process in a queue where successive arrival and service time vectors (αn, σn)

3A random variable X is said to be stochastically greater than a random variable Y if Pr[X > z] ≥
Pr[Y > z] for all z. See [119] for an illuminating treatment of the subject of stochastic dominance and
convex ordering relations.

218



are independent but perhaps differently distributed for all n [see Ex. 4.4.7, pp.306 in [7]].

Similar statements for systems driven by doubly-stochastic Poisson processes are given in

[26]. These results demonstrate that regular (less bursty) sequences are better in terms of

reducing queue congestion. Indeed, in [64] it is shown that any moment of waiting time in a

general ∗/ ∗ /1 queue, that is, a queue general ergodic arrivals and packet lengths, is greater

than the corresponding moment if the arrival process is replaced by a periodic stream of

the same rate, or if the packet lengths are replaced by fixed lengths equal to the sequence

average.

A related result by Hajek in [59] establishes the optimal packet acceptance rule for an

arrival stream (with independent interarrival times) to a queue with an exponential server,

in the case when a fixed ratio of packets must be accepted. The result is generalized to

non-exponential servers in [4] [2].

The effect of regularizing traffic is used in [45] to show that round robin routing is the

optimal “backlog-blind” strategy for routing an arbitrary arrival sequence to two parallel

queues with homogeneous exponential servers (the authors also show that Join the Shortest

Queue routing is optimal for backlog-aware strategies). Similar round robin optimality

results are shown in [90] for routing to a parallel set of homogeneous queues with i.i.d. service

times that have an “increasing failure rate” property, and in [89] for queues with random

and homogeneous server outages. Likewise, round robin is shown to be optimal in [3] for

routing to parallel homogeneous tandems under a service time independence assumption—

namely, that the service times of a packet routed to tandem 1 are independent of the service

times it would experience if routed to tandem 2. We note that round robin is not optimal

for general input processes with potentially correlated packet lengths. Indeed, consider a

Poisson stream arriving to a system of two queues with identical server rates. If packet

lengths alternate between short packets and long packets, then round robin is among the

worst of all possible routing strategies. Similar counterexamples can be constructed for

stationary service time processes where successive packet lengths are negatively correlated.

Discussions of various routing policies, including backlog-unaware probabilistic routing

and backlog-aware Join-the-Shortest-Queue routing are provided in [17]. Shortest queue

results similar to [45] are developed in [145] [146] for multiple homogeneous queues, in [135]

for homogeneous queues with finite buffers, and in [110] for heterogeneous queues with

finite buffers. Load balancing techniques for various symmetric systems with memoryless

219



properties of either service times, interarrival times, or both are considered in [145] [25]

[80] [56]. Approximation techniques are developed in [32] for heterogeneous systems, and

approaches to optimal routing using convex optimization are described in [14] [21] [130] [19]

[22].

The prior works that are most directly related this chapter are the convexity results

given in [25] [56] [66] for queues with independence assumptions, and the uniform Bernoulli

routing result of [80] developed for general arrival streams to homogeneous exponential

servers. These results are based on the theory of majorization and Schur-convex functions,

described, for example, in [123] [24]. Our approach is quite different and enables general

analysis of both stream based routing as well as a large class of probabilistic splitting

methods (including Bernoulli splitting), and does not require independence assumptions

on the input traffic. Furthermore, our analysis is self-contained and is based on easily-

understood properties of queueing systems.

A.2 The Blocking Function For ∗/ ∗ /1 Queues

Consider a work conserving queue with a single server that can process packets at a constant

line speed of µ bits/second (Fig. A-2). Variable length packets from input stream X flow

into the queue and are processed at the single server according to any work-conserving

service discipline (e.g., FIFO, LIFO, Shortest Packet First, GPS, etc.). The input stream

is characterized according to two random processes: (i) The sequence {ak} of inter-arrival

times, and (ii) The sequence {lk} of packet lengths.

We assume the processes {ak} and {lk} are ergodic with arrival rate λ and average

packet length E {L}, respectively. In general, inter-arrival times may be correlated with

each other as well as jointly correlated with the packet length process. We maintain this

generality by describing the input to the queue by the single random process X(t), which

represents the amount of bits brought into the queue as a function of time. As shown in

Fig. A-2, a particular input X(t) is a non-decreasing staircase function. Jumps in the X(t)

function occur at packet arrival epochs, and the amount of increase at these times is equal

to the length of the entering packet.

For a given queue with input process X(t), we define the unfinished work process UX(t)

as the total amount of unprocessed bits in the queueing system (buffer plus server) as

220



t

µX

t

X(t)

l2

l3

l1

a2a1 a3

slope = −µ
U  (t)X

Figure A-2: A work conserving ∗/ ∗ /1 queue, and typical sample paths of accumulated and
unfinished work.

a function of time. Note that for a system with a processor of rate µ and an amount of

unfinished work UX(t), the quantity UX(t)/µ represents the amount of time required for the

system to empty if no other packets were to arrive. We assume the queue is initially empty

at time t = 0. It is clear that UX(t) is the same for all work conserving service disciplines. It

is completely determined by X(t) as well as the server linespeed µ. An example unfinished

work function UX(t) is shown in Fig. A-2. Notice the triangular structure and the fact that

each new triangle emerges at packet arrival times and has a downward slope of −µ.

We define the superposition of two input streams X1(t), X2(t) as the sum process X1(t)+

X2(t). We make the following sample path observation, which holds for any arbitrary set

of sample paths:

Observation 1: For all times t, we have:

UX1+X2(t) ≥ UX1(t) + UX2(t) (A.1)

Thus, for any two inputs X1 and X2, the amount of unfinished work in a work conserving

queueing system with the superposition process X1 + X2 is always greater than or equal to

the sum of the work in two identical queues with these same processes X1 and X2 entering

them individually. This is illustrated in Fig. A-3.

221



X2 +

2X (t)

1X (t) µ

U   (t)

1X (t)

2X (t)

µ

µ

X1+X2U           (t) U   (t)X1

Figure A-3: A queueing illustration of the non-negativity property of the blocking function.

Proof. (Observation 1) We compare the two system configurations of Fig. A-3. Since

UX1+X2(t) is the same for all work conserving service disciplines, we can imagine that packets

from the X1 stream have preemptive priority over X2 packets. The queueing dynamics of

the X1 packets are therefore unaffected by any low priority packets from the X2 stream.

Thus, the UX1+X2(t) function can be written as UX1(t) plus an extra amount extra X2(t)

due to the X2 packets, as shown in Fig. A-4. This extra amount (represented as the striped

region in Fig. A-4) can be thought of as the amount of unfinished work remaining in a

queue with the X2 input stream alone, where the server goes on idle “vacations” exactly

at times when UX1(t) is nonzero. Clearly, this unfinished work is greater than or equal to

the unfinished work there would be if the server did not go on vacations—which is UX2(t).

Thus:

UX1+X2(t) = UX1(t) + extra X2(t) ≥ UX1(t) + UX2(t)

t
�������������������������������������������������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�
�
�

�
�
�

�
�
�

�
�
� 2X

1X  

Figure A-4: An example sample path of the unfinished work function UX1+X2(t) in a system
where X1 packets have preemptive priority.

This observation places a lower bound on the unfinished work UX1+X2(t) in terms of its

222



component streams. We note that Baccelli et. al. give an upper bound in terms of different

component streams [see prop. 2.11.6, pp. 164 in [7]]. Specifically, in [7] it is shown that the

unfinished work at the time of the nth arrival is less than or equal to the unfinished work

at the time of the kth arrival plus the unfinished work at the time of the nth arrival in a

system where the first n− k original arrivals are removed, for any k ∈ {1, . . . , n}.

The simple observation (A.1) motivates the following definition:

Definition 1. The Blocking Function βX1,X2(t) between two streams X1 and X2 is the

function:

βX1,X2(t)
M=UX1+X2(t)− UX1(t)− UX2(t) (A.2)

Thus, the blocking function is a random process that represents the extra amount of

unfinished work in the system due to the blocking incurred by packets from the X1 stream

mixing with the X2 stream.

Lemma 1. The blocking function has the following properties for all times t:

βX1,X2(t) ≥ 0 (Non-negativity)

βX1,X2(t) = βX2,X1(t) (Symmetry)

βX1+X2,X3(t) ≥ βX1,X3(t) (Monotonicity)

The non-negativity lemma above is just a re-statement of (A.1), while the symmetry

property is obvious from the blocking function definition. Below we prove the monotonicity

property.

Proof. (Monotonicity) From the definition of the blocking function in (A.2), we find that

the monotonicity statement is equivalent to the following inequality at every time t:

UX1+X2+X3(t)− UX1+X2(t)− UX3(t) ≥ UX1+X3(t)− UX1(t)− UX3(t)

Cancelling and shifting terms, it follows that we must prove:

UX1+X2+X3(t) + UX1(t) ≥ UX1+X2(t) + UX1+X3(t) (A.3)

We have illustrated (A.3) in Fig. A-5. We thus prove that the sum of the unfinished

work in Systems A and B of Fig. A-5 is greater than or equal to the sum in A′ and B′.

223



2

X3

X1

X1+X2U          (t)  +  U          (t)X1+X2+X3  U                  (t)  +  U    (t)X1 X1+X3

X
µ

µ
B

A
X1
X2
X3

X1

µ

µ

A’

B’

X1

Figure A-5: A queueing illustration of the monotonicity property of the blocking function.

In a manner similar to the proof of Observation 1, we give packets from both the X1

and X2 streams preemptive priority over X3 packets. The queues of Fig. A-5 can thus be

treated as having servers that take “vacations” from serving X3 packets during busy periods

caused by the other streams. Comparing the A and A′ systems, as well as the B and B′

systems, we have:

UX1+X2+X3(t) = UX1+X2(t) + extra in System A(t) (A.4)

UX1+X3(t) = UX1(t) + extra in System B′(t) (A.5)

where extra in System A(t) represents the amount of unfinished work from X3 packets

in a queue whose server takes vacations during busy periods caused by the X1 and X2

streams. Likewise, extra in System B′(t) represents the amount of unfinished work from

X3 packets when vacations are only during X1 busy periods. Since busy periods caused by

the X1 stream are subintervals of busy periods caused by the combined X1 + X2 stream,

the X3 packets in System A experience longer server vacations, and we have:

extra in System A(t) ≥ extra in System B′(t) (A.6)

Using (A.4)-(A.6) verifies (A.3) and concludes the proof.

Intuitively interpreted, the monotonicity property means that the amount of blocking

incurred by the (X1+X2) process intermixing with the X3 process is larger than the amount

incurred by the X1 process alone mixing with the X3 process.

These three lemmas alone are sufficient to develop some very general convexity results

for unfinished work in ∗/ ∗ /1 queues. It seems reasonable to suspect that the same three

lemmas can be re-formulated in terms of packet occupancy (rather than unfinished work)

224



when all packets have FIFO service. More precisely, suppose that NX(t) represents the

number of packets in a FIFO queueing system with input stream X(t). We can define the

Occupancy Blocking Function αX1,X2(t) in a manner similar to (A.2):

Definition 2. The occupancy blocking function αX1,X2(t) between two streams X1 and X2

is the function:

αX1,X2(t)
M=NX1+X2(t)−NX1(t)−NX2(t) (A.7)

With this new definition of blocking in terms of packet occupancy, it can be shown

that, for FIFO service, the non-negativity and symmetry properties still hold (αX1,X2(t) ≥

0, αX1,X2(t) = αX2,X1(t)). However, in Chapter Appendix A.B we furnish a counterexample

demonstrating that, even under FIFO service, the occupancy monotonicity property does

not hold for general variable length service time systems.

Such an example relies heavily on the fact that we have variable length packets. Indeed,

in Chapter Appendix A.D it is shown that if all packets have fixed lengths L and service

is non-preemptive work conserving, then the packet occupancy blocking function αX1,X2(t)

satisfies the non-negativity, symmetry, and monotonicity properties for all time.

A.3 Exchangeable Inputs and Convexity

In this section and the next, we use the non-negativity, symmetry, and monotonicity prop-

erties to show that any moment of unfinished work in a ∗/ ∗ /1 queue is a convex function

of the input rate λ. To do this, we must first specify how an arbitrary input process can be

parameterized by a single rate value. The parameterization should be such that an input

stream of rate 2λ can be viewed as being composed of two similar streams of rate λ. Oth-

erwise, it is clear that the convexity result may not hold. Indeed, consider an input stream

X1(t) delivering bursty data at rate λ, and another stream X2(t) also delivering data at

rate λ according to some other, less bursty process. If the X1(t) and X2(t) processes are

sequentially added as inputs to a queue, the expected increment in unfinished work due to

the additional X2(t) input may not be as large as the initial increment due to the X1(t)

input. This happens if the X2(t) process is much smoother than X1(t), or if it is constructed

to have packet arrivals precisely at idle periods of the queue with the X1(t) input alone.

Here, we consider the input rate λ as a discrete quantity which is varied by adding

or removing substreams of the same “type” from the overall input process. We begin by

225



developing the notion of exchangeable random variables.

Definition 3. A collection of M random variables are exchangeable if:

pX1,X2,...,XM
(x1, . . . , xM ) = pX̃1,X̃2,...,X̃M

(x1, . . . , xM ) (A.8)

for every (X̃1, . . . , X̃M ) permutation of (X1, ..., XM ), where pX1,X2,...,XM
(x1, . . . , xM ) is the

joint density function.

Thus, exchangeable random variables exhibit a simple form of symmetry in their joint

distribution functions.4 Definitions for random variables to be conditionally exchangeable

given some event ω can be similarly defined: The distributions in (A.8) are simply replaced

by conditional distributions. It is clear that any set of independent and identically dis-

tributed (i.i.d.) random variables are exchangeable. Thus, exchangeable variables form a

wider class than i.i.d. variables, and hence statements which apply to exchangeable vari-

ables are more general. Unlike i.i.d. variables, however, it can be seen that if random

variables (X1, ..., XM ) are conditionally exchangeable given some other random variable θ,

then they are exchangeable.

We can extend this notion of exchangeability to include random processes that represent

packet arrival streams. The following definition captures the idea that for any sample

path realization of exchangeable processes (X1(t), ..., XM (t)), the permuted sample path

(X̃1(t), . . . , X̃M (t)) is “equally likely”:5

Definition 4. Random processes (X1(t), ..., XM (t)) are exchangeable if for any permutation

(X̃1(t), ..., X̃M (t)), we have E {Φ(X1, . . . , XM )} = E
{

Φ(X̃1, . . . , X̃M )
}

for every operator

Φ() which maps the processes to a single real number.

Definition 5. Random processes (X1(t), ..., XM (t)) are conditionally exchangeable given

process θ(t) if for every permutation (X̃1(t), ..., X̃M (t)), we have E {Φ(X1, . . . , XM , θ)} =

E
{

Φ(X̃1, . . . , X̃M , θ)
}

for every real valued operator Φ() which acts on the processes.

Hence, random processes are exchangeable if their joint statistics are invariant under

every permutation. Note that the Φ() operator maps a set of sample paths to a real number.

4See [119] for an interesting treatment of the properties of exchangeable variables.
5The ideas developed here are closely related to the theory of stochastic coupling. See [119] for a formal

treatment of the theory, and [133] for an application to optimal scheduling in symmetric queueing systems.

226



For example, it could correspond to the mapping of the input process X(t) to its unfinished

work at a particular time t∗. Exchangeable processes have the same properties as their

random variable counterparts. In particular, if processes (X1, ..., XM ) are exchangeable

given a process θ, then:

• Processes (X1, ..., XM ) are exchangeable.

• Processes (Xk, ..., XM ) are exchangeable given processes X1, ..., Xk−1, θ.

• If Ψ() is an operator that maps processes X1(t), X2(t) and θ(t) to another process

Z(t) = Ψ(X1, X2, θ), then Ψ(X1, X2, θ) and Ψ(X2, X1, θ) are exchangeable processes

given θ(t).

The above properties are simple consequences of the definitions, where the last property

follows by defining the operator Φ̃(X1, X2, θ)M=Φ(Ψ(X1, X2, θ),Ψ(X2, X1, θ), θ). Below we

provide three examples of exchangeable input processes that can act as input streams to a

queueing system:

X(t)

(b)
M

2
1

1/M
Splitter

(a)

X  (t)1

X  (t)2

MX   (t)

Figure A-6: M exchangeable inputs in the case of (a) the collection of i.i.d. ∗/∗ processes
{Xi} and (b) probabilistic splitting of a ∗/∗ process X into M substreams.

Example 1: Any general ∗/∗ processes {Xi(t)} independent and identically distributed

over M input lines (Fig. A-6a).

Example 2: Any general ∗/∗ process X(t) which is split into M streams by routing each

packet to stream i ∈ {1, . . . ,M} with equal probability (Fig. A-6b).

Example 3: Any arbitrary collection of M processes (X1(t), ..., XM (t)) which are ran-

domly permuted (with each permutation equally likely).

227



Notice that Example 1 demonstrates the fact that i.i.d. inputs are exchangeable. How-

ever, Example 2 illustrates that exchangeable inputs form a more general class of processes

by providing an important set of input streams which are not independent yet are still

exchangeable. Notice that this probabilistic routing can be extended to include “state-

dependent” routing where the probability of routing to queue i depends on where the last

packet was placed. The third example shows that an exchangeable input assumption is a

good a-priori model to use when an engineer is given simply a “collection of wires” from

various sources, and has no a-priori way of distinguishing the process running over “wire

1” from the process running over “wire 2.”

We now examine how the unfinished work in a queue changes when a sequence of

exchangeable inputs are added. Let θ(t) be an arbitrary background input process, and let

X1(t) and X2(t) be two processes which are exchangeable given θ(t). Let UX(t) represent

the unfinished work process as a function of time in a queue with an input process X(t)

running through it. Furthermore, let f(u) represent any convex, non-decreasing function of

the real number u for u ≥ 0. We assume that the expected value of f(UX) is well defined.

(Note that expectations over functions of the form f(u) = uk represent kth moments of

unfinished work). The following theorem shows that incremental values of queue cost are

non-decreasing with each additional input.

Theorem 1. For any particular time t∗, we have:

Ef (Uθ+X1+X2(t
∗))− Ef (Uθ+X1(t

∗)) ≥ Ef (Uθ+X1(t
∗))− Ef (Uθ(t∗)) (A.9)

Proof. Define the following processes:

∆1(t) M= Uθ+X1(t)− Uθ(t) (A.10)

∆2(t) M= Uθ+X1+X2(t)− Uθ+X1(t) (A.11)

We then find, by using the blocking function properties developed in the previous section:

∆2(t) = UX2(t) + βθ+X1,X2(t) ≥ UX2(t) + βθ,X2(t)

= Uθ+X2(t)− Uθ(t)M=∆̃1(t) (A.12)

where we have defined ∆̃1(t)M=Uθ+X2(t)−Uθ(t). Because X2(t) and X1(t) are exchangeable

228



given θ(t), and because the ∆̃1(t) and ∆1(t) processes are derived from the same mapping of

inputs to unfinished work, it follows that ∆̃1(t) and ∆1(t) are exchangeable processes given

θ(t). Thus, for any time t∗, inequality (A.12) states that ∆2(t∗) is a random variable that

is always greater than or equal to another random variable which has the same distribution

as ∆1(t∗).

We now use an increasing increments property of non-decreasing, convex functions f(u).

Fact: For non-negative real numbers a, b, x, where a ≥ b, we have:

f(a + x)− f(a) ≥ f(b + x)− f(b) (A.13)

Using this fact and defining aM=Uθ+X1(t
∗), xM=∆2(t∗), and bM=Uθ(t∗), we have:

f(Uθ+X1(t
∗) + ∆2(t∗))− f(Uθ+X1(t

∗)) ≥ f(Uθ(t∗) + ∆2(t∗))− f(Uθ) (A.14)

≥ f(Uθ(t∗) + ∆̃1(t∗))− f(Uθ(t∗)) (A.15)

Inequality (A.14) follows from from (A.13) and the fact that Uθ+X1(t
∗) ≥ Uθ(t∗). Inequality

(A.15) follows because ∆2(t∗) ≥ ∆̃1(t∗) (from (A.12)) and from the non-decreasing property

of f(). Taking expectations of the inequality above, we find:

Ef (Uθ+X1(t
∗) + ∆2(t∗))− Ef (Uθ+X1(t

∗)) ≥ Ef
(
Uθ(t∗) + ∆̃1(t∗)

)
− Ef (Uθ(t∗)) (A.16)

Using the fact that ∆̃1(t) and ∆1(t) are exchangeable given θ(t), we can replace the

Ef
(
Uθ(t∗) + ∆̃1(t∗)

)
term on the right hand side of (A.16) with Ef (Uθ(t∗) + ∆1(t∗)), which

yields the desired result.

The theorem above can be used to immediately establish a convexity property of unfin-

ished work in a work conserving queue with a collection of exchangeable inputs. Assume

we have such a collection of M streams (X1, ..., XM ) which are exchangeable given another

background stream θ(t). Assume that each of the streams Xi has rate λδ. The total input

process to the queue can then be viewed as a function of a discrete set of rates λ = nλδ for

n ∈ {0, 1, . . . ,M}. Let Ef (U [nλδ]) represent the expectation of a function f() of the unfin-

ished work (at some particular time t∗, which is suppressed for notational simplicity) when

the input process consists of stream θ(t) along with a selection of n of the M exchangeable

229



streams. Hence:

Ef (U [nλδ]) M=Ef (Uθ+X1+...+Xn(t∗)) (0 ≤ n ≤ M) (A.17)

543210

λEf[U(  )]

Figure A-7: Convexity of unfinished work as a function of the discrete rate parameter λ.

Theorem 2. At any specific time t∗, the function Ef (U [λ]) is monotonically increasing

and convex in the discrete set of rates λ (λ = nλδ, n ∈ {0, 1, . . . ,M}). In particular, any

moment of unfinished work is convex (see Fig. A-7).

Proof. Convexity of a function on a discrete set of equidistant points is equivalent to proving

successive increments are monotonically increasing (Fig. A-7). Hence, the statement is

equivalent to:

Ef (U [(n + 2)λδ])− Ef (U [(n + 1)λδ]) ≥ Ef (U [(n + 1)λδ])− Ef (U [nλδ]) (A.18)

Defining the ‘background stream’ φ(t) = θ(t) + X1(t) + . . . + Xn(t), we find that inequality

(A.18) follows immediately from Theorem 19.

A.3.1 Waiting Times

Notice that in Theorems 19 20, expectations were taken at any particular time t∗. It is not

difficult to show that this property implies steady state unfinished work is convex, whenever

such steady state limits exist. Moreover, we can allow t∗ to be a time of special interest,

such as the time when a packet from the X1 stream enters the system. In FIFO queues, the

unfinished work in the system at this special time represents the amount of waiting time W

that the entering packet spends in the queue before receiving service. In this way, we show

that waiting time increments are convex after the first stream is added. Specifically, for a

230



system with a background input θ(t) and M inputs {X1, ..., XM} which are exchangeable

given θ(t), we define the following steady state moments (which are functions of the discrete

set of input rates λ ∈ {0, λδ, 2λδ, . . . ,Mλδ}):

Ef
(
W

(q)
θ [λ]

)
, Ef (Wθ[λ]) = Steady state waiting time moment corresponding to the

time a packet from background stream θ(t) spends in the queue and in the system, respec-

tively, when the controllable input rate is λ

Ef
(
W

(q)
X [λ]

)
, Ef (WX [λ]) = Steady state waiting time moment corresponding to the

time a packet from a controllable input stream spends in the queue and in the system,

respectively, when the controllable input rate is λ

Ef (N [λ]) = Steady state moment of the number of packets in the system (from both

the background and controllable input streams) when the controllable input rate is λ

Formally, the steady state waiting time moments are defined:

Ef (W ) M= lim
K→∞

1
K

K∑
k=1

Ef (Wk)

where Wk represents the waiting time of the kth packet of the appropriate input stream.

Likewise, the steady state occupancy moment is defined:

Ef (N) M= lim
t→∞

1
t

∫ t

0
Ef (N(τ)) dτ

Assuming such steady state moments exist for the convex increasing function f() of

interest, we have:

Corollary 1. In FIFO queueing systems:

(a) Ef
(
W

(q)
θ [λ]

)
and Ef (Wθ[λ]) are non-decreasing and convex in the discrete set of

rates λ ≥ 0 (i.e., λ = nλδ, n ∈ {0, 1, . . . ,M}).

(b) Ef
(
W

(q)
X [λ]

)
and Ef (WX [λ]) are non-decreasing and convex in the discrete set of

rates λ > 0.

(c) E {N [λ]} is non-decreasing and convex in the discrete set of rates λ ≥ 0.

231



Caveat: Note that in (b), waiting times for packets from the controllable input streams

are not defined when λ = 0. Thus, convexity in this case is defined only for λ > 0. Further

note that in (c), the function f() is intentionally absent from the expectation, as we can

only establish convexity of the first moment of packet occupancy in this general setting with

variable length packets.

Proof. To prove (a), let p be a certain packet from the θ input stream which arrives to

the system at time tp. When n of the controllable inputs are applied to the system,

Uθ+X1+...+Xn(t−p )/µ represents the amount of time packet p is buffered in the queue, and

Uθ+X1+...+Xn(t+p )/µ is the total system time for packet p. From Corollary 20, Ef (U [λ]) is a

non-decreasing, convex function of λ ≥ 0 when unfinished work is evaluated at any time t∗,

including times t∗ = t−p and t∗ = t+p . Hence, the expected waiting time of packet p in the

queue and in the system is a non-decreasing convex function of the controllable input rate.

Because this holds for any packet p from the θ stream, the expected waiting time averaged

over all θ packets is also convex, completing the proof.

To prove (b), now let packet p represent a packet from the first controllable input

stream X1. Considering the sum process θ(t) + X1(t) as a combined background stream

with respect to inputs {X2, ..., Xn} (and noting that {X2, ..., Xn} remain exchangeable

given θ(t) + X1(t)), from (a) we know that the expected queueing time and system time of

packet p is a non-decreasing convex function of λ ≥ λδ. Because inputs {X1, ..., XM} are

exchangeable, the expected waiting time of a packet from stream X1 is not different from

the expected waiting time of a packet from stream Xk (provided that stream Xk is also

applied to the system), and the result follows.

To prove (c), let f(x) = x. From (b) we know that E {WX [λ]} is non-decreasing and

convex for λ > 0. It is straightforward to verify that for any such function, the function

λE {WX [λ]} is non-decreasing and convex for λ ≥ 0, where λE {WX [λ]} is defined to be 0

at λ = 0. Let λθ represent the rate of the θ(t) stream. By Little’s Theorem, it follows that

E {N [λ]} = λE {WX(λ)} + λθE {Wθ[λ]} is non-decreasing and convex in λ, as this is the

sum of non-decreasing convex functions.

One might expect the waiting time W av averaged over packets from both the con-

trollable and uncontrollable input streams to be convex. However, note that W av[λ] =(
λθ

λ+λθ

)
E {Wθ[λ]}+

(
λ

λ+λθ

)
E {WX [λ]} is not necessarily convex even though both E {Wθ[λ]}

232



and E {WX [λ]} are. Indeed, the following simple example shows that W av[λ] may even de-

crease as λ increases:

Example: Let background input θ(t) periodically produce a new packet of service time

10 at times t = {0, 100, 200, . . .}. Let input X1(t) consist of packets of service time 2

occurring periodically at times t = {50, 150, 250, . . .}. Hence, packets from θ(t) and X1(t)

never interfere with each other. We thus have W av(0) = 10 and W av[λδ] = (10 + 2)/2 = 6.

A.3.2 Packet Occupancy N(t)

Notice that the non-negativity, symmetry, and monotonicity properties of the blocking func-

tion βX1,X2(t) were the only queueing features needed to establish convexity of unfinished

work U(t). Now suppose that all packets have fixed lengths L, and let N(t) represent the

number of packets in the queueing system at time t for some arbitrary arrival process. If

service in the queue is work conserving and non-preemptive, it can be shown that the occu-

pancy blocking function αX1,X2(t) satisfies the non-negativity, symmetry, and monotonicity

properties (see Chapter Appendix A.D for a complete proof). We can thus reformulate

Theorems 19 and 20 in terms of packet occupancy. Suppose again that input streams

{X1, ..., XM} are exchangeable given background stream θ. We find:

Corollary 2. If all packets have fixed lengths L and service is non-preemptive work con-

serving, then at any particular time t∗, the expectation Ef (N [λ]) is a convex function of

the discrete rates λ ∈ {0, λδ, 2λδ, . . . ,Mλδ}. �

A.4 Convexity over a Continuous Rate Parameter

In the previous section we dealt with streams of inputs and demonstrated convexity of

unfinished work and waiting time moments as streams are removed or added. Here, we

extend the theory to include input processes that are parameterized by a continuous rate

variable λ. The example to keep in mind in this section is packet-by-packet probabilistic

splitting, where individual packets from an arbitrary packet stream are sent to the queue

with some probability p. However, the results apply to any general “infinitely splittable”

input, which are inputs that can be split into substreams according to some splitting method,

as described below:

233



Definition 6. A packet input process X(t) together with a splitting method is said to be

infinitely splittable if:

(1) X(t) or any of its substreams can be split into disjoint substreams of arbitrarily small

rate. Any superposition of disjoint substreams of X(t) is considered to be a substream.

(2) Any two (potentially non-disjoint) substreams that have the same rate are condition-

ally exchangeable given the rest of the process.

We emphasize that the above definition incorporates both the input process X(t) and

the method of splitting. Notice that any ∗/∗ process X(t) is infinitely splittable when using

the probabilistic splitting method of independently including packets in a new substream

i with some probability pi. Likewise, probabilistic splitting of the lead packet in systems

where blocks of K sequential packets must be routed together can be shown to satisfy the

conditions of infinite splittability. However, not all splitting methods are valid. Consider

for example the “divide by 2” splitting method, where an input stream is split into two

by alternately routing packets to the first stream and then the second. Suppose the base

input stream X(t) has rate λ and consists of fixed length packets of unit size. Under this

splitting method, any substream of rate λ k
2n can be formed by collecting superpositions

of disjoint substreams of rate λ/2n (where k and n are any integers such that k ≤ 2n).6

Thus, the first condition of infinite splittability is satisfied. However, it is not clear how

a substream X̃(t) of rate λ/2 is distributed. For example, the original stream X(t) could

be split into two substreams, one of which is X̃(t) and represents the sequence of every

other packet arrival from X(t). (The odd substream may be differently distributed from

the even substream, but this can be taken care of by randomly permuting the two so that

it is impossible to know if X̃(t) contains the odd samples or the even samples.) Alternately,

the “divide by 2” splitting method might be used to form X̃(t) by iteratively splitting X(t)

into eight substreams of rate λ/8, a random four of which are grouped together to form

the rate λ/2 substream. Clearly the two approaches to building a rate λ/2 substream do

not generally lead to identically distributed processes, as the first approach leads to a rate

λ/2 substream that never contains two successive packets from the original stream, while

the second approach leads to a λ/2 substream that might contain two successive packets.

Thus, the divide-by-2 splitting method satisfies the first condition of the above definition
6Formally, streams of arbitrary irrational rates λ̃ < λ can be formed from the “divide by 2” splitting

method by a countably infinite superposition of substreams, where the substreams that are added have
progressively smaller rates.

234



but not the second.

With the above definition, it can be seen that an infinitely splittable input process X(t)

can be written as the sum of a large number of exchangeable substreams. Specifically, it

has the property that for any ε > 0, there exists a large integer M such that:

X(t) =
M∑
i=1

xi(t) + x̃(t)

where (x1(t), ..., xM (t)) are exchangeable substreams, each with rate λδ, x̃(t) has rate λ̃δ,

and λ̃δ < λδ < ε.

We now use the blocking function to establish continuity of expected moments of unfin-

ished work as a function of the continuous rate parameter λ. As before, these results also

apply to waiting times in FIFO systems.

Again we assume that f(u) is a non-decreasing convex function over u ≥ 0. Suppose

X(t) is an infinitely splittable input process with total rate λtot. Suppose also that all

exchangeable component processes of X(t) are also exchangeable given the background

input process θ(t). Let Ef (U [λtot]) represent the expectation of a function of unfinished

work at a particular time t∗ in a queue with this input and background process. We assume

here that Ef (U [λtot]) is finite.

Theorem 3. Ef (U [λ]) can be written as a pure function of the continuous rate parameter

λ, where λ ∈ [0, λtot] is a rate achieved by some substream of the infinitely splittable X(t)

input. Furthermore, Ef (U [λ]) is a monotonically increasing and continuous function of λ.

Proof. The proof is given in Chapter Appendix A.A. We note that the proof of continuity

uses a simple ε, δ argument (in the manner of the classic proof that the function f(x) = x2

is continuous) together with the machinery of the blocking function.

The continuity property of Theorem 21 allows us to easily establish the convexity of any

moment of unfinished work (and packet waiting time) in a ∗/ ∗ /1 queue as a function of

the continuous input rate λ. Let X(t) be an infinitely splittable input process, and suppose

that every collection of exchangeable components of X(t) are also exchangeable given the

background process θ(t). Then:

Theorem 4. At any particular time t∗, the function Ef (U [λ]) is convex over the continuous

variable λ ∈ [0, λtot]. Likewise, if service is FIFO, then Ef (W [λ]) is also convex.

235



Proof. We wish to show that the function Ef (U [λ]) always lies below its chords. Thus, for

any three rates λ1 < λ2 < λ3, we must verify that:

Ef (U [λ2]) ≤ Ef (U [λ1]) + (λ2 − λ1)
(Ef (U [λ3])− Ef (U [λ1]))

(λ3 − λ1)
(A.19)

We know from Theorem 20 in Section A.3 that the unfinished work function is convex

over a discrete set of rates when the input process is characterized by a finite set of M

exchangeable streams (x1, ..., xM ). We therefore consider a discretization of the rate axis

by considering the sub-processes (x1, ..., xM ) of the infinitely splittable process X(t), where

each xi has a small rate δ. In this discretization, we have rates:

λ̃1 = k1δ, λ̃2 = k2δ, λ̃3 = k3δ (A.20)

where the rates (λ̃1, λ̃2, λ̃3) can be made arbitrarily close to their counterparts (λ1, λ2, λ3)

by choosing an appropriately small value of δ. Now, from the discrete convexity result, we

know:

Ef
(
U [λ̃2]

)
≤ Ef

(
U [λ̃1]

)
+ (λ̃2 − λ̃1)

Ef
(
U [λ̃1]

)
− Ef

(
U [λ̃1]

)
(λ̃3 − λ̃1)

(A.21)

By continuity of the Ef (U [λ]) function, we can choose the discretization unit δ to be

small enough so that the right hand side of (A.21) is arbitrarily close to the right hand side

of the (currently unproven) inequality (A.19). Simultaneously, we can ensure that the left

hand sides of the two inequalities are arbitrarily close. Thus, the known inequality (A.21)

for the discretized inputs implies inequality (A.19) for the infinitely splittable input. We

thus have convexity of unfinished work at any point in time, which also implies convexity

of waiting time in FIFO systems.

A.5 Multiple Queues in Parallel

We now consider the system of N queues in parallel as shown in Fig. A-8. The servers of

each queue k have linespeeds µk and arbitrary background packet input processes θk(t). An

arbitrary input process X(t) also enters the system, and X(t) is rate-controllable in that a

router can split X(t) into substreams of smaller rate. These substreams can be distributed

according to an N -tuple rate vector (λ1, ..., λN ) over the multiple queues.

236



(t)

θN(t)

µN

µ2

µ1

X(t)
2

N

1

2
Router

λ2

λ1

λN

θ1(t)

θ

Figure A-8: Multiple queues in parallel with different background processes θi(t) and server
rates µi.

We consider both the case when X(t) is an infinitely splittable process (as in packet-

based probabilistic splitting), and the case when X(t) is composed of a finite collection of

M exchangeable streams. The problem in both cases is to route the substreams by forming

an optimal rate vector that minimizes some network cost function. We assume the cost

function is a weighted summation of unfinished work and/or waiting time moments in the

queues. Specifically, we let {fk(u)} be a collection of convex, non-decreasing functions on

u ≥ 0. Suppose that the queues reach some steady state behavior, and let Ef (Uk[λk])

represent the steady state moment of unfinished work in queue k when an input stream of

rate λk is applied. Let Ef (Wk[λk]) represent the steady moment of waiting time for queue

k.

Theorem 5. If queues are work conserving and X(t) is either a finitely7 or infinitely rate

splittable process given {θk(t)}, then:

(a) Cost functions of the form

C(λ1, . . . , λN ) =
N∑

k=1

Efk(Uk[λk]) (A.22)

are convex in the multivariable rate vector (λ1, . . . , λN ).

7We note that convexity on a discrete set of points is equivalent to convexity of the piecewise linear
interpolation, see Fig. A-7.

237



(b) If service is FIFO, then cost functions of the form

C(λ1, . . . , λN ) =
N∑

k=1

λkEfk(Wk[λk]) (A.23)

are convex (where the Wk[λk] values represent waiting times of packets from the controllable

inputs).

(c) If service is FIFO and Nk(λk) represents the number of packets in queue k in steady

state, then cost functions of the following form are convex:

C(λ1, . . . , λN ) =
N∑

k=1

λkckE {Nk[λk]} ({ck} ≥ 0) (A.24)

Proof. Since Efk(Wk[λk]) is convex and non-decreasing for λk > 0, the function λkEfk(Wk[λk])

is convex on λk ≥ 0. Thus, the cost functions in (a) and (b) are summations of convex func-

tions, so they are convex. Part (c) follows from (b) by noting that, from Little’s Theorem,

E {N} = λE {W}.

Convexity of the cost function C(λ1, . . . , λN ) can be used to develop optimal rate dis-

tributions (λo
1, . . . , λ

o
N ) over the simplex constraint λ1 + . . . + λN = λtot. For symmetric

cost functions, which arise when the background processes {θk(t)} and the linespeeds {µk}

are the same for all queues k ∈ {1, . . . , N}, the optimal solution is particularly simple. It

is clear in this case that the uniform distribution (or as near to this as can be achieved) is

optimal and minimizes cost. Thus, in the symmetric case we want to spread the total input

stream evenly amongst all of the queues in order to take full advantage of the bandwidth

that each queue provides. In the asymmetric case when background streams and linespeed

processes are not the same, the optimal rate vector deviates from the uniform allocation to

favor queues with faster linespeeds and/or less background traffic.

Let us suppose the cost function C(λ1, . . . , λN ) is known. Convexity of C() tells us that

any local minimum of the cost function we find must also be a global minimum. It also tells

us a great deal more [15], as we illustrate for both finitely and infinitely splittable inputs

X(t) below.

238



A.5.1 (Stream-Based) Finitely Splittable X(t)

Here we assume that the input X(t) is a finite collection of M streams, which are exchange-

able given the background processes {θk(t)}. We want to distribute the streams over the N

queues available. We can thus write the cost function C(M1, . . . ,MN ) as a function of an

integer N -tuple (M1, . . . ,MN ) (rather than a rate N -tuple) which describes the number of

streams we route to each queue.

If the weight functions fk() are identical for all k, and all queues have identical linespeeds

and exchangeable background inputs, then the cost function C(M1, . . . ,MN ) is convex

symmetric and the optimal solution is to allocate according to the load balanced strategy

of assigning dM/ne streams to (M) mod (N) of the queues, and bM/Nc streams to the

remaining queues. In the non-symmetric case, we must consider other allocations and test

them by evaluating the cost function.

Lemma 2. Given a convex cost function C(M1, . . . ,MN ) of the form specified in Theorem

23, the optimal allocation vector can be obtained by sequentially adding streams, greedily

choosing at each iteration the queue which increases the total cost C() the least. This yields

a cost-minimizing vector (Mo
1 , . . . ,Mo

N ) after M +N−1 evaluations/estimations of the cost

function.

Proof. This lemma follows as a special case of a theory of integer optimization over separable

convex functions (see [46]). We provide a simplified and independent proof in Chapter

Appendix A.E for completeness.

In the special case of routing M exchangeable inputs over N queues with the same server

rate µ, it is clear that the load-balanced strategy minimizes all symmetric cost functions,

and in particular it minimizes the expected unfinished work in all of the queues at every

instant of time, which extends the result of [56] [25] [66] to ∗/∗ inputs and stream based

routing. It is tempting to conjecture that load balancing also stochastically minimizes

the total workload at every instant of time, as is proved in [80] for homogeneous queues,

Bernoulli splitting, and ∗/M inputs. However, this is not the case, as illustrated by a simple

counterexample given in Chapter Appendix A.C.

Example: We consider the system of Fig. A-8 when there are N = 4 queues and the

input X(t) consists of 200 independent streams that produce packets periodically every P

seconds. Packets have a fixed length of L bits. The streams are unsynchronized, and hence

239



200 packets arrive in a uniformly distributed fashion over any time interval of length P .

Such input streams are models for continuous bit rate traffic, such as digital voice or video

data.

The problem is to distribute the streams over the 4 queues while minimizing the cost

function, which we take to be the total expected number of packets in the system (this

is the cost function of Theorem 23c). We first assume all server rates µi are the same,

and all background streams θi(t) are exchangeable. In this case, we immediately know the

optimal stream allocation vector is (50, 50, 50, 50). Likewise for this symmetric example, if

there are 201 streams, then the optimal vector is (51, 50, 50, 50) (or any of the three other

near-symmetric allocations).

Now suppose that we have server rates (2, 1, 1, 1) and that there are 10 background

streams of the same type at queue 4. In this asymmetric case, we must use the cost function

to determine optimal allocation using the sequentially greedy method. The complementary

occupancy distribution in a single queue with M inputs of period P , length L, and server

rate µ has been derived explicitly in [118]. The result is:

Qn

(
L

µP
,M

)
=

M−n∑
i=1

 M

i + n

( iL

µP

)i+n(
1− iL

µP

)(
µP/L−M + n

µP/L− i

)
(0 ≤ n ≤ M − 1)

The expected number of packets is hence:

N

(
L

µP
,M

)
=

M−1∑
n=0

Qn

(
L

µP
,M

)

We therefore use the greedy algorithm with cost function:

C(M1,M2,M3,M4) =
4∑

i=1

N

(
L

µiP
,Mi

)

Using L = 1, P = 75, we find that the optimal allocation vector is: (100, 37, 37, 26). From

this solution, we see that—as expected because of the 10 background streams in queue

4—there are approximately 10 more streams allocated to queues 2 and 3 than queue 4.

Interestingly, the server rate of queue 1 is twice that of the other queues, although, due to

statistical multiplexing gains, the number of streams it is allocated is more than twice the

number allocated to the others.

240



A.5.2 (Packet Based) Infinitely Splittable X(t)

Here we consider an infinitely splittable process X(t) with total rate λtot as an input to the

system of Fig. A-8. The problem is to optimally distribute the total rate over the N queues

so as to minimize a cost function C(λ1, . . . , λN ). We assume the cost function is of one of

the forms specified in Theorem 23. Each of these had the structure:

C(λ1, . . . , λN ) = g1(λ1) + . . . + gN (λN )

for some convex, non-decreasing functions gi(λi).

If background inputs are exchangeable, and if all queues are weighted the same in the cost

function, then C() is convex symmetric and the optimal rate allocation is (λtot/N, ..., λtot/N).

Otherwise, we can take advantage of the convex structure of the C() function to determine

the optimal solution [13].

Each of the functions gi(λi) is non-decreasing and convex on some open interval (0, λ̃i).

It can be shown that these properties ensure gi(λi) is right-differentiable. They are also suf-

ficient to establish the correctness of a Lagrange Multipliers approach to cost minimization.

Given the Lagrangian:

L(λ1, . . . , λN , γ) = C(λ1, . . . , λN ) + γ

(
λtot −

N∑
i=1

λi

)

where γ is the Lagrange Multiplier, we differentiate (from the right) with respect to λi to

obtain
d

dλi
gi(λi) = γ for all i ∈ {1, . . . , N}

subject to the simplex constraint λ1 + . . . + λN = λtot. Fig. A-9 illustrates this solution. If

we define:

λi(γ) = Largest λ such that g′i(λ) ≤ γ

then from Fig. A-9 we see that we increase the value of γ until λ1(γ) + . . . + λN (γ) = λtot.

The resulting rate vector yields the optimal solution. Although the form of the solution

appears different from that of the discrete rate scenario, in fact the two can be viewed as

exactly the same. Indeed, the continuous rate solution corresponds to sequentially allocating

an infinitesimal portion of the total rate in a greedy manner.

241



Notice that a fast bisection type algorithm can be developed to find this optimal rate

vector. First, two bracketing values γLow and γHi are found which yield λ1(γ)+ . . .+λN (γ)

values above and below λtot, respectively. The bisection routine proceeds as usual until the

rate vector converges to a solution within acceptable error limits.

γ

λ

1 2
3

 λ  (γ)1  λ  (γ)2 λ  (γ)3

g  (   )λ
g  (   )λg  (   )λ

Figure A-9: A simple set of d
dλi

gi(λi) curves.

Example: The following simple example for systems with memoryless arrivals and packet

lengths demonstrates the method. The example fits into the optimal routing framework of

[14] [22] [19], and the solution we obtain can be verified using the techniques developed

there. Suppose, for simplicity, that there are no background arrivals {θi(t)}. Let the arrival

process be Poisson with rate λ, and the packet length process be i.i.d. and memoryless with

an average packet length of 1 unit. We assume that we are using probabilistic Bernoulli

routing where each packet is routed independently of the next. Let N i represent the average

number of packets in queue i, and define cost function:

C(λ1, . . . , λN ) =
∑

i

ciN i[λi]

where

gi(λi) = ciN i(λi)

The expected number of packets in an M/M/1 queue is:

N i =
λi/µi

1− λi/µi

Multiplying the above equation by ci, taking derivatives with respect to λi, and setting the

result equal to γ for all i, as well as considering the constraint λ1 + . . . + λN = λtot, we find

242



for all k ∈ {1, . . . , N}:

λk = µk +
√

ckµk (λtot −
∑

i µi)∑
i

√
ciµi

The above equation is a bit deceptive, in that the summations are taken over all i for

which λi is positive. The positive λi’s are determined by first assuming that all are positive

and applying the above equation. If any of the λi’s found are zero or negative, these λi’s

are set to zero and the calculation is repeated using the remaining subset of λi’s.

This approach to optimal rate allocation is similar to the convex optimization routines

described in [14]. There, the authors address packet routing in general mesh networks

when input streams can be continuously split according to a rate parameter. They pre-

suppose some convex cost function at each node of the network, which (as an idealization)

is completely a function of the overall rate routed to that node. Here, we have considered

cost functions that reflect the actual queuing congestion at each node when a general ∗/∗

input is applied. We have established that, for a simple network consisting of N parallel

queues, the cost functions at each queue are continuous and non-decreasing in the rate

parameter, and they are indeed convex.

A.6 Time-Varying Server Rates

Here we consider the system of Fig. A-1 when the constant server of rate µ is replaced

by a time varying server of rate µ(t). Characteristics of an unfinished work sample path

UX(t) for time varying servers are similar to those illustrated in Fig. A-2 for constant

server systems, with the exception that the UX(t) function decreases with a time varying

slope −µ(t). This presents a slight problem for waiting time analysis, as waiting times may

no longer be convex. Recall that for constant processing rate servers, the unfinished work

UX(t) is proportional to the amount of time it would take the system to empty if no other

packets were to arrive (specifically, this time is UX(t)/µ). However, this emptying time is

not causally known from the system state for time varying servers. Hence, the unfinished

work in the system at the time of a packet arrival no longer indicates the amount of time

this packet will wait.

On the other hand, convexity analysis of the unfinished work UX(t) and the number

of packets NX(t) can be performed for this time varying context in a manner similar to

the treatment for fixed processing rate systems. Indeed, we can define the unfinished work

243



blocking function βX1,X2(t) and the packet occupancy blocking function αX1,X2(t) as before:

βX1,X2(t)
M= UX1+X2(t)− UX1(t)− UX2(t)

αX1,X2(t)
M= NX1+X2(t)−NX1(t)−NX2(t)

By literally repeating the arguments of Section A.2, we can establish that the non-

negativity, symmetry, and monotonicity properties still hold for βX1,X2(t) in this time-

varying context. Likewise, if all packets have fixed lengths L and service is non-preemptive,

it can be shown for time varying servers that the occupancy blocking function αX1,X2(t)

also satisfies these three properties (see Chapter Appendix A.D).

Consequently, given a collection of N queues with background input processes {θi(t)}

and server rate processes {µi(t)}, together with a (finitely or infinitely distributable) input

X(t), we can establish:

Theorem 6. If the exchangeable components of X(t) are exchangeable given {θi(t)} and

{µi(t)}, then
∑

Efi(Ui[λi]) is convex in the rate vector (λ1, . . . , λN ). If all packets have a

fixed length of L bits and service is non-preemptive, then
∑

Efi(Ni[λi]) is convex in the rate

vector.

Recall from Little’s Theorem that if the expected waiting time E {W (λ)} is convex in

λ, then so is the expected packet occupancy E {N(λ)}. However, the converse implication

does not follow. Indeed, below we provide a (counter) example which illustrates that—even

for fixed length packets under FIFO service—waiting times are not necessarily convex for

time varying servers.

(Counter) Example: Consider identical input processes X1, X2, X3 which produce a

single packet of length L = 1 periodically at times {0, 3, 6, 9, ...}. Let the server rate be

periodic of period 3 with µ(t) = 1 for and µ(t) = 100 for t ∈ (2, 3). Then E {WX1} = 1,

E {WX1+X2} = 1.5, and E {WX1+X2+X3} = 1.67. Clearly the increment in average waiting

time when stream X2 is added is larger than the successive increment when stream X3 is

added. Hence, waiting time is not convex in this time-varying server setting. �

Although waiting times are not necessarily convex, notice that minimizing W tot in a

parallel queue configuration (Fig. A-8) is accomplished by minimizing N tot (since N tot =

λtotW tot). For fixed length packets, Theorem 24 ensures this is a convex optimization even

for time varying servers. Indeed, notice that expected occupancies E {NX1}, E {NX1+X2},

244



and E {NX1+X2+X3} for the above example can be obtained by multiplying E {WX1},

E {WX1+X2}, and E {WX1+X2+X3} by λ = 1/3, 2/3, and 3/3 respectively, and the resulting

values are convex. Indeed, the non-convex values 1, 1.5, 1.67 become 1
3 , 1, and 1.67, which

are just on the borderline of convexity.

A.7 Summary

We have developed general convexity results for ∗/ ∗ /1 queues using a new function of

two packet stream inputs called the blocking function. Non-negativity, Symmetry, and

Monotonicity properties of the blocking function were established. These properties proved

to be valuable tools for establishing convexity of unfinished work and waiting time moments

in terms of both a discrete and a continuous input rate λ.

We then addressed both stream-based and packet-based routing of general inputs over

a collection of N parallel queues with arbitrary background inputs and different linespeeds.

Optimal routing algorithms were developed utilizing the convexity results.

This convexity theory can be extended to address more complex variants of the parallel

queue problem. One might consider a case when we have a collection of K sets of exchange-

able inputs, where each set categorizes a different type of input process. For example, set S1

could contain multiple exchangeable inputs of the “bursty” type, while set S2 contains ex-

changeable inputs of the “continuous bit rate” type. This variation of the problem is closely

related to the NP-complete bin packing problem. It would also be interesting to explore

convexity and optimal routing in more general mesh networks using these techniques. Such

an approach could perhaps establish the validity of known convex optimization routines, as

well as provide insights into developing new ones.

245



Appendix A.A — Continuity of Unfinished Work

Here we show that for any particular time t∗, Ef (U [λ]) is a continuous, monotonically

increasing function of λ (Theorem 21 of Section A.4). We utilize the following facts about

convex, non-decreasing functions:

Fact 1: If f(u) is non-decreasing and convex, then for any fixed a ≥ 0 there is a function

g(a, x) such that f(a+x) = f(a)+g(a, x), where g(a, x) is a convex, non-decreasing function

of x for x ≥ 0.

Fact 2: Any convex, non-decreasing function g(x) with g(0) = 0 has the property that

g(x1 + x2) ≥ g(x1) + g(x2) for any x1, x2 ≥ 0.

Note that Ef (U [λ]) M=Ef (UXλ
(t∗)), where Xλ(t) is any substream of X(t) with rate λ.

This is a well defined function of λ because, by the properties of infinitely splittable inputs,

all substreams with the same rate are identically distributed. The fact that Ef (U [λ]) is

monotonically increasing in λ follows as a simple consequence of the non-negativity property

of the blocking function. Indeed, consider a substream Xδ(t) of rate δ. We have:

Ef (U [λ + δ]) M=Ef (UXλ+Xδ
(t∗)) ≥ Ef (UXλ

(t∗)) M=Ef (U [λ])

proving monotonicity. Below we prove the continuity property.

Proof. (Continuity) Here we prove that the function Ef (U [λ]) is continuous from the right

with respect to the λ parameter. Left continuity can be proven in a similar manner.

Take any λ in the set of achievable rates. We show that:

lim
δ→0

Ef (U [λ + δ]) = Ef (U [λ]) (A.25)

where δ is the rate of a component process of X(t) which make arbitrarily small. By

monotonicity, if δ decreases to zero, then Ef (U [λ + δ])− Ef (U [λ]) decreases toward some

limit ε, where ε ≥ 0. Suppose now that this inequality is strict, so that ε > 0. We reach a

contradiction.

Consider disjoint component streams {x1, . . . , xM}, each xi of rate δ, for some yet-to-be-

determined δ and M . We assume that these M sub-streams are disjoint from another sub-

stream θ of rate λ, all of which are components of the entire process X(t). Let Uθ+x1+...+xM

represent the unfinished work in the system at some particular time t∗, with input processes

246



{θ, x1, . . . , xM}. From the definition of the blocking function, we have:

Uθ+x1+...+xM
= Uθ+x1+...,+xM−1

+ UxM + βθ+x1+...+xM−1,xM
(A.26)

By recursively iterating (A.26), we find:

Uθ+x1+...+xM
= Uθ +

M∑
i=1

Uxi +
M−1∑
k=0

βθ+x1+...+xk,xk+1
(A.27)

Applying the monotonicity property of the blocking function to (A.27), we obtain:

Uθ+x1+...+xM
≥ Uθ +

M∑
i=1

[Uxi + βθ,xi
] (A.28)

Now applying the monotonically increasing, convex function f(u) to both sides of (A.28)

and writing f(Uθ + x) = f(Uθ) + g(Uθ, x) (from Fact 1), we have:

f(Uθ+x1+...+xM
) ≥ f(Uθ) + g

(
Uθ,

m∑
i=1

[Uxi + βθ,xi
]

)
(A.29)

≥ f(Uθ) +
M∑
i=1

g (Uθ, [Uxi + βθ,xi
]) (A.30)

Inequality (A.30) holds by application of Fact 2, as g(U, x) is a convex function of x that

is zero at x = 0. Now notice that Ef (U [λ + δ]) − Ef (U [λ]) = Ef (Uθ + xi) − Ef (Uθ) =

E {g(Uθ, Uxi + βθ,xi
)} for any θ substream of rate λ, and any disjoint xi substream of rate

δ. Hence, by assumption:

E {g(Uθ, Uxi + βθ,xi
)} ≥ ε > 0 (A.31)

Taking expectations of (A.30) and using (A.31), we find:

Ef (Uθ+x1+...+xM
) ≥ Ef (Uθ) + Mε (A.32)

Inequality (A.32) above holds whenever θ + x1 + . . . + xM is a substream of the entire,

infinitely splittable process X(t). We now choose M large enough so that Mε is greater

than the expectation of f(U) when the entire input X(t) is applied, i.e., Mε > Ef (UX).

However, we choose a rate δ for each of the xi substreams that is small enough so that we

can still find M such substreams to ensure θ + x1 + . . . + xM is still a component process

247



of X(t). This implies that, from (A.32), Ef (Uθ+x1+...+xM
) > Ef (UX), which contradicts

monotonicity. Hence, ε = 0, (A.25) holds, and the theorem is proven.

248



Appendix A.B — A simple counterexample for packet occu-

pancy

0 1 2 3 4 5 6 10 117 8 9

X1

X2

X3

Figure A-10: A timing diagram with packets X3, X2, X1 arriving at times 0, 1, 2, respec-
tively, illustrating that the occupancy blocking function αX1,X2(t) does not have the mono-
tonicity property when packets have variable lengths.

Here we show that under FIFO service with variable length packets, the monotonicity

property of the packet occupancy blocking function does not hold, i.e., it is not true that

αX1+X2,X3(t) ≥ αX1,X3(t) for all time t.8

The counterexample, illustrated in Fig. A-10, is to consider streams X1, X2, X3 consist-

ing only of one packet each, where:

-The X3 packet enters at time 0 with service time 11.

-The X2 packet enters at time 1 with service time 10.

-The X1 packet enters at time 2 with service time 1.

We look at time t = 4. At this time, we have: NX1(4) = 0. When X1 and X2 are

combined, the X2 packet blocks the X1 packet from being served, hence NX1+X2(4) = 2.

Likewise, NX1+X3(4) = 2, since the X2 and X3 packets are both long in comparison to the

X1 packet. However, because of this, when the X3 packet is applied to a queue with the

X1 and X2 packets, it will -The X1 packet enters at time 2 with service time 1.

We look at time t = 4. At this time, we have: NX1(4) = 0. When X1 and X2 are

combined, the X2 packet blocks the X1 packet from being served, hence NX1+X2(4) = 2.
8Note that in cases of non-FIFO service, simple counterexamples can be constructed to show that the

occupancy blocking function satisfies neither the monotonicity property nor the non-negativity property.

249



Likewise, NX1+X3(4) = 2, since the X2 and X3 packets are both long in comparison to

the X1 packet. However, because of this, when the X3 packet is applied to a queue with

the X1 and X2 packets, it will not generate any extra packets due to blocking. Hence,

NX1+X2+X3(4) = 3, and:

NX1+X2+X3(4) + NX1(4) = 3 < 4 = NX1,X2(4) + NX1,X3(4) (A.33)

Thus, αX1+X2,X3(4) < αX1,X3(4), completing the example.

250



Appendix A.C — A Simple Counterexample for Load Balanc-

ing

Here we show that allocating exchangeable inputs to homogeneous queues according to

the load balanced strategy does not necessarily stochastically minimize the total workload

at every instant of time. That is, while it is true that the expected sum of moments is

minimized, it is not generally true that for all values z and at every instant of time, the

probability the total unfinished work in a load balanced system is greater than z is less than

or equal to the corresponding probability in an unbalanced system.

Indeed, consider the following example of routing four streams to two queues with unit

server rates. All streams deliver fixed length packets with unit packet lengths. Three of the

streams have periodic packet arrivals with rates 0.2, while the fourth stream has periodic

arrivals with rate 0.9. The first packet from all four streams arrives at time 0. The streams

are randomly permuted so that it is impossible to know which is the high-rate stream, and

hence the four streams are exchangeable.

The load balanced strategy is to allocate two streams to each queue, while the unbal-

anced strategy is to allocate three streams to the first queue and the remaining stream to

the second queue. Under the balanced strategy, there must be one queue which is unstable,

receiving periodic arrivals of total rate 1.1. It follows that the total unfinished work in this

system is at least 0.1t at every instant of time. Thus, with probability 1, the unfinished

work is greater than 5 whenever t > 50. However, the corresponding probability in the

unbalanced system is at most 3/4. This is true because, in the case of the probability 1/4

event that the high-rate stream is placed alone in the second queue, the total number of

packets in the first queue never exceeds three while the total number of packets in the second

queue never exceeds one. However, one can directly verify that the expected workload in

the balanced system is less than the expected workload in the unbalanced system at every

instant of time, as proven for the general case by Lemma 24.

251



Appendix A.D — The occupancy blocking function

Here we prove the non-negativity, symmetry, and monotonicity properties of the packet

occupancy blocking function αX1,X2(t) when packets have fixed lengths L and service is

non-preemptive work conserving. The general case of time varying processing speeds µ(t)

is considered. We begin with a few simple lemmas comparing the systems of Fig. A-11.

D1. Consider the systems shown in Fig. A-11. All Systems A, B, and C have identical

time-varying processing speeds µ(t). Two arbitrary input streams X1(t) and X2(t) together

enter System A, and are applied individually to Systems B and C. We assume throughout

that packets from the X1 input have non-preemptive priority over X2 packets, and that

packets from the same stream are served in FIFO order. Define:

UA
X1

(t) = Unfinished work in System A due to X1 packets

UA
X2

(t) = Unfinished work in System A due to X2 packets

Observation 1: UA
X1

(t) ≥ UX1(t) for all time t.

Observation 2: UA
X2

(t) ≥ UX2(t) for all time t.

Proof. (Observations 1 and 2) Note that UA
X1

(t) can be viewed as the unfinished work due

to packets in a system with time varying processing rate µ(t) and a single input stream

X1(t) with server vacations taking place at intervals corresponding to service intervals of

X2 packets in System A. This unfinished work is clearly less than the work UX1(t) in a

system with no vacations, and proves Observation 1. Observation 2 is proved similarly.

We now consider individual packets p1 and p2 chosen arbitrarily from the X1 and X2

input streams of Fig. A-11, respectively. At any given time, we have:

Lemma D.1: If a packet p1 from the X1 stream is in System B, it is also in System A.

Lemma D.2: If a packet p2 from the X2 stream is in System C, it is also in System A.

Lemma D.3: There is at most 1 more packet from the X1 stream in System A than in

System B. In the case when there is 1 more, a packet from the X2 stream must have been

completely served during the current busy period of System A.

Proof. (Lemmas D.1 and D.2) To prove Lemma D.1, suppose packet p1 enters from the X1

252



(t)

X2(t)

µ(t)

C

B
1

X2(t)

X1(t)
A

µ(t)

µ(t)X

Figure A-11: Queueing systems A, B, and C with inputs X1(t) and X2(t) and time-varying
processing rate µ(t).

stream at time t. In System A, this packet sees an amount of unfinished work UA
X1

(t−) +

RX2(t
−) in front of it (where RX2 represents the residual service time if an X2 packet is in

the server at time t). In System B, it sees UX1(t
−). The packet exits System A at time

t + τA, and exits System B at time t + τB, where τA and τB satisfy:

∫ t+τA

t
µ(v)dv = UA

X1
(t−) + RX2(t

−) + L∫ t+τB

t
µ(v)dv = UX1(t

−) + L

From Observation 1, we know UA
X1

(t−) + RX2(t
−) ≥ UX1(t

−), and hence τA ≥ τB,

proving Lemma D.1. Lemma D.2 is proved similarly.

Proof. (Lemma D.3) Suppose there are more X1 packets in System A than in System B

at time t. Consider time t1, the beginning of the current busy period in System A. If this

busy period was completely composed X1 packets, then System B must have an identical

busy period and hence must have the same number of X1 packets within it—which yields

a contradiction.

Thus, the System A busy period must have contained an X2 packet. Let t2 be the time

the latest X2 packet started service in System A. Because of the priority scheme, no X1

packets were in System A at this time (and hence—from Observation 1—System B must

be empty at this time). It follows that System B can serve at most 1 more X1 packet than

System A during the interval [t1, t]. Because System A has more X1 packets at time t, it

follows that it has exactly one more, that at least one departure from System B has occurred

253



during [t1, t], and hence that the X2 packet that started service at time t1 in System A has

already departed.

D2. Recall the packet occupancy blocking function is defined: αX1,X2(t)
M=NX1+X2(t)−

NX1(t)−NX2(t)

Theorem 7. For time varying server speeds µ(t), if all packets have fixed lengths and

service is non-preemptive and work conserving, the occupancy blocking function satisfies the

non-negativity, symmetry, and monotonicity conditions, i.e., for all time t:

(a) αX1,X2(t) ≥ 0 (Non-negativity)

(b) αX1,X2(t) = αX2,X1(t) (Symmetry)

(c) αX1+X2,X3(t) ≥ αX1,X3(t) (Monotonicity)

Proof. Note that if packets are fixed in length, the number of packets in a queueing system is

independent of the service order as long as service is non-preemptive and work conserving.

Hence, without loss of generality, throughout we assume non-preemptive priority service

with priority ordering X1 → X2 → X3 (where X1 packets receive the highest priority,

etc.). To prove (a), it suffices to show that NX1+X2(t) ≥ NX1(t) + NX2(t). This follows

immediately from Lemmas D.1 and D.2. The symmetry property (b) is clear from the

definition of αX1,X2(t). Note that these conditions also hold for variable length packets

when service is FIFO.

To prove the monotonicity property (c), it suffices to show that for all time t:

NX1+X2+X3(t) + NX1(t) ≥ NX1+X2(t) + NX1+X3(t) (A.34)

and hence that the combined number of packets in Systems A and B of Fig. A-12 below

is greater than or equal to the number in Systems A′ and B′. To show this, we have from

Lemmas D.1 and D.2:

• If a packet p1 from X1 is in System A′, it is also in System A

• If a packet p2 from X2 is in System A′, it is also in System A.

• If a packet p3 from X3 is in System B′, it is also in System A.

From Lemma D.3, there is at most one more packet from X1 in System B′ than in

System B. If there are no more in System B′ than in System B, we are done. Otherwise,

254



let p1 represent the single packet from the X1 stream which is in System B′ and is not in

System B. By Lemma D.1, we know this packet is also in System A. If it is not in System

A′, we are done. Otherwise, packet p1 is also in System A′, and hence by Lemma D.3 we

know there was a packet p2 from X2 that was served in the current busy period of System

A′, as well as a packet p3 from X3 that was served in the current busy period of System

B′. Because both p2 and p3 precluded service of p1 (in Systems A′ and B′, respectively), if

either is served in System A, the server of A must thereafter serve X1 packets, and hence

the other must be currently contained in A. Thus, System A contains either p2 or p3—both

of which are absent from Systems A′ and B′. This extra packet in System A makes up for

the 1 packet deficit in System B and hence preserves inequality (A.34).

A

B

µ

µ

A’

B’

µ

µ
X3

X1

X1+X2+X3N                  (t) +  N     (t)X1 X1+X2 X1+X3N             (t) + N            (t)

X1 X1
X2

X1

X2
X3

Figure A-12: A queueing illustration of the monotonicity property of the occupancy blocking
function αX1,X2(t) for fixed length packets.

255



Appendix A.E — Optimality of the Greedy Policy

Here we prove Lemma 24: Given a convex cost function C(M1, . . . , kN ) of the form spec-

ified in Theorem 23, the optimal allocation vector can be obtained by sequentially adding

streams, greedily choosing at each iteration the queue which increases the total cost C()

the least. This yields a cost-minimizing vector (ko
1, . . . , k

o
N ) after M + N − 1 evalua-

tions/estimations of the cost function.

Proof. The lemma is clearly true for M = 1 stream. We assume that it is true for M = k

streams, and by induction prove it holds for M = k + 1.

Let (ko
1, . . . , k

o
N ) represent the optimal allocation vector for M = k streams, which is

obtained by the sequentially greedy algorithm. We thus have
∑

i k
o
i = k.

Now we add an additional stream in a greedy manner by placing it in the queue which in-

creases the cost function the least. Without loss of generality, we assume this queue is queue

1, and we have a new allocation vector (ko
1 +1, . . . , ko

N ). Suppose there is some other vector

(k̃o
1, . . . , k̃

o
N ) whose elements sum to k + 1, such that C(ko

1 + 1, . . . , ko
N ) > C(k̃o

1, . . . , k̃
o
N ).

Case 1 (k̃1 ≥ k̃o
1 + 1): In this case, we take away an input stream from the first entry of

both vectors. This effects only the queue 1 term Ef1[k] in the cost function. Because this

function is convex and non-decreasing, Ef1[ko
1 + 1] decreases by less than or equal to the

amount that Ef1[k̃1] decreases. Hence, it must be that C(ko
1, . . . , k

o
N ) > C(k̃o

1 − 1, . . . , k̃o
N ),

which contradicts the fact that the (ko
1, . . . , k

o
N ) vector is optimal for M = k streams.

Case 2 (k̃1 < k̃o
1 + 1): In this case, there exists some queue j such that k̃j > ko

j . We

take the additional input we added to queue 1 and move it to queue j, forming a new vector

ko
1, . . . , k

o
j +1, . . . , ko

N ). Notice that this change cannot decrease the cost function, since this

input was originally added greedily to queue 1. We now have k̃j ≥ ko
j + 1, which reduces

the problem to Case 1.

Thus, the sequentially greedy algorithm is optimal. It can be implemented with M +

N − 1 evaluations of the cost function by keeping a record of the N − 1 queue increment

values for the N − 1 queues not chosen at each step.

256



Appendix B

Routing in Finite Buffer Queues

In this appendix, we consider the problem of routing packets from an arbitrary input stream

X(t) over a collection of heterogeneous queues in parallel. When the processing rates

(µ1, . . . , µN ) of the queues are constant, a simple work conserving routing strategy πWC is

shown to hold total system backlog within a fixed upper bound from the resulting backlog

of any other policy. Similar results apply to systems with time varying processing rates

(µ1(t), ..., µN (t)) when routing decisions can be postponed by placing packets in a pre-

queue.

X(t)

N

2

1 µ1(t)

µ2(t)

µ (t)N

Router

Figure B-1: Routing over a set of parallel queues with time-varying processing speeds µi(t).

For the case when routing decisions must be made immediately upon arrival, it is im-

possible to bound the number of packets or the amount of unprocessed bits in the queues

unless complete knowledge of future events is known. However, we demonstrate that the

simple non-predictive policy of routing packets to the shortest queue ensures system sta-

257



bility whenever possible. Of particular interest in this appendix is our treatment of finite

buffer queueing analysis. We consider the Join-the-Shortest-Queue policy when all queues

have finite buffers, and establish upper and lower bounds on packet drop rates. Stability

properties are proven under the following new notion of stability: A finite buffer system is

stable if the packet drop rate can be made arbitrarily small by increasing the buffer size.

We apply these results to a joint problem of routing and power allocation, where for

each time varying channel state Si(t), the rate of each queue i can be varied by adjust-

ing a power parameter Pi (subject to power constraints) according to a rate-power curve

µi(Si, Pi). A throughput maximizing algorithm is developed for this joint problem. This

work supplements our analysis presented in Chapter 3. Indeed, in Chapter 3 we developed

a power allocation scheme for a satellite downlink and proved stability of the Join-the-

Shortest-Queue routing strategy using a Lyapunov function for infinite buffer systems. Our

approach to the finite buffer problem uses a completely different technique.

Previous work on routing and queue control policies is found in [147] [45] [142] [60] [145]

[146] [135] [17] [110] [108] [105]. In [147] an exact analysis of the Join-the-Shortest-Queue

policy for parallel queues is developed for M/M/1 systems. In [45] the Join-the-Shortest-

Queue strategy is shown to be optimal for minimizing average backlog in a system with

an arbitrary packet arrival process entering a system of two queues with homogeneous

exponential servers. An extension to the case when the two servers have different service

rates is treated in [142], where an optimal threshold policy is developed using dynamic

programming. Shortest queue optimality results similar to [45] are developed in [145] [146]

for multiple homogeneous queues, and in [135] for homogeneous queues with finite buffers.

Static or ‘backlog-blind’ routing policies such as round robin or probabilistic splitting are

considered with various assumptions on the inputs in [45] [90] [89] [3] [25] [80] [56] [32]

[14] [21] [130] [19] [22] [105]. In Appendix A, we develop convexity properties of queueing

systems with general ∗/∗ inputs and time varying server rates, and use them to establish

an optimal static policy for routing multiple data streams over N parallel queues.

A related NP-complete problem of batch packet arrivals is considered in [52] [30] where

the goal is to route packets to parallel queues to minimize the total delay for transmitting one

batch. In [126] [9] [74] an online job scheduling problem is considered where N identical

servers work on K jobs which arrive randomly over an interval of time [0, T ]. Simple

algorithms which finish within twice the minimum possible completion time are developed.

258



The main contribution in this paper is to treat stochastic queueing systems and to

provide tight, worst case bounds on system performance for arbitrary input processes. Using

sample path techniques, we develop additive bounds on the amount of unfinished work in the

queues for the entire timeline t ≥ 0. For finite buffer systems, we present additive bounds

on packet drops. Such bounds directly translate into statements about queue stability and

buffer requirements in the system. This approach differs significantly from the dynamic

programming techniques which address systems with particular types of input and server

processes.

In the next section we introduce the routing problem by comparing two natural routing

strategies: a greedy routing strategy and a work conserving routing strategy. In Section

B.2 a simple queueing inequality is developed for time-varying systems and is used as a tool

for comparing routing schemes and proving performance bounds. In Sections B.3 and B.4

we treat routing in systems with a pre-queue and without a pre-queue, respectively, and

in Section B.5 we apply these results to a power allocation problem. To provide the most

general results while facilitating intuition, all buffers are assumed to be infinite until the

finite buffer analysis is presented in Section B.4.

B.1 The Greedy and Work Conserving Algorithms

Consider the system of Fig. B-1 with an arbitrary arrival stream X(t) sending packets to be

routed over the N queues. Assume all processing rates (µ1, . . . , µN ) are constant. The goal

is to route packets in a manner that ensures an acceptably low level of unfinished work U(t)

and number of packets N(t) in the system for all time. It can be shown that a policy πgreedy

(described below) is optimal in minimizing N(t) at every instant of time if all packets have

fixed lengths and arrive in a single burst at time zero. However, for general streams X(t)

with arrivals occurring over the timeline t ∈ [0,∞), it is not possible to minimize N(t) or

U(t) at every instant of time—even if the entire future is known in advance. Here we seek

a robust strategy, one whose performance at every instant of time t is sufficiently close to

that of a system optimized to minimize backlog at that particular time instant.

Two natural routing strategies emerge, the greedy strategy πgreedy and the work con-

serving strategy πWC :

1. The greedy strategy routes the current packet i to the queue that allows it to exit

259



first:

πgreedy: Choose queue k such that k = arg minj∈{1,...,N}

{
Li+Uj(t)

µj

}
(where Li is the length of the current packet i, and Uj(t) is the unfinished work in

queue j at time t).

2. The work conserving strategy routes to the queue which will empty first:

πWC : Choose queue k such that k = arg minj∈{1,...,N}

{
Uj(t)
µj

}

Notice that policies πgreedy and πWC are identical if all server speeds µj are the same,

although they may differ considerably under heterogeneous server rates. Because the greedy

strategy uses the length of the current packet when making a routing decision, one would ex-

pect this policy to offer better performance. However, for suitable choices of the linespeeds

(µ1, . . . , µN ), a system under the greedy strategy can have arbitrarily more unfinished work

within it than the same system operating under the work conserving strategy, as the fol-

lowing example illustrates.

Suppose a burst of B packets arrive to the system at time 0. After this initial burst,

a single packet arrives periodically at times {1, 2, 3, . . .}. Assume all packets have fixed

lengths L = 1, and that (µ1, µ2, . . . , µN ) = (1, ε, ..., ε). Suppose that ε > 0 is sufficiently

small to ensure that all packets from the initial burst as well as all packets thereafter are

routed to queue 1 under strategy πgreedy. Thus, under the greedy strategy, there are always

B packets in the system.

Now consider a different set of routing decisions (which we represent as policy π): route

the B packets from the initial burst amongst the N − 1 queues of rate ε, and route all

packets from the periodic stream thereafter to queue 1. Under this policy, queue 1 always

has exactly one packet within it. However, the B packets from the initial burst eventually

depart from queues {2, 3, . . . , N}, leaving these queues empty after some finite time T .

Hence, after time T the greedy strategy πgreedy results in B− 1 more packets in the system

than policy π, where B − 1 can be made arbitrarily large. Alternatively, in Section B.2 it

is shown that the work conserving strategy πWC is fundamental in that it never produces

more than N − 1 extra packets in the system compared to any other policy.

260



B.2 A Multiplexing Inequality

Here we develop a queueing inequality useful for establishing performance bounds on routing

policies. Let X(t) represent an arbitrary packet arrival process on the interval [0,∞). A

particular X(t) sample path is a non-decreasing staircase function representing the total

number of bits that have arrived to the system during [0, t]. Jumps in the X(t) function

occur at packet arrival epochs and have magnitudes equal to the length of the arriving

packet. We assume there is a maximum packet length Lmax.

Consider the single server and multi-server queueing systems of Fig. B-2. The linespeed

processes µ(t) and {µi(t)} represent instantaneous server processing rates (in units of bits

per second). Here we assume that the rate of the single server queue of Fig. B-2a is equal

to the sum of the individual server rates in Fig. B-2b, i.e., µ(t) = µ1(t) + . . . + µN (t).

Assume both systems of Fig. B-2 are initially empty and the same input process X(t) is

applied to each. Packets are immediately processed in the single server system according to

a non-idling service policy. However, in the multi-server system packets are routed to the

N queues using any conceivable routing mechanism. All buffers in the queues and in the

router device are assumed to be infinite, so that no packets are lost. Let Usingle−server(t)

represent the unfinished work (in bits) in the single server queue, and let Umulti−server(t)

represent the total amount of unfinished bits in the multi-queue system.

Lemma 3. (Multiplexing Inequality): For all time t ≥ 0:

Usingle−server(t) ≤ Umulti−server(t) (B.1)

Proof. Let Dsingle−server(t) and Dmulti−server(t) represent the amount of processed bits or

“departures” from the single server system and multi-server system, respectively, during

[0, t]. Clearly we have Dsingle−server(t) = X(t) − Usingle−server(t) and Dmulti−server(t) =

X(t) − Umulti−server(t), and it suffices to show that Dsingle−server(t) ≥ Dmulti−server(t).

Notice that the departure functions are both initially 0 at time t = 0. Whenever the single-

server system is empty, Dsingle−server(t) = X(t) ≥ Dmulti−server(t), and hence the inequality

is satisfied at such times. If the single-server queue is not empty, then it is processing packets

at the instantaneous rate µ(t), which is greater than or equal to the instantaneous departure

rate of bits from the multi-server system. Hence, the departures from the multi-server

261



X(t)
(t)µ

U(t)
X(t)

(t)µ     = µ       + ... +  µ1 N(t) (t)

(b)(a)

Router

capacity)
(with storage

U (t)
1

U  (t)
N

µ1(t)

µN(t)

Figure B-2: A single server queue and a set of multi-server queues with an arbitrary router
device. The sum of the time varying server rates of the servers in (b) equals the rate µ(t)
in (a).

system can never overtake the departures from the single-server queue.

A finite buffer version of this statement is given in Section B.4. This multiplexing

inequality demonstrates that it is always better to multiplex data streams from individual

queues to a single queue whose rate is equal to the sum of the individual processing rates.

It is useful to consider such a virtual single-server queue to provide a baseline for measuring

the performance of routing policies. Strategies yielding unfinished work functions close to

the Usingle−server(t) lower bound are desirable.

Consider now a particular work conserving routing strategy πWC that operates on the

multi-queue system of Fig. B-2b. The policy πWC places all incoming packets in a shared

buffer device or “pre-queue.” Whenever any server becomes available, the pre-queue instan-

taneously routes the next packet to that server. If there is more than one server available,

the choice is made arbitrarily. Thus, the policy πWC is “work conserving” in that no servers

are idle whenever there are buffered packets waiting to be processed. Let UWC(t) represent

the total unfinished work at time t in the multi-server system of Fig. B-2b under this policy.

Lemma 4. (Performance Tracking): At every instant of time t:

Usingle−server(t) ≤ UWC(t) ≤ Usingle−server(t) + (N − 1)Lmax (B.2)

Proof. The first inequality is just a particular case of the multiplexing inequality (Lemma

25). To prove the second inequality, we compare the departed bits DWC(t) and Dsingle−server(t).

262



It suffices to show that Dsingle−server(t) ≤ DWC(t) + (N − 1)Lmax. For simplicity, assume

that µi(t) < ∞ for all time t and all i, so that departures drain continuously from the

queues. For the above departure inequality to be violated, there must be some crossing

time t∗ such that Dsingle−server(t∗) = DWC(t∗) + (N − 1)Lmax. If the single-server system

is empty at this time, the departure function Dsingle−server(t) cannot increase, and hence

t∗ cannot be a crossing time. Otherwise, the multi-server system holds strictly more than

(N−1)Lmax bits, and hence contains at least N distinct packets. By the nature of the work

conserving policy πWC , all servers of the multi-server system must be actively processing

these packets. The departure functions Dsingle−server(t) and DWC(t) are thus increasing at

the same rate at time t∗, and the departures from the single-server system cannot overtake

the bound.

Notice that the bounds of Lemma 26 imply that the work conserving routing strategy

πWC is stable (in the usual sense of infinite buffer systems) if and only if the single queue

system with the same inputs is stable. Stability issues for finite buffers systems are addressed

further in Section B.4.

B.3 Systems with Pre-Queues

The results of the previous section allow routing policy πWC—which is implemented with a

pre-queue—to be compared to any other policy π which operates on the same multi-server

system. Here we show πWC is minimax optimal. Let UWC(t), NWC(t), Uπ(t), and Nπ(t)

represent the unfinished work and number of packets in the multi-queue system of Fig. B-2b

under policies πWC and some other (arbitrary) policy π, respectively.

B.3.1 Variable Length Packets

Here we treat systems with variable length packets. All packets are bounded by a maximum

packet length Lmax. We show that the πWC routing strategy provides the best worst-case

performance guarantee of all policies for routing packets non-preemptively over multiple

time varying servers.

A policy π is non-preemptive if it does not interrupt a packet that has initiated processing

at a server. If the policy does not require knowledge of the future, we say it is non-predictive.

If a policy π has full knowledge of future events, it can be designed to minimize unfinished

263



work at some particular time instant τ . Let ΦX,~µ(τ) represent this minimum value of

unfinished work in a system with input stream X(t) and linespeeds ~µ(t) = (µ1(t), . . . , µN (t)).

Consider a game where a scheduler makes routing decisions (according to some non-

predictive policy π) while an adversary dynamically creates an input stream X(t) and

varies the linespeeds (µ1(t), . . . , µN (t)) in order to maximize the difference between Uπ(t)

and ΦX,~µ(τ). The goal of the scheduler is to minimize the worst case deviation from

optimality, i.e., minimize the value of maxt≥0

{
Uπ(t)− ΦX,~µ(t)

}
.

Theorem 8. (a) For all policies π (possibly predictive and preemptive), we have:

UWC(t) ≤ Uπ(t) + (N − 1)Lmax (B.3)

(b) The work conserving policy πWC is the minimax optimal non-predictive, non-preemptive

routing strategy over the set of all possible inputs and linespeed variations.

Proof. Part (a) follows immediately from Lemmas 25 and 26. To establish that the policy

πWC is minimax optimal, it suffices to show that any non-predictive, non-preemptive policy

π can be forced to meet the (N−1)Lmax bound. The idea is for an adversary to force policy

π to route maximum length packets to distinct servers, and then to trap these packets by

setting their server rates to 0. Specifically, the adversary sends (N − 1) maximum length

packets at time 0. The adversary then maintains a constant output rate of µi(t) = µ for

all servers i that have no packets within them. Whenever a packet is routed to a server

under policy π, that server rate is set to 0. After (N − 1)Lmax/µ seconds have elapsed, no

unfinished work has been processed, and there must be some server j∗ that has remained

empty for the full time interval, with an unused processing rate µj(t) = µ. Hence, given this

particular sample path of server rates and packet arrivals, an alternative routing scheme

that sends all packets to server j∗ would have allowed the system to be empty at this time,

and so the (N − 1)Lmax bound is met with equality.

B.3.2 Fixed Length Packets

In the case when all packets have fixed lengths, a version of inequality (B.3) can be estab-

lished in terms of the number of packets N(t) in the system.

264



Theorem 9. If all packets have fixed lengths L, then:

NWC(t) ≤ Nπ(t) + N − 1 (B.4)

Proof. Define a completely busy period as an interval of time when all servers of the parallel

queue system are busy. Because πWC never buffers packets if a server is idle, the inequality

holds whenever t is not within a completely busy period. Suppose now that t lies within a

completely busy period, and let τB be the beginning time of this period. We have:

NWC(t) = NWC(τ−B ) + A(τB, t)−DWC(τB, t) (B.5)

Nπ(t) = Nπ(τ−B ) + A(τB, t)−Dπ(τB, t) (B.6)

where τ−B represents the time just before the arrival initiating the completely busy period,

A(τB, t) is the number of arrivals during the interval [τB, t], and DWC(τB, t), Dπ(τB, t)

respectively represent the number of packet departures from the πWC system and the π

system during this interval. The above departure functions are composed of individual

terms Di
WC and Di

π representing departures from queue i:

DWC(τB, t) =
N∑

i=1

Di
WC , Dπ(τB, t) =

N∑
i=1

Di
π (B.7)

During the time interval [τB, t], each queue of the πWC system continuously processes

fixed length packets. Thus, Di
WC ≥ Di

π − 1 for all queues i, and equality holds only if

there was a packet being processed by queue i under the π routing policy at time τ−B .

Suppose there are k such cases, so that Nπ(τ−B ) = k (where k ≤ N). Thus, DWC(τB, t) ≥

Dπ(τB, t)− k, and we have:

NWC(t) ≤ NWC(τ−B ) + A(τB, t)−Dπ(τB, t) + k (B.8)

= NWC(τ−B ) + Nπ(t)−Nπ(τ−B ) + k (B.9)

≤ (N − 1) + Nπ(t)− k + k (B.10)

where (B.9) follows from (B.6), and (B.10) follows because the work conserving strategy

contains fewer than N packets just before the completely busy period.

265



A technique similar to the one used in the proof of Theorem 26 shows that this (N − 1)

bound is tight and is minimax optimal over all non-predictive, non-preemptive strategies.

Similar routing and scheduling problems have been treated in [45] [142] [60] [144] for

systems with two heterogeneous servers (N = 2) with memoryless assumptions on the server

or arrival processes. With such a formulation applied to the problem of routing Poisson

inputs with fixed-length packets in a two-queue system, it is possible to prove that the

optimal routing strategy for minimizing expected occupancy in the system has a threshold

structure. A complex dynamic program can be developed to numerically compute the exact

threshold function. However, here we find that—with arbitrary input processes X(t)—the

simple work conserving strategy πWC ensures no more than one extra packet in the system

compared to any other strategy at any time.

B.4 Systems Without a Pre-Queue

B.4.1 Constant Rate Servers

The implementation of the work conserving policy πWC for time varying servers uses a

pre-queue to store packets until the next server becomes available. In many systems it

is undesirable or even impossible to implement a pre-queue. For example, in a satellite

network, queues might be aboard different satellites, which may require routing decisions

to be made immediately upon packet arrival. Here we show that the same results can

be obtained in systems without a pre-queue if the server rates (µ1, . . . , µN ) are known

constants.

Observation: For constant server rates (µ1, . . . , µN ), the strategy of routing an incoming

packet to the queue k with the smallest value of Uk(t)/µk (the πWC strategy as described in

Section B.1) is the same as the πWC strategy described for time varying servers in Section

B.2. Thus, a pre-queue is not needed.

Proof. The strategy always routes a new packet to the queue that will empty first. Thus, if

there is ever an empty server i, there can be no more than 1 packet in each of the (N − 1)

other queues.

Thus, the bounds in Theorems 26 and 27 apply to heterogeneous, constant rate servers

when this routing method is used.

266



B.4.2 Time Varying Servers

Consider routing over a multi-queue system with time-varying processing rates when no

pre-queue is available and all routing decisions are made immediately upon packet arrival.

We examine the Join-the-Shortest-Queue (JSQ) policy: route the current packet to the

queue i with the smallest value of Ui(t). Intuitively, this strategy is the closest match to

the work conserving strategy given that we cannot predict future values of server rates.

We seek to prove that this strategy stabilizes the multi-queue system whenever it is

stabilizable. This is done for general ergodic input sources and linespeed processes by

introducing a new notion of stability defined in terms of finite buffer systems. Consider the

single queue system of Fig. B-3a with an ergodic input process X(t) of bit rate λ, a linespeed

process µ(t) with ergodic rate µav, and assume this system has a finite buffer capacity of

M bits. We assume that a full packet of size L is dropped if it arrives when M −U(t) < L.

Let GM (t) represent the total bits dropped (or placed into the Garbage) during [0, t] when

the buffer size is M . Further let DR(M) represent the drop rate (measured in bits) of the

system as a function of buffer space M :

DR(M) = lim sup
t→∞

GM (t)
t

Definition 7. A system is loss rate stable if the drop rate can be made arbitrarily small by

increasing buffer capacity, i.e., if DR(M) → 0 as M →∞.

For the remainder of this appendix, we consider only finite buffer systems, and use the

term stable to mean loss-rate-stable.

It can be shown that a necessary condition for loss rate stability is λ ≤ µav. Furthermore,

if the input stream and server rate processes evolve according to an underlying finite state

ergodic Markov chain, a sufficient condition for loss rate stability is λ < µav. This notion of

stability is closely tied to the standard notion defined in terms of a vanishing complementary

occupancy distribution for infinite buffer capacity queues [98] [6] [81] [88] [132] [95].

Before analyzing the JSQ strategy, we present a finite buffer version of the multiplexing

inequality. Consider the two systems of Fig. B-3. The server rates µ1(t), . . . , µN (t) of

the multi-queue system sum to the single-server linespeed µ(t). Suppose the single queue

system has buffer size M , while the multi-queue system has buffer sizes M1, . . . ,MN . Let

Gsingle(t) represent the total bits dropped by the single server system during [0, t], and let

267



(b)(a)

X(t)X(t)
M

(t)µ     = µ       + ... +  µ1 N(t) (t)

µ1(t)

µN(t)

(t)µ

MN

M1

Figure B-3: A single stage system with a finite buffer of size M and an aggregated server
processing rate µ(t) compared to a multi-queue system with finite buffers.

Gmulti(t) represent the bits dropped by the multi-server system with the same inputs (using

any arbitrary set of routing decisions). Both systems are assumed empty at time 0.

Theorem 10. (Finite Buffer Multiplexing Inequality): For arbitrary inputs X(t), if M ≥

M1 + . . . + MN + Lmax, then for all t:

(a) Departures satisfy: Dsingle(t) ≥ Dmulti(t)

(b) Packet drops satisfy: Gsingle(t) ≤ Gmulti(t)

Proof. See Appendix B.A.

Thus, a single-queue system in which all buffer slots and linespeeds are aggregated (with

an additional buffer slot of size Lmax) always outperforms the multi-queue system. We now

consider the particular routing strategy JSQ. Let DRJSQ(M) represent the drop rate of

the multi-queue system (operating under the JSQ policy) when all queues have finite buffer

storage M .

Theorem 11. For all buffer sizes M :

DRJSQ(M + NLmax) ≤ DRsingle−queue(M) (B.11)

and hence a multi-queue system under the JSQ strategy with a buffer size of M + NLmax

in each queue drops fewer packets than the single queue with buffer size M .

Proof. : We prove a stronger result: GJSQ(t) ≤ Gsingle(t) for all t ≥ 0, where GJSQ(t) and

Gsingle(t) respectively represent the total bits dropped by the multi-queue system (under

268



JSQ) and the single queue system. Suppose this inequality is first violated at some time

τ (we reach a contradiction). It follows that an arriving packet must have been dropped

by the JSQ system at this time, and thus all servers of the multi-queue system are busy.

Let tB represent the start of this completely busy period, so that bits depart from the JSQ

system at the full service rate during [tB, τ ]. Let UJSQ(t) represent the unfinished work in

the JSQ system at time t. Further define:

a M= Arrivals during [tB, τ ]

dJSQ
M= Bits processed by the JSQ system during [tB, τ ]

gJSQ
M= Bits dropped by the JSQ system during [tB, τ ]

Define dsingle, gsingle, and Usingle(t) similarly for the single queue system. Note that gJSQ >

gsingle because the packet drop inequality GJSQ(t) ≤ Gsingle(t) is first violated at time τ .

The following bit-conservation equalities hold:

UJSQ(τ) = UJSQ(t−B) + a− dJSQ − gJSQ (B.12)

Usingle(τ) = Usingle(t−B) + a− dsingle − gsingle (B.13)

Just before the completely busy period, at least one queue of the multi-server system is

empty, and hence:

UJSQ(t−B) ≤ (N − 1) [M + NLmax] (B.14)

Because a packet is dropped by the JSQ system at time τ , all queues must have more than

[M + (N − 1)Lmax] unfinished work within them, and hence:

UJSQ(τ) > N [M + (N − 1)Lmax] (B.15)

Using (B.14) and (B.15) in (B.12), we have:

N [M + (N − 1)Lmax] < (N − 1) [M + NLmax] + a− dsingle − gsingle

and hence

a− dJSQ > M + gJSQ (B.16)

269



The unfinished work in the single queue can thus be bounded:

Usingle(τ) ≥ a− dsingle − gsingle (B.17)

≥ a− dJSQ − gsingle (B.18)

> M + gJSQ − gsingle (B.19)

where (B.17) follows from (B.13), (B.18) follows because the JSQ system processes packets

at the full rate µ(t) during [tB, τ ], and (B.19) follows from (B.16). Now, because of the finite

buffer constraint, M ≥ Usingle(τ), and hence (B.19) yields gJSQ < gsingle, a contradiction.

Theorems 28 and 29 imply that

DRsingle(MN + (N2 + 1)Lmax) ≤ DRJSQ(M + NLmax) ≤ DRsingle(M)

and hence the multi-queue system under the JSQ routing strategy is stable if and only

if the corresponding single queue system is stable. Furthermore, (B.11) provides a simple

and useful bound on the packet drop rate in the multi-queue system in terms of a single

queue with a finite buffer. Inequality (B.11) can be used together with the finite buffer

multiplexing inequality to bound the performance of JSQ in terms of any other routing

policy π:

DRJSQ(M) ≤ DRπ

(
M

N
− Lmax

N + 1
N

)
where DRπ(V ) represents the drop rate in the multi-queue system with the same input

stream but with any arbitrary (possibly anticipatory) routing policy π, for the case when

all queues have buffer size V .

B.5 Joint Routing and Power Allocation

Suppose that the transmission rates (µ1, . . . , µN ) of the system can be controlled by ad-

justing power levels Pi allocated to each server. Specifically, suppose that each channel

i ∈ {1, 2, . . . , N} has an associated channel state Si which takes values on a finite set of

states (Si ∈ {Ci
1, C

i
2, . . . , C

i
Mi
}). Let µi(Pi, Si) represent a concave rate-power curve for each

channel state (see Fig. B-4). We assume that the individual queues belong to a collection

270



of J sub-units, and let Vj represent the set of queues i ∈ {1, . . . , N} belonging to sub-unit

j. The sub-units could represent distinct satellites of a satellite network, or different bases-

tations in a wireless network. Each sub-unit j has its own power resource with total power

P
(j)
tot .

improving 
channel
conditions

Rate 

2

Power P

µi
µi(P, S  )1

µi(P, S  )3

µi(P, S  )

Figure B-4: A set of concave power curves µi(Pi, S) for channel states Si
1, S

i
2, S

i
3.

Let ~S(t) = (S1(t), S2(t), . . . , SN (t)) represent the vector of channel states at time t, and

assume that ~S(t) varies according to a discrete time Markov chain with timeslots of length

T . As before, packets enter the system according to an input process X(t) and routing

decisions are made immediately upon arrival. In addition to making routing decisions,

a controller must choose a power allocation ~P (t) = (P1(t), . . . , PN (t)) for each instant of

time, subject to the total power constraints of each sub-unit:
∑

i∈Vj
Pi(t) ≤ P

(j)
tot for all

j ∈ {1, . . . , J}. The problem is to design a joint routing and power allocation strategy that

maximizes throughput and stabilizes the system whenever the system is stabilizable. Such

a policy makes decisions using the observable system state vectors ~U(t) and ~S(t).

In general, both state vectors ~U(t) and ~S(t) are important in both the routing and

power allocation decisions. For example, clearly any power allocated to an empty queue

is wasted and should be re-allocated to improve processing rates amongst the non-empty

queues. Likewise, a router is inclined to place packets in faster queues, especially if the

rates of those queues are guaranteed to operate at high levels for one or more timeslots.

However, below we show that the routing and power allocation problem can be decoupled

into two policies: a routing policy which considers only ~U(t), and a power allocation policy

which considers only ~S(t). The power allocation policy is distributed, so that each sub-unit

makes independent control decisions using only the local channel state information for each

271



queue it contains. The resulting strategy maximizes total system throughput even when

the underlying Markov chain describing ~S(t) is unknown.

Let β~S represent the steady-state probability that the channel vector is in state ~S. Define

the following rate µ:

µ =
∑

~S

β~S

 maxP
i∈Vj

Pi=P
(j)
tot ∀j

∑
i

µi(Pi, Si)

 (B.20)

The value of µ is the average total rate offered by the system when power is allocated to

maximize total rate at every instant of time. Assume that the input process X(t) generates

packets according to a fine state, ergodic Markov chain, and let λ represent the total bit

rate.

Theorem 12. The capacity of the multi-queue system with joint routing and power allo-

cation is µ, i.e., a necessary condition for stability is λ ≤ µ, and a sufficient condition is

λ < µ.

The fact that λ ≤ µ is necessary follows by application of Theorems 28 and 29. Indeed,

suppose a stabilizing algorithm exists, and let {pi(t)} represent the stabilizing power func-

tions. (Note that these functions are not necessarily ergodic). The sum rate of all servers

in the multi-queue system is hence µ(t) = µ1(P1(t), S1(t)) + . . . + µN (PN (t), SN (t)). By

Theorem 28, the system is stable only if a single queue with the same inputs and server rate

µ(t) is stable. But µ(t) ≤ µ∗(t) for all t, where µ∗(t) is the result when power is allocated

to maximize instantaneous sum rate. Thus, a system with input X(t) and server process

µ∗(t) is also stable. But X(t) is ergodic with rate λ and µ∗(t) is ergodic with rate µ, so

λ ≤ µ must hold.

Sufficiency is established by design of the following decoupled policy π∗ which stabilizes

the system whenever λ < µ:

Power Allocation: At every new timeslot, each sub-unit j observes the entries of the

channel state vector ~S(t) corresponding to the queues it contains (given by the set Vj). The

sub-unit then allocates power {Pi(t)} (for i ∈ Vj) to maximize
∑

i∈Vj
µi(Pi, Si(t)) subject

to
∑

i∈Vj
Pi = P

(j)
tot . This power allocation is held constant until the next timeslot.

Routing: Whenever a new packet enters the system, we observe the value of ~U(t) =

(U1(t), . . . , UN (t)) and route to the shortest queue.

272



Note that this strategy is simply an application of JSQ routing in reaction to the rates

determined by the power allocation decisions. Thus, from Theorem 29 we know that the

multi-queue system is stable whenever the single queue system is stable, which is ensured

when λ < µ. This establishes Theorem 30.

B.6 Summary

The problem of routing packets from an arbitrary stream over a set of parallel queues has

been considered in the context of constant and time-varying processing rates. Using sample

path analysis, a simple work conserving strategy was developed to provide fundamental

performance bounds on the unfinished work in the system at any instant of time. In time

varying systems, this strategy can be implemented with a pre-queue and guarantees that

performance closely follows the performance of a superior single-queue system with an

aggregated data rate.

The pre-queue was shown to be unnecessary when service rates are constant. In the

case of time-varying rates, removing the pre-queue precludes the design of a routing strat-

egy which meets the tight performance bounds on unfinished work guaranteed by a work

conserving policy. However, a general stability result was established for the Join-the-

Shortest-Queue policy, and the result was extended to treat a joint problem of routing and

power allocation. This analysis was performed using a new and useful notion of stability

defined in terms of finite buffer systems. Performance bounds for the JSQ strategy were

given by showing that if all queues have buffer size M + NLmax, the drop rate is less than

or equal to the drop rate of a single queue with an aggregate rate and buffer size M .

Our approach differs significantly from other approaches in that we provide tight, worst

case bounds on system performance with arbitrary input and linespeed processes, rather

than analyzing systems with particular stochastic inputs and linespeeds. We believe this

approach can be applied to more complex queueing structures in satellite and wireless

networks to provide performance bounds and stability guarantees for systems with very

general input processes and control laws.

273



Appendix B.A — Proof of Finite Buffer Multiplexing Inequal-

ity

Here we prove the finite buffer multiplexing inequality (Theorem 28), which compares a

single queue with a time varying server rate µ(t) and a buffer of size M to a parallel system

of N queues with server rates µ1(t), µ2(t), . . . , µN (t) with buffer sizes M1,M2, . . . ,MN .

Theorem: If
∑

i µi(t) = µ(t) and if Lmax +
∑

i Mi ≤ M , then for an arbitrary input

stream X(t):

(a) Departures satisfy: Dsingle(t) ≥ Dmulti(t) for all t

(b) Packet drops satisfy: Gsingle(t) ≤ Gmulti(t) for all t

Proof. The single-queue and multi-queue systems satisfy the following bit conservation

equalities for all time:

Usingle(t) = X(t)−Dsingle(t)−Gsingle(t) (B.21)

Umulti(t) = X(t)−Dmulti(t)−Gmulti(t) (B.22)

Claim 1: If Dsingle(t) ≥ Dmulti(t) for all t ∈ [0, t∗] for some time t∗, then Gsingle(t) ≤

Gmulti(t) on the same interval.

Pf: It suffices to check times t when the single-server system loses a packet, and the

multi-server system retains that same packet (otherwise, Gsingle(t) − Gmulti(t) cannot in-

crease). At such times, Usingle(t) > M−Lmax, and Umulti ≤ M1+M2+. . .+MN ≤ M−Lmax.

Furthermore, we have:

Gsingle(t) = X(t)−Dsingle(t)− Usingle(t)

≤ X(t)−Dmulti(t)− Usingle(t)

< X(t)−Dmulti(t)− (M − Lmax)

= Umulti(t) + Gmulti(t)− (M − Lmax)

≤ Gmulti(t)

which proves the claim. �

Claim 2: Dsingle(t) ≥ Dmulti(t) for all time t ≥ 0.

Pf: For simplicity, assume µ(t) < ∞ so that packets drain continuously from the queues.

274



The departure inequality is true at time 0. If it is ever violated, there must be some first

crossing time t∗ where Dmulti(t∗)−Dsingle(t∗). At such a time, from (B.21) and (B.22) we

have:

Umulti(t∗) + Gmulti(t∗) = Usingle(t∗) + Gsingle(t∗)

However, from Claim 1, we know Gsingle(t∗) ≤ Gmulti(t∗), and hence Umulti(t∗) ≤

Usingle(t∗). Thus, if the single-server system is empty at time t∗, the multi-server sys-

tem is also empty, no bits are being processed, and the departure function cannot overtake

the bound. Otherwise, the single-server system is busy and departures are draining from

it at the fastest possible rate µ(t∗)—so again the departure function for the multi-server

system cannot cross the Dsingle(t∗) bound.

275



276



Appendix C

The Jitter Theorem

Consider a queue in continuous time with an input process A(t) and a time varying server

process µ(t) with an average rate µav = E {µ(t)}. In this appendix, we show that if the

server process is stationary and independent of the arrival process, then any moment of

unfinished work in the queue is lower bounded by the corresponding moment if the time

varying server is replaced by a constant rate server of rate µav.

Suppose the queue is empty at time zero, when the input stream A(t) is applied. Note

that the unfinished work U(t) in the queue at any instant of time is given by

U(t) = max
τ≥0

[
A(t)−A(t− τ)−

∫ t

t−τ
µ(v)dv

]
(C.1)

The above equation is easily verified by noting that the unfinished work at any time instant

t is at least as large as the total arrivals minus the total offered service over any interval

ending at time t, and the bound is met with equality over the interval [tb, t], where tb is the

start of the current busy period.

Define Û(t) as the unfinished work in the system with the same arrival process but with

a constant server rate of µav. An expression for Û(t) in terms of the input A() is given by

using µ(v) = µav in the above equality (C.1).

Theorem 13. (Jitter Theorem) For any convex, non-decreasing function f(u), we have at

every time instant t:

Ef (U(t)) ≥ Ef
(
Û(t)

)
The following proof uses convexity of the max[] operator in a manner similar to the

277



technique used in [64] to show that fixed length packets minimize delay over all packet

input sequences with a given mean packet length.

Proof. For any convex increasing function f(u), we have:

Ef (U(t)) = Ef

(
max
τ≥0

[
A(t)−A(t− τ)−

∫ t

t−τ
µ(v)dv

])
(C.2)

= EA()E
{

f

(
max
τ≥0

[
A(t)−A(t− τ)−

∫ t

t−τ
µ(v)dv

])
|A()

}
(C.3)

≥ EA()f

(
max
τ≥0

[
E
{

A(t)−A(t− τ)−
∫ t

t−τ
µ(v)dv |A()

}])
(C.4)

= EA()f

(
max
τ≥0

[
A(t)−A(t− τ)−

∫ t

t−τ
E {µ(v) |A()} dv

])
(C.5)

= EA()f

(
max
τ≥0

[
A(t)−A(t− τ)−

∫ t

t−τ
µavdv

])
(C.6)

where (C.3) follows because we have broken the original expectation into an iterated expec-

tation, (C.4) holds by Jensen’s inequality together with the fact that the f(max[]) operator

is convex,1 and (C.6) holds because the server process is stationary and independent of

the arrival process. The final expression is by definition equal to E
{

f(Û(t))
}

, proving the

theorem.

Thus, any time varying jitter in the linespeed process creates extra queue congestion.

We indirectly apply this result in [104] to show any N × N packet switch scheduler that

does not consider queue backlog has an average delay of at least O(N).

C.1 Upper Bound Conjecture

Define ΦX(µ) as the steady state expectation of unfinished work in a queue with an input

process X(t) and a constant server rate of µ, and let µ(t) represent a time varying server

process that is stationary and independent of X(t). Let p(µ) represent the steady state

distribution of the µ(t) process, and let µav be the average rate. Let U represent the

average unfinished work in a queue with input X(t) and server process µ(t).

1Indeed, using the non-decreasing convex property of the f(u) function, it is not difficult to show that
f (maxτ≥0 [p1g1(τ) + p2g2(τ)]) ≤ p1f (maxτ≥0 [g1(τ)]) + p2f (maxτ≥0 [g2(τ)]) for any functions g1(), g2(),
and for any probabilities p1, p2 such that p1 + p2 = 1.

278



Conjecture: ΦX(µav) ≤ U ≤ Ep(µ) {ΦX(µ)}

The lower bound follows as a special case of the Jitter Theorem, so the conjecture only

concerns the upper bound. Thus, we conjecture that the average unfinished work in a queue

with a time varying server process that is stationary and independent of the inputs is less

than or equal to the expectation of ΦX(µ), where µ is treated as a random variable with a

distribution equal to the steady state distribution of the µ(t) process.

To give intuition about why we expect the upper bound to hold, we note that it trivially

holds in the case when the µ(t) process has a positive steady state probability of being

strictly larger than λ, as Ep(µ) {ΦX(µ)} = ∞ in this case. Further note that both the

upper and lower bounds are tight when the speed of server variation is decreased to zero

or increased to infinity, respectively, while the same steady state distribution is maintained

(i.e., for a fixed µ(t) process, we can consider µ(V t) where V → 0 or V → ∞). Indeed, in

the case when server variations are very rapid, the average server rate converges to µav over

the course of just a single packet transfer, so that effective service rates are constant and

U → ΦX(µav). Alternately, when variations are very slow, the queue reaches steady state

behavior for each different channel state, and hence U → Ep(µ) {ΦX(µ)}.

C.2 Alternate Proof of Jitter Theorem

Here we develop an alternate and more intuitive proof of the Jitter Theorem that is based

on the multiplexing inequality for queueing systems (Lemma 25 of Appendix B). Con-

sider an input stream X(t) (representing the amount of bits that arrive during the interval

[0, t]), and a time varying server process µ(t), representing the instantaneous server rate

in units of bits/second. Let U(t) represent the unfinished work in the queue as a function

of time (assuming the queue is initially empty). Further let Umutli−server(t) represent the

sum unfinished work in a multi-server system with rates µ1(t), µ2(t), . . . , µN (t) such that∑
i µi(t) = µ(t). We make use of the following basic properties of all queueing systems:

• Multiplexing Inequality: U(t) ≤ Umulti−server(t) for all time t ≥ 0.

• Unit Scaling Equality: For any constant V > 0, V U(t) = Ũ(t) for all time t ≥ 0,

where Ũ(t) represents the unfinished work process in a single queue system with an

279



input stream V X(t) and a server rate V µ(t). That is, Ũ(t) is the resulting unfinished

work when both the input and server rate are scaled by V .

The multiplexing inequality is proved in Appendix B (Lemma 25). The unit scaling

property holds because scaling both the input and server process by a constant V scales

the U(t) sample path by V at every instant of time.2

The Jitter Theorem follows directly from these two properties together with the picture

shown in Fig. C-1. For simplicity of exposition, we illustrate only the fact that E {U(t)} ≥

E
{

Û(t)
}

, proving Theorem 31 for the special case where f(u) = u.

From the figure, we note by the unit scaling property that the unfinished work U(t) at

every instant of time is equal to the sum unfinished work when the system is duplicated M

times, with scaled inputs and server rates 1
M X(t) and 1

M µ(t). Next, note that the expected

unfinished work in each duplicate system m is equal to the expected unfinished work in a

modified system m′ with the same input process 1
M X(t) but with the server process replaced

by 1
M µm(t), where µm(t) is an independent but identically distributed version of the original

µ(t) process. This holds because the original µ(t) process is independent of the input stream

X(t). However, applying the multiplexing inequality, we find that the sum unfinished work

in all modified queues is greater than or equal to the unfinished work in a single queue

with an input stream X(t) = 1
M

∑M
m=1 X(t) and a server process 1

M

∑M
m=1 µm(t). Thus,

the expected unfinished work in the original system is greater than or equal to the expected

unfinished work in a new system with the original input stream but with a server process

consisting of a sum of M i.i.d. processes µm(t). This holds for all positive integers M , and

hence we can take limits as M →∞. Because all processes are stationary and independent,

it follows by the law of large numbers (applied to processes) that 1
M

∑M
m=1 µm(t) → µav.

2The operation of scaling both X(t) and µ(t) by the same constant V > 0 can be viewed simply as
expressing the backlog in units other than bits.

280



(t)µ

=
[in expectation]

1’

M’

’2

M

(t)Mµ

(t)

M
1

(t)mµX(t) = X(t)
M
1

U(t)

X(t)
U(t)

2

X(t)

M
(t)µ

M
(t)µ

M
(t)µ

M

1

2=

M

M

µ

M

(t)1µ
M

X(t)

M
X(t)

M
X(t)

M
X(t)

M
X(t)

Figure C-1: An illustration proving the Jitter Theorem.

281


