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Abstract— This paper focuses on delay-constrained energy-
efficient packet transmission over a static multihop link. Optimal
offline scheduling (vis-à-vis total transmission energy), assuming
information of all packet arrivals before scheduling, is derived.
The optimal offline schedule relies on a simple delay budget
allocation scheme, which allocates the delay budget to the
first hop (from source to the first relaying node) as much as
possible. All the relaying nodes simply perform buffer-clearing
during any transmission opportunities. The total transmission
energy and average packet delay are analyzed and characterized.
It is demonstrated that energy savings via multihopping are
possible, but depend heavily on factors such as multihop resource
orthogonalization mode, delay constraints, and SNR operating
regimes.

I. INTRODUCTION

Relay assisted wireless transmission, proposed as early as
in the seventies [12] [5], has recently emerged as a promising
technique for cellular, ad-hoc, wireless local area network, and
hybrid networks. Relaying improves coverage, capacity, ro-
bustness against channel variations, flexibility and adaptability
to dynamic deployment scenarios and traffic needs, and power
efficiency [6] [10].

For many ad hoc and commercial networks, power and/or
energy efficiency is of high importance as it can impact net-
work lifetime. Optimal power allocation for different relaying
schemes has been considered in [9] [7] [13]. These prior
relaying results assume immediate availability of data for
transmission, and the impact of traffic variations has not been
considered.

Energy efficient scheduling utilizing traffic variations and
the associated delay constraint requirements for the traditional
‘single-hop’ transmission (or, direct transmission) has been a
popular research topic (see [14] and references therein). The
optimal energy-efficient scheduling algorithm for minimizing
the total transmission energy of packets subject to a single
transmission deadline over a static channel was investigated
in [11]. The optimal offline algorithm assumed knowledge
of the total number of packets and the inter-arrival times of
these packets before packet scheduling. Scheduling for packets
subject to individual packet delay constraints was considered
in [8][14][4]. In [4], the optimal offline schedule was shown to
yield a symmetry property in the optimal packet transmission
durations from which a simple and exact solution of the

average packet delay (including queuing and transmission
delays) can be obtained.

In this paper, we focus on energy-efficient packet trans-
mission over a multihop link, subject to the above two delay
constraint models. We consider static channels. This can be
viewed as an extension of the work in [11][14][2][4] over the
single-hop link. We want to address the following questions:
given a set of randomly arriving packets, how do we schedule
these packets for maximum energy efficiency over a multihop
link subject to the underlying delay constraints? How are the
achieved energy and delay related? We begin by deriving
the optimal offline scheduling over multihop transmissions.
The optimal offline schedule relies on a simple delay budget
allocation scheme, which allocates the delay budget to the
first hop (from source to the first relaying node) as much as
possible. All the relaying nodes simply perform buffer-clearing
during any transmission opportunities. This optimal allocation
is independent of traffic characteristics (e.g., number of pack-
ets, packet sizes, burstiness, etc.) and channel characteristics
(e.g., path loss exponents, inter-distance between nodes, etc.).
The total transmission energy and average packet delay are
analyzed and characterized. It is demonstrated that energy
savings via multihopping are possible, but heavily depend
on factors such as multihop resource orthogonalization mode,
delay constraints, and SNR operating regimes.

This paper is organized as follows. In Section II, the system
model is described. The optimal offline scheduling over a
multihopping channel is presented in Section III, while its
performance is analyzed in Section IV. Numerical results are
given in Section V.

II. SYSTEM MODEL

A. Traffic Model and Time-Slotted Channel

We consider a time-slotted channel, in which packets arrive
only at slot boundaries, and can be served immediately (i.e.,
the minimum possible queuing delay is 0). Without loss of
generality, the random aggregate arrived packet sizes at each
slot are denoted by Bi > 0, i ∈ [1, · · · ,M ], and Bi = 0 for
i ∈ [M + 1,M + D − 1], where M is the total number of
packets, and D is a delay constraint to be detailed later. This
is illustrated in Fig. 1. The total number of slots is fixed to
be (M + D − 1), and the slot duration is denoted as τs. A
fluid packet departure model is assumed. That is, a transmitted



Fig. 1. The slotted system model (a): equal individual delay constraints; (b):
single deadline.

packet is not necessarily an integer number of arrived packets,
but may be assembled using fragmented packets up to an
arbitrary precision.

For the individual delay constraint model (Fig. 1(a)), each
packet is subject to an end-to-end delay constraint. In this
paper, we will focus on the case when all packets have the
same delay constraint of an integer multiple of slots, denoted
as D (slots). In one special realization of unequal individual
delay constraints, all packets have to be delivered by the single
common deadline (M +D−1)τs (Fig. 1(b)). This model will
be briefly treated in the sequel as a special case.

The set of packets are transmitted through an L-hop
channel, instead of the conventional single-hop channel as
discussed in [11][2][4][3]. Throughout the paper, we use the
superscripts (l), l ∈ [1, · · · , L], to denote the l-th hop in an L-
hop transmission, and, l = 0 to denote the conventional single-
hop transmission for the purpose of performance comparison.

We will focus on static channels in which the channel gains
are fixed at each hop. However, the channel gains, denoted by
g(l), l ∈ [0, · · · , L], may be different for different hops.

B. Design Goals and Assumptions

Each packet transmission consumes some energy. The
energy-rate functions, denoted by w(l)(r) for a transmission
rate r over different hops l ∈ [0, · · · , L], are not necessarily
the same. As in [11][14][2], it is assumed that w(l)(r), ∀l, is
strictly convex and monotonically increasing in r.

The goal of the optimal offline schedule is to choose the
optimal transmission rate r

(l)
i , 0 ≤ l ≤ L, for each slot i

and hop l, such that the total transmission energy of these M
packets is minimized while the underlying delay constraints
are satisfied.

The offline schedule assumes perfect knowledge of packet
sizes for the entire duration [0, · · · ,M + D − 1] before
scheduling. As in [11][4][3], all schedulers are assumed to
follow the first-in-first-out (FIFO) service rule, the causality
constraint, and the non-idling scheduling constraint.

Without loss of generality, the processing delays at each
node are ignored such that a packet received at the end of a
slot m by a node is available for transmission immediately at
the next slot m+1. It is also assumed that scheduling is only

Fig. 2. TDM Mode for Multihop Transmission (L = 3).

performed at slot boundaries. Thus, there is a minimum one-
slot delay per hop in the first L − 1 slots, and subsequently,
the end-to-end delay is larger than L − 1 slots. To ensure
feasibility, we need D ≥ L.

C. Multihop Access Mode

We consider two types of orthogonal division multiplexing
schemes. The first one is TDM, in which case at any point
of time at most one node is transmitting and all nodes
(source and relaying) have equal share of partial transmissions
following a round-robin pattern, as illustrated in Fig. 2 for a
3-hop scenario, where slots are labeled with different colors
indicating whether a slot is restricted for transmission or not.
The length of the scheduling span (SS) (i.e., the duration from
the start of the first non-restricted slot till the end of the last
non-restricted slot) is the same for any hop l ∈ [1, · · · , L].
That is:

SS
(l)
TDM = {l, · · · , L(b(M + D − 1)/Lc − 1) + l} . (1)

where b.c denotes the floor(.) operation. Each hop is allowed
to transmit during slots [1, L + 1, 2L + 1, · · · ] within its
scheduling span SS

(l)
TDM , l = 1, · · · , L (see Fig. 2). In other

words, the transmission opportunities are hop-independent
conditioned on SS

(l)
TDM . To characterize this conditional inde-

pendence, we introduce an indicator vector ~ITDM to indicate
whether a slot is available for transmission (1) or not (0), i.e.,

~ITDM = [1, 0, · · · , 0︸ ︷︷ ︸
L−1

, 1, 0, · · · , 0︸ ︷︷ ︸
L−1

, · · · , 1, 0, · · · , 0︸ ︷︷ ︸
L−1

, 1], (2)

It is easy to verify that the indicator vector ~ITDM is sym-
metric, i.e., ITDM,i = ITDM,L(b(M+D−1)/Lc−1)+2−i, ∀i. The
combination of SS

(l)
TDM and ~ITDM completely characterizes

the TDM access mode for all hops.
The second type of multiplexing is assumed to be FDM,

in which resource orthogonality is achieved in the frequency
domain. All nodes are allowed to transmit at any time. After
incorporating the minimum one-slot per-hop delay, we have

SS
(l)
FDM = {l, · · · ,M + D − 1− L + l} , (3)

and
~IFDM = [1, · · · , 1︸ ︷︷ ︸

M+D−L

]. (4)



Fig. 3. FDM Mode for Multihop Transmission (L = 3).

III. OPTIMAL MULTIHOP OFFLINE SCHEDULING

In this section, we start by presenting two key scheduling
properties, which lead to the optimal offline schedule over a
multihop link. Detailed proofs of some of the results can be
found in [1].

A. Optimal Offline Schedule vs. Delay Constraints

Although we assume the same end-to-end individual packet
delay constraint, the per-hop packet delay constraints in the
L-hop link may not necessarily be the same. Also, due to
the fluid packet departure model, the number of packets of
distinct delay constraints may be different at different hops.
Consider a general packet size vector ~̃B of an arbitrary length
M̃ ≥ 1, associated with any delay constraint vector ~̃D of
the same length M̃ . It is intuitive that as the delay constraint
~̃D increases, the resulting optimal rate vector ~r( ~̃B, ~̃D) should
become no less energy-efficient. That is,

Claim 1: Given the same sets of packet arrivals ~̃B and
transmission opportunities ~I , the resulting optimal offline rate
vector is no less energy-efficient when the delay constraints
~̃D increase :

e( ~̃B, ~̃D + ∆ ~̃D) ≤ e( ~̃B, ~̃D).

where e( ~̃B, ~̃D) denotes the total transmission energy associ-
ated with the rate vector ~r derived based on ~̃B and ~̃D, and
∆ ~̃D M=[∆D̃1, · · · ,∆D̃M̃ ], with ∆D̃m ≥ 0, ∀m.

B. Maximum Possible Per-Hop and Total Energy-Efficiency

Recall that each of the first L−1 hops introduces at least a
one-slot packet delay. Given an end-to-end delay constraint of
D slots, any packet in any hop has a maximum delay constraint
of (D − L + 1) slots, regardless of the scheduling algorithms
in any of the other L− 1 hops. In other words,

~D(l) ≤ (D − L + 1)~1,∀l,

where ~1 is an all-ones vector of length M (l). From Claim 1,
we have the following claim to characterize the maximum
possible energy-efficiency at any hop and over all hops:

Claim 2: The total transmission energy expended by any
hop l (denoted by e(l)( ~B(l), ~D(l))) is no less than the total
energy expended by scheduling using the original packet
arrival process ~B with an equal packet delay constraint of
(D − L + 1) slots (denoted by e(l)( ~B, (D − L + 1)~1)), i.e.,

e(l)( ~B(l), ~D(l)) ≥ e(l)( ~B, (D − L + 1)~1),∀l.

The total energy over all hops is thus always lower-bounded
by

∑L
l=1 e(l)( ~B, (D − L + 1)~1).

C. Optimal Offline Schedule for Individual Delay Constraints

Now consider a simple delay budget allocation scheme
given by

[D − L + 1, 1, · · · , 1︸ ︷︷ ︸
L−1

].

That is, scheduling is only done at the source node, while
all the relaying nodes simply perform a buffer-clearing of all
pending packets at each transmission opportunity. Obviously,
the resulting optimal offline transmission rate vectors over all
hops are the same, except for the deterministic right-shifts,
i.e.,

~r(1)(SS(1)) = ~r(2)(SS(2)) = · · · = ~r(L)(SS(L)). (5)

where SS(1) is given by (1) or (3). We have:
Theorem 1: In an L hop link where all hops have the same

time-shifted transmission opportunities, characterized by (1)
and (2) for the TDM mode, and by (3) and (4) for the FDM
mode, respectively, the optimal offline schedule under the
individual delay constraint model is to perform the scheduling
only at the source node, assuming an equal delay constraint
of D − L + 1 slots for all packets, while all the relaying
nodes simply perform a buffer-clearing at each transmission
opportunity.

Proof: Here we provide a sketch of the proof. For any
single queue, the optimal offline transmission rate vector is
independent of the energy function w(r) (as long as it is
strictly convex and monotonically increasing in r) [14][4].
On the other hand, from (5), under the simple delay budget
allocation scheme, all hops have the same set of optimal
transmission rates, which achieve the minimum per-hop energy
expenditure and hence the the minimum possible total energy
expenditure of

∑L
l=1 e(l)( ~B, (D−L + 1)~1) (see Claim 2).

It is worth emphasizing that, similar to the single queue case
[14][4], the optimality of the simple delay budget allocation
scheme holds for any arrival processes. More importantly,
the optimality of the above delay budget allocation for the
multihop link is independent of w(l)(r), ∀l. In other words,
the simple budget allocation scheme is optimal for any channel
characteristics (e.g., distances between the nodes, path loss
exponents, etc.) associated with the multihop link.

Note that, under the optimal offline schedule, there is no
need to propagate the time stamp information of any packets
to any relaying nodes, which leads to a very simple design at
the relaying nodes. The optimality of the simple delay budget
allocation for the L-hop link is not surprising. The optimal
offine schedule can be viewed as an equalization process
[14][4]. Maximum possible equalization of traffic variations
is achieved by the simple delay budget allocation.

D. Optimal Offline Scheduling for Single Transmission Dead-
line

The same derivation is also applicable to the single deadline
model:



Theorem 2: In an L hop link where all hops have the same
time-shifted transmission opportunities, the optimal offline
schedule under the single transmission deadline model is to
perform the scheduling only at the source node, assuming a
common deadline of (M +D−L) slots for all packets, while
all the relaying nodes simply perform a buffer-clearing at each
transmission opportunity.

E. Per-hop Optimal Offline Schedule

Under the optimal offline schedule over an L-hop link,
all the hops have the same time-shifted optimal transmission
rate vector, which are derived based on a delay constraint of
DI M=D−L+1 slots and the indicator vector ~I . The derivation
similarly follows the procedure in [2][4][3] for the single-hop
transmission, but differs by the potential existence of restricted
slots not seen in the single hop case. The optimal transmission
rate at slot m, 1 ≤ m ≤ M + D − 1, can be shown as

rI
m =

{
minm≤i≤M+DI−1 rI

1[i] if Im = 1,
0 if Im = 0,

(6)

where rI
1[i], i ∈ [m, · · · ,M + DI − 1] is given by

rI
1[i]τs = max

{
UI

m+
Pi

l=m BlPi
j=m Ij

, Um,DI−1,
Um,DI−2+Um,DI−1P(m+1)

j=m Ij

,

· · · ,
PDI−1

l=1 Um,lP(m+D−2)
j=m Ij

,
UI

m+BmP(m+D−1)
j=m Ij

, · · · ,
UI

m+
Pi−1

l=m BlP(i+D−2)
j=m Ij

}
,

(7)
where xM=min{x,M + DI − 1}, U I

m
M=Um,1 + Um,2 + · · · +

Um,DI−1 is the total buffer size before slot m, and Um,i

denotes the number of buffered bits that arrived at slot m− i,
which have a delay constraint of D − i, 1 ≤ i ≤ D − 1.

In the case of the single transmission deadline model, the
optimal transmission rate at slot m can be simplified to

rI
single,mτs =

{
minm≤i≤M

UI
m+

Pi
l=m BlPi

j=m Ij
if Im = 1,

0 if Im = 0.
(8)

IV. PERFORMANCE ANALYSIS

In this section, we analyze the energy and delay perfor-
mance of the optimal offline scheduler over the L-hop link.

A. Energy Saving Upper Bound

Herein we additionally assume the energy-rate function
w(l)(r) for any hop l ∈ [0, · · · , L], is inversely proportional
to the received SNR, γ(l). Also, conditioned on the same γ(l),
we assume the energy-functions are the same for all hops as
a function of r. Obviously, the minimum total transmission
energy over all hops is achieved by a linear network with
equi-distant nodes, in which γ(1) = · · · = γ(L) = Lα, where
α is the path loss exponent.

On the other hand, regardless of the multihop access mode,
due to a smaller delay constraint, the optimal offline transmis-
sion rate vector at any hop can not be more energy-efficient
than that of the single-hop. In addition, regardless of the
access mode, there are at least L − 1 slots restricted from

transmissions for any hop in the L-hop link. Thus, we can
obtain the following energy-saving lower bound:

Theorem 3: Under the optimal offline scheduling, the total
transmission energy consumed by all nodes in an L hop link is
more than L−α+1 times of that for a single-hop transmission.

This lower bound holds for both delay constraint models.

B. Average Packet Delay Performance Comparison for the
Individual Delay Constraint Model

A simple and exact closed form solution of the average
packet delay performance was derived in [4][3] for the single-
hop transmission, utilizing a symmetry property of the optimal
offline transmission rate vector 1. That is,

q̄(M) = τs

[
1 +

M + 1
2M

(D − 1)
]

. (9)

where q̄(M)M=E{ 1
M

∑M
m=1 qm}, and qm is the delay (includ-

ing queuing delay and transmission delay) experienced by
packet m under the optimal offline schedule.

Under a symmetric ~I , the symmetry property of the optimal
transmission rate vector still holds [1]. However, due to the
potential existence of restricted slots, the above symmetry
property leads to lower and upper bounds of the average packet
delay performance (proof omitted):

Theorem 4: For any M ≥ 1 and DI ≥ 1, when the
vector of packet sizes [B1, · · · , BM ] has a joint probability
distribution that is identical to that of [BM , · · · , B1], and when
the indicator vector ~I is symmetric, under the optimal offline
scheduling, the average packet delay q̄I(M) is in the interval[
τs

(
1 +

M + 1
2M

(DI − 1)
)
− δ, τs

(
1 +

M + 1
2M

(DI − 1)
)]

,

(10)
where δ M=τsc0/(2M) and c0 is the total number of restricted
slots. When M →∞, τs(DI +1)/2− δ ≤ q̄I(∞) ≤ τs(DI +
1)/2.
Note that when there are no restricted slots, i.e., c0 = 0, the
lower bound and the upper bound are tight.

Therefore, under the FDM mode, the total end-to-end aver-
age packet delay for a L-hop link is:

q̄FDM (M) = τs

[
1 +

M + 1
2M

(D − L)
]

+ τs(L− 1). (11)

When M → ∞, q̄FDM (∞) = τs(D + L)/2. Compar-
ing with the single hop transmission (see (9)), we have
∆q̄FDM (M)M=q̄FDM (M) − q̄(M) = τs(L − 1)(M −
1)/(2M) ≥ 0. In particular, ∆q̄FDM (∞) = τs

(
L−1

2

)
.

Under the TDM mode, the lower bound of the average
packet delay q̄TDM,LB(M) can be obtained as

τs

[
1 + M+1

2M (D − L)
]
+ τs(L− 1)− τs

(M+D−L−1)(L−1)
2LM .

(12)
Similarly, we have ∆q̄TDM,LB(M)M=q̄TDM,LB(M)−q̄(M) =
τs

(L−1)(LM−M−D+1)
2LM ≥ 0, which converges to τs(L −

1That is, the optimal transmission rates rm and rM+D−m are identically
distributed, when the vector of packet sizes [B1, · · · , BM ] has a joint proba-
bility distribution that is identical to that of its reversed vector [BM , · · · , B1].



(a) D=9 (b) D=45

Fig. 4. Ratios of the total transmission energy of TDM multihop transmis-
sions over the single-hop transmission.

1)2/(2L), when M → ∞. The upper bound is simply
q̄TDM,UB(M) = q̄FDM (M).

Note that both the FDM and TDM modes result in an
average end-to-end delay slightly larger than the single-hop
link. When M is sufficiently large, the average delay increase
is roughly by a ratio of (L− 1)/(D + 1).

V. NUMERICAL RESULTS

The energy-rate function is assumed to be w(r) = (22r −
1)L−α, resulting from Shannon capacity, where α = 2 and a
linear network with equi-distant nodes is assumed. The packet
sizes are normalized based on frequency bandwidth and slot
duration and can be interpreted as the number of bits per
channel use (or bandwidth efficiency), and are assumed to be
random and follow an exponential distribution. The number
of packets is fixed at M = 1000. We focus on the individual
delay constraint model.

A. TDM Mode

Fig. 4 shows the ratios of the total transmission energy
between TDM multihop transmissions (up to 4 hops) and
the single-hop transmission as a function of the average
normalized packet size, with D = 9 and D = 45. From
Theorem 3, the lower bounds on the energy ratios are simply
L−α+1 = 1/L, where α = 2, as can be observed. As the
normalized packet size increases, it becomes preferable to use
fewer hops. The regions corresponding to the optimal numbers
of hops (vis-à-vis minimum total transmission energy) are also
shown. Note that hopping-advantageous regions, regardless of
D, are rather limited. This is due to the TDM operation, in
which packets are forced to accumulate during restricted slots,
which necessitates higher transmission rates during subsequent
non-restricted slots.

B. FDM Mode

Fig. 5 shows the energy ratios for the FDM mode. In this
case, even with a stringent delay constraint (D=9), multihop
transmissions still provide energy savings over the single-hop
transmission in reasonably large regions. In fact, when D is
large (D=45), the 4-hop transmission always yields the least
transmission energy even when the normalized packet size is
as large as 15 (number of bits/channel use). Thus, from the
traffic variation and energy-efficient scheduling perspective,

(a) D=9 (b) D=45

Fig. 5. Ratios of total transmission energy of FDM multihop transmissions
over the single-hop transmission.

it is preferable to not orthogonalize multihopping resources in
the time domain, but rather in other domains such as frequency.
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