MICHAEL J. NEELY, UNIVERSITY OF SOUTHERN CALIFORNIA, FALL 2007 1

EE 441: General vector spaces over a field

I. AXIOMS FOR A VECTOR SPACE V OVER A FIELD [F

Let IF be a general field. Let V be a set of objects called “vectors.” We say that V is a vector space over the field F if there
are rules for vector addition and scalar multiplication such that V is closed with respect to these operations, that is:

e v1 + vy € V for any two vectors v, vy € V.

e av €V for any vector v € V and any scalar o € F.
and such that the following additional six properties hold:
1) (Commutativity)
v, + vy = vy +v; (forall vi,vy €V)

2) (Associativity)

(v1 +v2) +v3 =v1 + (V2 +v3) (for all v1,v2,v3 €V)
(af)v = a(fv) (forall o, 3,€ F and v € V)

3) (Distributive Properties)

a(vy +v2) = avy + avy (for all v1,ve €V, and a € )
(a+B)v=av+pv (forall v eV, and «, 5 € F)
4) (Additive Identity) There exists a vector O € V such that:
v+0=v foralveV

5) (Additive Inverse) For every v € V), there exists a vector —v € V such that:

v+-—-v=0

6) (Multiplicative Identity) 1v = v for every vector v € V.

Note that the vector space R™ over the field R satisfies all these properties. Similarly, the set " is a vector space over F,
where vector addition and scalar multiplication are defined entrywise via the arithmetic of F. Other examples of vector spaces:

« The vector space V over the field F (where F is any general field), consisting of all countably infinite tuples (z1, x2, 23, . . .),
where z; € F for all entries ¢ € {1,2,...,}, and where arithmetic is defined entrywise using arithmetic in F.

o The vector space V over the field R, where V is the set of all continuous functions of time ¢ for ¢t € (—o0, 00).

o The vector space V over the field R, where V is the set of all polynomial functions f(¢) of degree less than or equal to
n. Thatis, V = {f(t)| f(t) = ap + cut + aot® + ... + a,t", o; € R}.

II. SIMPLE LEMMAS FOR VECTOR SPACES

Let V be a vector space over a field F.
Lemma 1: (Uniqueness of 0) The vector 0 € V is the unique additive identity.
Proof: Suppose that w satisfies v +w = v for any v € V. Then adding —v to both sides of the equation v+ w = v yields:

—vt+tvt+w=-v+v

and hence: 0 + w = 0. Therefore, w = 0. O
Lemma 2: (Uniqueness of —v) For any vector v € V), if there is a vector w € V such that v + w = 0, then w = —v.
Proof: Suppose that v + w = 0. Adding —v to both sides yields 0 + w = —wv, and hence w = —v. O

Lemma 3: Ov = 0 for any v € V.
Proof: Take any vector v € V. Then:

v=1v=_1+0)v=1v+0v

and hence v = v + Ov. Adding —v to both sides yields 0 = Ov, proving the result. O
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Lemma 4: a0 = 0 for any o € F.
Proof: Take any a € F and any vector v € V. Then:

av = alv+0)
= av+al
Thus, we have av = av + a0. Adding —(aw) to both sides yields 0 = «0, proving the result. |

Lemma 5: —v = (—1)v for any v € V.
Proof: Take any vector v € V. Then:

0=0w=(1+-1v=1lv+(-Dv=v+(-1)v
Thus, 0 = v + (—1)v. Adding —wv to both sides yields —v = (—1)v, proving the result. O

III. SUBSPACES
Definition 1: Let V be a vector space over a field F. Let S C V be a subset of V. We say that S is a subspace if:

v +ve €S for all vi,v2 € S
aveS forallveV,acF
where addition and scalar multiplication are the same in S as they are in V.

It is easy to prove that if S is a subspace of vector space V over field F, then S is itself a vector space over field FF. (It is
important to note that —v = (—1)wv in proving this...why?).

IV. LINEAR COMBINATIONS AND LINEAR INDEPENDENCE

Definition 2: Let {x1,...,x1} be a collection of vectors in a vector space V over a field F. We say that a vector v € V is
a linear combination of {x1, ..., 2} if it can be written: v = a1 +. ..+ agxy for some scalars o; € F for i € {1,...,k}.

Definition 3: Let {x1,...,x1} be a collection of vectors in a vector space V over a field F. We define Span{x,...,z;}
as the set of all linear combinations of {x1, ..., x;}. Note that Span{xy,...,zx} C V.

Definition 4: Let S be a subspace of a vector space V over a field F. We say that a collection of vectors {x1, ...,z } span
S if Span{xy,...,zx} =S.

Definition 5: We say that a collection of vectors {x1,...,x} in a vector space V (over a field F) are linearly independent
if the equation ayvy + @ + ... + avg = 0 can only be true if a; =0 for all 7 € {1,...,k}.
Definition 6: A collection of vectors {x1,...,x} is a basis for a subspace S if the collection {x1,..., 2} is linearly

independent in S and spans S.

The following lemmas have proofs that are identical (or nearly identical) to the corresponding lemmas proven in class for
the vector space R™. The proofs are left as an exercise.

Lemma 6: A collection of vectors {x1,...,x} are linearly independent if and only if none of the vectors can be written
as a linear combination of the others.

Lemma 7: If {x1,...,2} are linearly independent in a vector space V), and if w € V and w ¢ Span{xi,...,x;}, then
{x1,x2,...,xk, w} are linearly independent.
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Lemma 8: (k < m) Let {x1,...,x} be a collection of vectors that are linearly independent in a subspace S. Let
{y1,--.,9,,} be a collection of vectors that span S. Then k < m.

Lemma 9: Any two bases of a subspace S have the same size, defined as the dimension of the subspace.

Lemma 10: The dimension of F" is n.

Lemma 11: Let S be a subspace of a vector space V, where ) has dimension n. Then S has a finite basis, and the dimension
of S is less than or equal to n.

Note that the standard basis for F™ is given by {ei,...,e,}, where e; is a n-tuple with all entries equal to 0 except for
entry ¢, which is equal to 1.
Note that the collection {1,¢,#2,...,t"} is a basis for the vector space V over the field R, where V is the space of all

polynomial functions of degree less than or equal to n (why is this true?). Thus, this vector space has dimension n + 1. Note
also that, for any n, this vector space is a subspace of the vector space over R defined by all continuous functions. Thus, the
dimension of the vector space of all continuous functions is infinite (as it contains subspaces of dimension n for arbitrarily
large n).

V. MATRICES

Let A be a m X n matrix with elements in . Note that the equation Ax = 0 (where 0 € F™ and « € F™) has only the
trivial solution = 0 € F™ if and only if the columns of A are linearly independent.

Lemma 12: A square n X n matrix A (with elements in F) is non-singular if and only if its columns are linearly independent,
if and only if Az = 0 has only the trivial solution.

The above lemma follows from the fact that if A is non-singular, it has a single unique solution to Ax = b for all b € F"
(which is true by Gaussian Elimination), and if it is singular it does not have a solution for some vectors b € F™ and it has
multiple solutions for the remaining b € F".

Lemma 13: Let A, B be square n x n matrices. If AB = I, then both A and B are invertible, and A~! = B and B~! = A.
The above lemma follows from the fact that AB = I implies A is non-singular (why?) and hence invertible.

Lemma 14: A square n x n matrix A (with elements in ) has linearly independent columns (and hence is invertible) if
and only if its transpose A7 has linearly independent columns (and hence is invertible). Thus, a square invertible matrix A
has both linearly independent rows and linearly independent columns.

The above lemma follows from the fact that AA~! = I, and hence (A=1)TAT = I.

VI. BASIC PROBABILITY
The next several lectures on erasure coding will use the following simple but important probability facts:

« If a probability experiment has K equally likely outcomes, then the probability of each individual outcome is 1/K.
o Let F4, Es, ..., E,, be a set of independent events (say, from m independent probability experiments). Then:

Pr[ElﬁEgﬂﬂEm]:PT[El]Pr[EQ]Pr[Em]

That is, the probability that all independent events occur is equal to the product of the individual event probabilities.
e (Union Bound) Let F1, Fs, ..., E,, be a collection of m events (possibly not independent). Then:

PrlEyUEU---UE,] <Y Pr[E]
1=1

That is, the probability that at least one of the events occurs is less than or equal to the sum of the individual event
probabilities.



