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EE 441: General vector spaces over a field
I. AXIOMS FOR A VECTOR SPACE V OVER A FIELD F

Let F be a general field. Let V be a set of objects called “vectors.” We say that V is a vector space over the field F if there
are rules for vector addition and scalar multiplication such that V is closed with respect to these operations, that is:
• v1 + v2 ∈ V for any two vectors v1,v2 ∈ V .

• αv ∈ V for any vector v ∈ V and any scalar α ∈ F.
and such that the following additional six properties hold:

1) (Commutativity)

v1 + v2 = v2 + v1 (for all v1,v2 ∈ V)

2) (Associativity)

(v1 + v2) + v3 = v1 + (v2 + v3) (for all v1,v2,v3 ∈ V)

(αβ)v = α(βv) (for all α, β,∈ F and v ∈ V)

3) (Distributive Properties)

α(v1 + v2) = αv1 + αv2 (for all v1,v2 ∈ V , and α ∈ F)

(α + β)v = αv + βv (for all v ∈ V , and α, β ∈ F)

4) (Additive Identity) There exists a vector 0 ∈ V such that:

v + 0 = v for all v ∈ V

5) (Additive Inverse) For every v ∈ V , there exists a vector −v ∈ V such that:

v +−v = 0

6) (Multiplicative Identity) 1v = v for every vector v ∈ V .
Note that the vector space Rn over the field R satisfies all these properties. Similarly, the set Fn is a vector space over F,

where vector addition and scalar multiplication are defined entrywise via the arithmetic of F. Other examples of vector spaces:
• The vector space V over the field F (where F is any general field), consisting of all countably infinite tuples (x1, x2, x3, . . .),

where xi ∈ F for all entries i ∈ {1, 2, . . . , }, and where arithmetic is defined entrywise using arithmetic in F.

• The vector space V over the field R, where V is the set of all continuous functions of time t for t ∈ (−∞,∞).

• The vector space V over the field R, where V is the set of all polynomial functions f(t) of degree less than or equal to
n. That is, V = {f(t) | f(t) = α0 + α1t + α2t

2 + . . . + αntn, αi ∈ R}.

II. SIMPLE LEMMAS FOR VECTOR SPACES

Let V be a vector space over a field F.
Lemma 1: (Uniqueness of 0) The vector 0 ∈ V is the unique additive identity.
Proof: Suppose that w satisfies v+w = v for any v ∈ V . Then adding −v to both sides of the equation v+w = v yields:

−v + v + w = −v + v

and hence: 0 + w = 0. Therefore, w = 0.
Lemma 2: (Uniqueness of −v) For any vector v ∈ V , if there is a vector w ∈ V such that v + w = 0, then w = −v.
Proof: Suppose that v + w = 0. Adding −v to both sides yields 0 + w = −v, and hence w = −v.
Lemma 3: 0v = 0 for any v ∈ V .
Proof: Take any vector v ∈ V . Then:

v = 1v = (1 + 0)v = 1v + 0v

and hence v = v + 0v. Adding −v to both sides yields 0 = 0v, proving the result.
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Lemma 4: α0 = 0 for any α ∈ F.
Proof: Take any α ∈ F and any vector v ∈ V . Then:

αv = α(v + 0)
= αv + α0

Thus, we have αv = αv + α0. Adding −(αv) to both sides yields 0 = α0, proving the result.

Lemma 5: −v = (−1)v for any v ∈ V .
Proof: Take any vector v ∈ V . Then:

0 = 0v = (1 +−1)v = 1v + (−1)v = v + (−1)v

Thus, 0 = v + (−1)v. Adding −v to both sides yields −v = (−1)v, proving the result.

III. SUBSPACES

Definition 1: Let V be a vector space over a field F. Let S ⊂ V be a subset of V . We say that S is a subspace if:

v1 + v2 ∈ S for all v1,v2 ∈ S
αv ∈ S for all v ∈ V , α ∈ F

where addition and scalar multiplication are the same in S as they are in V .
It is easy to prove that if S is a subspace of vector space V over field F, then S is itself a vector space over field F. (It is

important to note that −v = (−1)v in proving this...why?).

IV. LINEAR COMBINATIONS AND LINEAR INDEPENDENCE

Definition 2: Let {x1, . . . ,xk} be a collection of vectors in a vector space V over a field F. We say that a vector v ∈ V is
a linear combination of {x1, . . . ,xk} if it can be written: v = α1x1 + . . .+αkxk for some scalars αi ∈ F for i ∈ {1, . . . , k}.

Definition 3: Let {x1, . . . ,xk} be a collection of vectors in a vector space V over a field F. We define Span{x1, . . . ,xk}
as the set of all linear combinations of {x1, . . . ,xk}. Note that Span{x1, . . . ,xk} ⊂ V .

Definition 4: Let S be a subspace of a vector space V over a field F. We say that a collection of vectors {x1, . . . ,xk} span
S if Span{x1, . . . ,xk} = S.

Definition 5: We say that a collection of vectors {x1, . . . ,xk} in a vector space V (over a field F) are linearly independent
if the equation α1v1 + α2v2 + . . . + αkvk = 0 can only be true if αi = 0 for all i ∈ {1, . . . , k}.

Definition 6: A collection of vectors {x1, . . . ,xk} is a basis for a subspace S if the collection {x1, . . . ,xk} is linearly
independent in S and spans S.

The following lemmas have proofs that are identical (or nearly identical) to the corresponding lemmas proven in class for
the vector space Rn. The proofs are left as an exercise.

Lemma 6: A collection of vectors {x1, . . . ,xk} are linearly independent if and only if none of the vectors can be written
as a linear combination of the others.

Lemma 7: If {x1, . . . ,xk} are linearly independent in a vector space V , and if w ∈ V and w /∈ Span{x1, . . . ,xk}, then
{x1,x2, . . . ,xk,w} are linearly independent.
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Lemma 8: (k ≤ m) Let {x1, . . . ,xk} be a collection of vectors that are linearly independent in a subspace S. Let
{y1, . . . ,ym} be a collection of vectors that span S. Then k ≤ m.

Lemma 9: Any two bases of a subspace S have the same size, defined as the dimension of the subspace.

Lemma 10: The dimension of Fn is n.

Lemma 11: Let S be a subspace of a vector space V , where V has dimension n. Then S has a finite basis, and the dimension
of S is less than or equal to n.

Note that the standard basis for Fn is given by {e1, . . . ,en}, where ei is a n-tuple with all entries equal to 0 except for
entry i, which is equal to 1.

Note that the collection {1, t, t2, . . . , tn} is a basis for the vector space V over the field R, where V is the space of all
polynomial functions of degree less than or equal to n (why is this true?). Thus, this vector space has dimension n + 1. Note
also that, for any n, this vector space is a subspace of the vector space over R defined by all continuous functions. Thus, the
dimension of the vector space of all continuous functions is infinite (as it contains subspaces of dimension n for arbitrarily
large n).

V. MATRICES

Let A be a m × n matrix with elements in F. Note that the equation Ax = 0 (where 0 ∈ Fm and x ∈ Fn) has only the
trivial solution x = 0 ∈ Fn if and only if the columns of A are linearly independent.

Lemma 12: A square n×n matrix A (with elements in F) is non-singular if and only if its columns are linearly independent,
if and only if Ax = 0 has only the trivial solution.

The above lemma follows from the fact that if A is non-singular, it has a single unique solution to Ax = b for all b ∈ Fn

(which is true by Gaussian Elimination), and if it is singular it does not have a solution for some vectors b ∈ Fn and it has
multiple solutions for the remaining b ∈ Fn.

Lemma 13: Let A, B be square n×n matrices. If AB = I , then both A and B are invertible, and A−1 = B and B−1 = A.
The above lemma follows from the fact that AB = I implies A is non-singular (why?) and hence invertible.

Lemma 14: A square n × n matrix A (with elements in F) has linearly independent columns (and hence is invertible) if
and only if its transpose AT has linearly independent columns (and hence is invertible). Thus, a square invertible matrix A
has both linearly independent rows and linearly independent columns.

The above lemma follows from the fact that AA−1 = I , and hence (A−1)T AT = I .

VI. BASIC PROBABILITY

The next several lectures on erasure coding will use the following simple but important probability facts:
• If a probability experiment has K equally likely outcomes, then the probability of each individual outcome is 1/K.
• Let E1, E2, . . . , Em be a set of independent events (say, from m independent probability experiments). Then:

Pr[E1 ∩ E2 ∩ · · · ∩ Em] = Pr[E1]Pr[E2] · · ·Pr[Em]

That is, the probability that all independent events occur is equal to the product of the individual event probabilities.
• (Union Bound) Let E1, E2, . . . , Em be a collection of m events (possibly not independent). Then:

Pr[E1 ∪ E2 ∪ · · · ∪ Em] ≤
m∑

i=1

Pr[Ei]

That is, the probability that at least one of the events occurs is less than or equal to the sum of the individual event
probabilities.


