## EE 441: General vector spaces over a field

## I. Axioms for a Vector Space $\mathcal{V}$ over a Field $\mathbb{F}$

Let $\mathbb{F}$ be a general field. Let $\mathcal{V}$ be a set of objects called "vectors." We say that $\mathcal{V}$ is a vector space over the field $\mathbb{F}$ if there are rules for vector addition and scalar multiplication such that $\mathcal{V}$ is closed with respect to these operations, that is:

- $\boldsymbol{v}_{1}+\boldsymbol{v}_{2} \in \mathcal{V}$ for any two vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathcal{V}$.
- $\alpha \boldsymbol{v} \in \mathcal{V}$ for any vector $\boldsymbol{v} \in \mathcal{V}$ and any scalar $\alpha \in \mathbb{F}$.
and such that the following additional six properties hold:

1) (Commutativity)

$$
\boldsymbol{v}_{1}+\boldsymbol{v}_{2}=\boldsymbol{v}_{2}+\boldsymbol{v}_{1} \quad\left(\text { for all } \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathcal{V}\right)
$$

2) (Associativity)

$$
\begin{gathered}
\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)+\boldsymbol{v}_{3}=\boldsymbol{v}_{1}+\left(\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right) \quad\left(\text { for all } \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3} \in \mathcal{V}\right) \\
(\alpha \beta) \boldsymbol{v}=\alpha(\beta \boldsymbol{v}) \quad(\text { for all } \alpha, \beta, \in \mathbb{F} \text { and } \boldsymbol{v} \in \mathcal{V})
\end{gathered}
$$

3) (Distributive Properties)

$$
\begin{gathered}
\alpha\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)=\alpha \boldsymbol{v}_{1}+\alpha \boldsymbol{v}_{2} \quad\left(\text { for all } \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathcal{V}, \text { and } \alpha \in \mathbb{F}\right) \\
(\alpha+\beta) \boldsymbol{v}=\alpha \boldsymbol{v}+\beta \boldsymbol{v} \quad(\text { for all } \boldsymbol{v} \in \mathcal{V}, \text { and } \alpha, \beta \in \mathbb{F})
\end{gathered}
$$

4) (Additive Identity) There exists a vector $\mathbf{0} \in \mathcal{V}$ such that:

$$
\boldsymbol{v}+\mathbf{0}=\boldsymbol{v} \quad \text { for all } v \in \mathcal{V}
$$

5) (Additive Inverse) For every $\boldsymbol{v} \in \mathcal{V}$, there exists a vector $-\boldsymbol{v} \in \mathcal{V}$ such that:

$$
\boldsymbol{v}+-\boldsymbol{v}=\mathbf{0}
$$

6) (Multiplicative Identity) $\boldsymbol{1} \boldsymbol{v}=\boldsymbol{v}$ for every vector $\boldsymbol{v} \in \mathcal{V}$.

Note that the vector space $\mathbb{R}^{n}$ over the field $\mathbb{R}$ satisfies all these properties. Similarly, the set $\mathbb{F}^{n}$ is a vector space over $\mathbb{F}$, where vector addition and scalar multiplication are defined entrywise via the arithmetic of $\mathbb{F}$. Other examples of vector spaces:

- The vector space $\mathcal{V}$ over the field $\mathbb{F}$ (where $\mathbb{F}$ is any general field), consisting of all countably infinite tuples $\left(x_{1}, x_{2}, x_{3}, \ldots\right.$ ), where $x_{i} \in \mathbb{F}$ for all entries $i \in\{1,2, \ldots$,$\} , and where arithmetic is defined entrywise using arithmetic in \mathbb{F}$.
- The vector space $\mathcal{V}$ over the field $\mathbb{R}$, where $\mathcal{V}$ is the set of all continuous functions of time $t$ for $t \in(-\infty, \infty)$.
- The vector space $\mathcal{V}$ over the field $\mathbb{R}$, where $\mathcal{V}$ is the set of all polynomial functions $f(t)$ of degree less than or equal to $n$. That is, $\mathcal{V}=\left\{f(t) \mid f(t)=\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\ldots+\alpha_{n} t^{n}, \alpha_{i} \in \mathbb{R}\right\}$.


## II. Simple Lemmas for Vector Spaces

Let $\mathcal{V}$ be a vector space over a field $\mathbb{F}$.
Lemma 1: (Uniqueness of $\mathbf{0}$ ) The vector $\mathbf{0} \in \mathcal{V}$ is the unique additive identity.
Proof: Suppose that $\boldsymbol{w}$ satisfies $\boldsymbol{v}+\boldsymbol{w}=\boldsymbol{v}$ for any $\boldsymbol{v} \in \mathcal{V}$. Then adding $-\boldsymbol{v}$ to both sides of the equation $\boldsymbol{v}+\boldsymbol{w}=\boldsymbol{v}$ yields:

$$
-\boldsymbol{v}+\boldsymbol{v}+\boldsymbol{w}=-\boldsymbol{v}+\boldsymbol{v}
$$

and hence: $\mathbf{0}+\boldsymbol{w}=\mathbf{0}$. Therefore, $\boldsymbol{w}=\mathbf{0}$.
Lemma 2: (Uniqueness of $-\boldsymbol{v}$ ) For any vector $\boldsymbol{v} \in \mathcal{V}$, if there is a vector $\boldsymbol{w} \in \mathcal{V}$ such that $\boldsymbol{v}+\boldsymbol{w}=\mathbf{0}$, then $\boldsymbol{w}=-\boldsymbol{v}$.
Proof: Suppose that $\boldsymbol{v}+\boldsymbol{w}=\mathbf{0}$. Adding $-\boldsymbol{v}$ to both sides yields $\mathbf{0}+\boldsymbol{w}=-\boldsymbol{v}$, and hence $\boldsymbol{w}=-\boldsymbol{v}$.
Lemma 3: $0 \boldsymbol{v}=\mathbf{0}$ for any $\boldsymbol{v} \in \mathcal{V}$.
Proof: Take any vector $\boldsymbol{v} \in \mathcal{V}$. Then:

$$
\boldsymbol{v}=1 \boldsymbol{v}=(1+0) \boldsymbol{v}=1 \boldsymbol{v}+0 \boldsymbol{v}
$$

and hence $\boldsymbol{v}=\boldsymbol{v}+0 \boldsymbol{v}$. Adding $-\boldsymbol{v}$ to both sides yields $\mathbf{0}=0 \boldsymbol{v}$, proving the result.

Lemma 4: $\alpha \mathbf{0}=\mathbf{0}$ for any $\alpha \in \mathbb{F}$.
Proof: Take any $\alpha \in \mathbb{F}$ and any vector $\boldsymbol{v} \in \mathcal{V}$. Then:

$$
\begin{aligned}
\alpha \boldsymbol{v} & =\alpha(\boldsymbol{v}+\mathbf{0}) \\
& =\alpha \boldsymbol{v}+\alpha \mathbf{0}
\end{aligned}
$$

Thus, we have $\alpha \boldsymbol{v}=\alpha \boldsymbol{v}+\alpha \mathbf{0}$. Adding $-(\alpha \boldsymbol{v})$ to both sides yields $\mathbf{0}=\alpha \mathbf{0}$, proving the result.

Lemma 5: $-\boldsymbol{v}=(-1) \boldsymbol{v}$ for any $\boldsymbol{v} \in \mathcal{V}$.
Proof: Take any vector $\boldsymbol{v} \in \mathcal{V}$. Then:

$$
\mathbf{0}=0 \boldsymbol{v}=(1+-1) \boldsymbol{v}=1 \boldsymbol{v}+(-1) \boldsymbol{v}=\boldsymbol{v}+(-1) \boldsymbol{v}
$$

Thus, $\mathbf{0}=\boldsymbol{v}+(-1) \boldsymbol{v}$. Adding $-\boldsymbol{v}$ to both sides yields $-\boldsymbol{v}=(-1) \boldsymbol{v}$, proving the result.

## III. SUBSPACES

Definition 1: Let $\mathcal{V}$ be a vector space over a field $\mathbb{F}$. Let $\mathcal{S} \subset \mathcal{V}$ be a subset of $\mathcal{V}$. We say that $\mathcal{S}$ is a subspace if:

$$
\begin{array}{rc}
\boldsymbol{v}_{1}+\boldsymbol{v}_{2} & \in \mathcal{S} \\
\alpha \boldsymbol{v} & \in \mathcal{S}
\end{array} \quad \text { for all } \boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathcal{S} \text { all } \boldsymbol{v} \in \mathcal{V}, \alpha \in \mathbb{F} \text {. }
$$

where addition and scalar multiplication are the same in $\mathcal{S}$ as they are in $\mathcal{V}$.
It is easy to prove that if $\mathcal{S}$ is a subspace of vector space $\mathcal{V}$ over field $\mathbb{F}$, then $\mathcal{S}$ is itself a vector space over field $\mathbb{F}$. (It is important to note that $-\boldsymbol{v}=(-1) \boldsymbol{v}$ in proving this...why?).

## IV. Linear Combinations and Linear Independence

Definition 2: Let $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ be a collection of vectors in a vector space $\mathcal{V}$ over a field $\mathbb{F}$. We say that a vector $\boldsymbol{v} \in \mathcal{V}$ is a linear combination of $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ if it can be written: $\boldsymbol{v}=\alpha_{1} \boldsymbol{x}_{1}+\ldots+\alpha_{k} \boldsymbol{x}_{k}$ for some scalars $\alpha_{i} \in \mathbb{F}$ for $i \in\{1, \ldots, k\}$.

Definition 3: Let $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ be a collection of vectors in a vector space $\mathcal{V}$ over a field $\mathbb{F}$. We define $\operatorname{Span}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ as the set of all linear combinations of $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$. Note that $\operatorname{Span}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\} \subset \mathcal{V}$.

Definition 4: Let $\mathcal{S}$ be a subspace of a vector space $\mathcal{V}$ over a field $\mathbb{F}$. We say that a collection of vectors $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ span $\mathcal{S}$ if $\operatorname{Span}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}=\mathcal{S}$.

Definition 5: We say that a collection of vectors $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ in a vector space $\mathcal{V}$ (over a field $\mathbb{F}$ ) are linearly independent if the equation $\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}+\ldots+\alpha_{k} \boldsymbol{v}_{k}=\mathbf{0}$ can only be true if $\alpha_{i}=0$ for all $i \in\{1, \ldots, k\}$.

Definition 6: A collection of vectors $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ is a basis for a subspace $\mathcal{S}$ if the collection $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ is linearly independent in $\mathcal{S}$ and spans $\mathcal{S}$.

The following lemmas have proofs that are identical (or nearly identical) to the corresponding lemmas proven in class for the vector space $\mathbb{R}^{n}$. The proofs are left as an exercise.

Lemma 6: A collection of vectors $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ are linearly independent if and only if none of the vectors can be written as a linear combination of the others.

Lemma 7: If $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ are linearly independent in a vector space $\mathcal{V}$, and if $\boldsymbol{w} \in \mathcal{V}$ and $\boldsymbol{w} \notin \operatorname{Span}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$, then $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{k}, \boldsymbol{w}\right\}$ are linearly independent.

Lemma 8: $(k \leq m)$ Let $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ be a collection of vectors that are linearly independent in a subspace $\mathcal{S}$. Let $\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right\}$ be a collection of vectors that span $\mathcal{S}$. Then $k \leq m$.

Lemma 9: Any two bases of a subspace $\mathcal{S}$ have the same size, defined as the dimension of the subspace.

Lemma 10: The dimension of $\mathbb{F}^{n}$ is $n$.

Lemma 11: Let $\mathcal{S}$ be a subspace of a vector space $\mathcal{V}$, where $\mathcal{V}$ has dimension $n$. Then $\mathcal{S}$ has a finite basis, and the dimension of $\mathcal{S}$ is less than or equal to $n$.

Note that the standard basis for $\mathbb{F}^{n}$ is given by $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$, where $\boldsymbol{e}_{i}$ is a $n$-tuple with all entries equal to 0 except for entry $i$, which is equal to 1 .

Note that the collection $\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is a basis for the vector space $\mathcal{V}$ over the field $\mathbb{R}$, where $\mathcal{V}$ is the space of all polynomial functions of degree less than or equal to $n$ (why is this true?). Thus, this vector space has dimension $n+1$. Note also that, for any $n$, this vector space is a subspace of the vector space over $\mathbb{R}$ defined by all continuous functions. Thus, the dimension of the vector space of all continuous functions is infinite (as it contains subspaces of dimension $n$ for arbitrarily large $n$ ).

## V. Matrices

Let $A$ be a $m \times n$ matrix with elements in $\mathbb{F}$. Note that the equation $A \boldsymbol{x}=\mathbf{0}$ (where $\mathbf{0} \in \mathbb{F}^{m}$ and $\boldsymbol{x} \in \mathbb{F}^{n}$ ) has only the trivial solution $\boldsymbol{x}=\mathbf{0} \in \mathbb{F}^{n}$ if and only if the columns of $A$ are linearly independent.

Lemma 12: A square $n \times n$ matrix $A$ (with elements in $\mathbb{F}$ ) is non-singular if and only if its columns are linearly independent, if and only if $A \boldsymbol{x}=\mathbf{0}$ has only the trivial solution.

The above lemma follows from the fact that if $A$ is non-singular, it has a single unique solution to $A \boldsymbol{x}=\boldsymbol{b}$ for all $\boldsymbol{b} \in \mathbb{F}^{n}$ (which is true by Gaussian Elimination), and if it is singular it does not have a solution for some vectors $\boldsymbol{b} \in \mathbb{F}^{n}$ and it has multiple solutions for the remaining $\boldsymbol{b} \in \mathbb{F}^{n}$.

Lemma 13: Let $A, B$ be square $n \times n$ matrices. If $A B=I$, then both $A$ and $B$ are invertible, and $A^{-1}=B$ and $B^{-1}=A$. The above lemma follows from the fact that $A B=I$ implies $A$ is non-singular (why?) and hence invertible.

Lemma 14: A square $n \times n$ matrix $A$ (with elements in $\mathbb{F}$ ) has linearly independent columns (and hence is invertible) if and only if its transpose $A^{T}$ has linearly independent columns (and hence is invertible). Thus, a square invertible matrix $A$ has both linearly independent rows and linearly independent columns.

The above lemma follows from the fact that $A A^{-1}=I$, and hence $\left(A^{-1}\right)^{T} A^{T}=I$.

## VI. Basic Probability

The next several lectures on erasure coding will use the following simple but important probability facts:

- If a probability experiment has $K$ equally likely outcomes, then the probability of each individual outcome is $1 / K$.
- Let $E_{1}, E_{2}, \ldots, E_{m}$ be a set of independent events (say, from $m$ independent probability experiments). Then:

$$
\operatorname{Pr}\left[E_{1} \cap E_{2} \cap \cdots \cap E_{m}\right]=\operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2}\right] \cdots \operatorname{Pr}\left[E_{m}\right]
$$

That is, the probability that all independent events occur is equal to the product of the individual event probabilities.

- (Union Bound) Let $E_{1}, E_{2}, \ldots, E_{m}$ be a collection of $m$ events (possibly not independent). Then:

$$
\operatorname{Pr}\left[E_{1} \cup E_{2} \cup \cdots \cup E_{m}\right] \leq \sum_{i=1}^{m} \operatorname{Pr}\left[E_{i}\right]
$$

That is, the probability that at least one of the events occurs is less than or equal to the sum of the individual event probabilities.

