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Abstract— This paper investigates proactive packet dropping
to achieve transmission energy savings. Such a scheme can be
employed for applications which can tolerate a small fraction
of packet losses. For a group of packets subject to a single
transmission deadline, the optimal dropping scheme (vis-à-vis
total transmission energy) is derived. For packets subject to
individual delay constraints, the optimal scheme depends on
the energy function and packet sizes. Thus, asymptotically
optimal dropping schemes, i.e., when packet size grows large, are
pursued. The asymptotically optimal dropping scheme for a single
dropped packet is obtained. For dropping more than one packet,
two suboptimal, recursive schemes are proposed. These schemes
achieve performance very close to the asymptotically optimal
schemes as determined by an exhaustive search. Additionally, two
performance bounds are derived. It is observed via simulations
that significant energy savings are possible via intelligent packet
dropping schemes.

I. INTRODUCTION

The fundamental trade-off between energy and delay in
wireless networks was first characterized for a single queue
in [1] and later extended to a multi-user network in [2]. The
minimization of transmission energy in some cases can be
directly translated into network life maximization [3] or sys-
tem throughput maximization [4]. Note that application delay
consists of not only physical layer transmission and processing
delay, but also upper layer delays such as buffering delay. As
a result, cross-layer design becomes necessary [1][5][6].

In [3], the optimal energy-efficient transmission algorithm
was developed for a group of packets subject to a common
single transmission deadline. Under a Poisson packet arrival
model, it was shown in [7] that the average transmission
delay associated with this scheme grows monotonically and
at a rate close to

√
M , where M is the total number of data

packets. Energy-efficient transmission with individual packet
delay constraints was studied in [7][8][9].

Packet transmissions over wireless networks are subject to
packet losses. In addition to physical layer transmission errors,
packet losses may also come from upper layers operations
such as buffer overflow, delay constraint violations, etc. We
underscore that these upper layer packet losses are uninten-
tional. We propose to consider intentional packet dropping to
improve energy efficiency.

Some delay-sensitive applications such as voice and video
streaming typically can tolerate a small fraction of packet
losses. This motivates the following questions: should we
proactively drop packets? How much transmission energy
savings can be achieved via proactive packet dropping? In

this paper, we initiate the study of these questions. A related
work appears in [10] which discussed asymptotic transmission
energy and packet delay tradeoff under intelligent packet
dropping. The effects of source fidelity on communication
networks were investigated in [11]. In [12], the optimal
transmission policy in minimizing the packet losses subject to
average packet delay and transmission power was investigated.
A related issue of minimizing average power subject to average
delay and packet loss constraints was studied in [13].

We start with the single transmission deadline model [3]
and show that dropping the last set of K packets results
in maximum transmission energy savings. For the individual
delay constraints model, optimal packet dropping is much
more complicated and seems intractable. Furthermore, we see
that with the individual delay constraints, an optimal dropping
scheme is energy function and packet-size dependent. As a
result, we study asymptotically optimal dropping schemes
when the packet size is sufficiently large. We derive the asymp-
totically optimal and sub-optimal packet dropping schemes,
along with two upper bounds by exploiting packet arrival and
departure properties. Significant transmission energy savings
are possible via intelligent packet dropping as evidenced by
the numerical results.

This paper is organized as follows. In Section II, the system
model is described. Section III presents the optimal dropping
algorithm for the single deadline model and its impact. The
intelligent packet dropping scheme for the individual delay
constraint model is discussed in Section IV. Numerical results
are given in Section V. Finally, some concluding remarks are
drawn in Section VI.

II. SYSTEM MODEL

Suppose there are M packets to be transmitted, with packet
arrival times ti, i = 1, · · · ,M , through an additive white
Gaussian noise (AWGN) channel. The packet arrivals are
assumed to be random, but known to the optimal scheduler.
The packet inter-arrival times are denoted by di = ti+1 − ti.
The packet sizes of the M packets are assumed to be the same
and equal to B. The design principles discussed in the sequel
can also be extended to unequal packet size scenarios. Each
packet is delivered over a channel with certain transmission
duration, denoted by τi. Let w(τ) be the energy required
to transmit a packet with transmission duration τ , and this
energy function is assumed to be non-negative, monotonically
decreasing, and strictly convex, as in [3][7].



In the single transmission deadline model [3], the goal is to
deliver all packets by the time deadline T while minimizing
the total packet transmission energy. The optimal scheduling
algorithm, without packet dropping, is explicitly specified in
[3]. One feature of the optimal solution in this model is that
transmission durations are non-increasing, i.e., τi ≥ τi+1 for
i ∈ [1, · · · ,M − 1].

In the individual packet delay constraint model [7], each
packet has its delay constraint Ti, i ∈ [1, · · · ,M ], at or
before which the packet has to be successfully delivered since
its arrival. In this paper, we will focus the case when the
individual delay constraints are equal, i.e., Ti = T,∀i. The
optimal scheduling algorithm was derived in [7][9]. Note that
the property of τi ≥ τi+1 may no longer hold [7][9].

In the following, we will investigate optimal schemes of
dropping K ≥ 1 packets from a total of M packets for both the
single transmission deadline model and the individual delay
constraint model. The optimal criterion herein is defined as
minimizing the average transmission energy of the remaining
N = M−K packets. Note that once a set of K packets to drop
is identified, the optimal scheduling strategies of [3][7][9] can
be employed to minimize energy for the remaining packets.
The challenge is to identify the best K packets to drop.

III. OPTIMAL PACKET DROPPING FOR THE SINGLE
TRANSMISSION DEADLINE MODEL

We assume the common transmission deadline T remains
unchanged after packet dropping. It is certainly not optimal to
drop the first packet as this will shrink the total overall time
resource for scheduling. We have the following proposition:

Proposition 3.1: Dropping the last set of K packets from the
M packets and then applying the optimal scheduler from [3]
on the remaining packets results in the minimum transmission
energy and hence is an optimal packet dropping scheme for
the single transmission deadline model.

Proof: If we drop the last K packets, the arrival times
of the remaining N packets are the same as the original first
N packets. Consider a new scheme of dropping K packets
in which at least one dropped packet ∈ [2, · · · , N ]. This new
set of packet arrival times can always be emulated by the
original first N packets by buffering these packets separately
and releasing them to the actual queueing system exactly at
the emulated arrival times. Thus, dropping the last K packets
can emulate any other dropping scheme and is optimal.

Note that given a vector of inter-arrival times and a delay
constraint, the optimal scheduling algorithm is unique [9].
However, the optimal packet dropping scheme may not be
unique (the optimal scheduling for the remaining N packets is
still unique). Indeed, we can exhibit examples where dropping
a different set of K packets yields exactly the same energy
savings as dropping the last K packets. However, we have:

Proposition 3.2: Suppose we have an optimal scheme for
dropping K packets from M packets; denote the indices of
the dropped K packets as [m1, · · · ,mK ] with mi < mj ,∀i <
j. Then, dropping any combination of K packets within
[m1, · · · ,M ] such that m

′

i ≥ mi, 1 ≤ i ≤ K, will result

in the same minimum transmission energy and is thus also
energy optimal.

In such cases where optimality is non-unique, it is desirable
from a delay perspective to drop packets as early as possible.

IV. OPTIMAL PACKET DROPPING FOR THE INDIVIDUAL
DELAY CONSTRAINT MODEL

Note that for the single transmission deadline model, the
optimal packet dropping algorithm is simple and its optimality
is regardless of packet sizes. However, as we will show, the
optimal packet dropping algorithm for the individual delay
constraint model is much more complicated and seems in-
tractable. The optimal choice of packets to drop is no longer
packet size independent.

Generally, it is not optimal to drop a packet right before or
right after a packet with an inter-arrival time equal to or larger
than T , as it will reduce the total allowable time resources,
compared with dropping any other packet. We introduce the
following definitions (see also [7]). All definitions below apply
to a given sequence of packet arrival times for which the
optimal scheduler (without dropping) are applied.

Definition: A scheduling separation interval is an interval
during which all packets, except possibly the last one, have
di < T .

Note that Packets belong to different scheduling separation
intervals can be scheduled independently since an inter-arrival
time of more than T requires all packets before that inter-
arrival time must be delivered due to the T deadline.

Definition: A group is a collection of consecutive packets in
a given scheduling separation interval such that, if the optimal
scheduling algorithm is applied to the entire set of packets of
the scheduling separation interval, the first packet of the group
would begin its transmission with an empty buffer, and the last
packet of the group would also end with an empty buffer.

Definition: A delay-critical packet is a packet with a packet
delay equal to T under the optimal scheduling (without packet
dropping) algorithm.

Definition: A subgroup is a collection of consecutive pack-
ets, within a group, having the same transmission duration.

Definition: A type-1 group is a group containing no delay-
critical packet, except possibly the last packet in the group.
When the last packet is a delay-critical packet, this group is
the last group of a given scheduling separation interval.

Definition: A type-2 group is a group containing at least one
delay-critical packet, in addition to possibly the last packet in
the group.

Note that it is easy to identify the different groups associated
with an inter-arrival sequence simply by performing one sweep
of the optimal scheduling algorithm to the packets. Under the
optimal scheduling, a subgroup may end with either an empty
buffer or a delay-critical packet [7]. A type-1 group only has
one subgroup. A type-2 group has two or more subgroups and
the transmission durations of these subgroups within a given
type-2 group are monotonically increasing [7].

Definition: A minimum group is a group which contains
the minimum transmission duration. If two or more groups



Fig. 1. An example run of the optimal transmission durations, M = 20, T =
2, and λ = 1 packets/second.

have the same minimum transmission duration, the minimum
subgroup refers to one of the type-2 groups (if it exists), or
the last type-1 group in a given scheduling separation interval.

Definition: A minimum subgroup is the subgroup which has
the minimum transmission duration in the minimum group.
For a type-1 group, the minimum subgroup is the minimum
group itself. For a type-2 group, the first subgroup is referred
as the minimum subgroup.

Correspondingly, we can also call a subgroup a type-1 (or
type-2) subgroup if it belongs to a type-1 (or type-2) group.
Figure 1 shows an example run of the optimal transmission
durations of 20 packets. It can be seen that the minimum group
(a type-2 group) consists of packets 1 to 7, with packets 1 to
3 belonging to subgroup 1. Packet 3 is a delay-critical packet.
Packets 8 to 12 belong to a type-1 group.

Claim 4.1: If the minimum group is a type-1 group, it must
be the last group of a scheduling separation interval.

Proof: By contradiction. From the definition of the
minimum group, and the non-increasing properties of trans-
mission durations between adjacent groups [7][9], if a type-1
group minimum group is followed by one or more groups, its
transmission duration has to be less than that of the immediate
subsequent group. This causes a contradiction.

Claim 4.2: When dropping a single packet, the transmission
duration of the minimum subgroup can be increased only if
the dropped packet is part of the minimum subgroup.

Proof: We provide a sketch of the proof. Note that
all preceding (sub)groups have transmission durations no less
than that of the minimum subgroup and a minimum subgroup
always starts with an empty buffer, the minimum subgroup can
not benefit from the released time resource by dropping any
preceding packets. On the other hand, since the last packet of
the minimum subgroup is a delay-critical packet, the minimum
subgroup cannot benefit from dropping a packet after the
minimum subgroup.

Now it may seem that dropping one packet from the
minimum subgroup would yield less total transmission energy
compared dropping one packet from any other subgroups. This
is not necessarily the case. In Figure 1, the multiplicity (i.e.,

the number of packets) of the minimum subgroup is 3 (packets
1 to 3). Note that the subgroup containing packets 13 to 18 has
the second shortest transmission duration with multiplicity of
6. Due to the multiplicity difference and minimum subgroup
switchover after packet dropping, dropping packet 2 may not
necessarily be advantageous over dropping packet 16 for a
given packet size. To summarize:

Claim 4.3: When dropping a packet, it is not always optimal
to drop it from the minimum subgroup.

That is, in most cases it is impossible to design an opti-
mal packet dropping scheme based on transmission durations
alone, as the full energy function w(τ,B) is required. This
is very different from the single deadline case, in which the
optimal transmission durations do not depend on the packet
size or energy function.

It is often of interest to limit the maximum transmit power,
which is determined by the minimum transmission duration
of the minimum subgroup. Moreover, in scenarios when the
minimum subgroup is outweighed in energy contribution by
another group (or subgroup), the difference in contribution
by these two groups typically is not significant. Thus, we
introduce the following definition for a class of packet-size
independent dropping schemes:

Definition: An asymptotically optimal dropping scheme is a
packet dropping scheme which results in the minimum average
transmission energy as the packet size approaches infinity.

In order to have the minimum subgroup contribute the most
asymptotically to the total transmission energy, regardless of
its multiplicity, the energy function is limited to have some de-
sirable properties. Denote τmin as the minimum transmission
duration with a multiplicity of Lmin and another transmis-
sion duration τother with a multiplicity Lother. As long as
w(τmin, B)/w(τother, B) is still a monotonically increasing
function of B, there always exists a B0, such that when B >
B0, Lminw(τmin, B) > Lotherw(τother, B), or the minimum
subgroup is the leading contributor in the total transmission
energy. This property is typical for energy functions, and is
satisfied, e.g., by the energy function w(τ,B) = τ(22B/τ −1)
from [3]. From Claim 4.2, when the energy function has these
desirable properties, we have:

Proposition 4.1: When dropping one packet, the packet has
to be dropped from the minimum subgroup in order to achieve
an asymptotically optimal total transmission energy. If there
are multiple minimum subgroups, choose the one with the
largest multiplicity. The multiplicity here is defined as the
number of consecutive packets around the minimum subgroup
(which may include previous and/or subsequent subgroups)
having the same minimum optimal transmission duration.

Now, what if we need to drop multiple packets? Consider
a recursive packet dropping scheme in which we will drop
one packet at a time and repeat for K packets. For each step,
the packet is dropped based on Proposition 4.1. For conve-
nience, we denote this scheme as the ‘recursive min subgroup’
approach. However, is this recursive approach asymptotically
optimal when dropping K > 1 packets? We have the following
claim:



Claim 4.4: The ‘recursive min subgroup’ approach de-
scribed above is not necessarily asymptotically optimal when
K > 1 packets are dropped.

Proof: We provide a counter example of 5 packets
with inter-arrival times [1, 1, 1, 1, T ] with T = 2. Suppose we
need to drop two packets. An asymptotically optimal dropping
scheme (also an optimal scheme in this case) is to drop packets
2 and 4, such that the new inter-arrival times are given by
[2, 2, 2]. By the recursive approach, we would drop 3 first,
followed by either packet 2 or 4, resulting in a suboptimal set
of inter-arrival times of [3, 1, 2] or [1, 3, 2], respectively.

The same result in Claim 4.4 also holds for optimal packet
dropping schemes given a specific energy function and a
packet size. In fact, the example in the proof of Claim 4.4
demonstrates that it is not optimal (vs. asymptotically optimal)
to sequentially drop the best single packet. Thus, optimally
dropping K packets does not seem to admit an algorithm with
tractable complexity.

Note that when two or more packets arrive very close in
time, these packets are likely to become delay-constrained.
Thus, dropping a packet with the minimum inter-arrival time
in the minimum subgroup is expected to significantly alleviate
the delay-constrained issue. If K > 1, this can be repeated
K times, similar to the ‘recursive min subgroup’ approach.
We denote this recursive approach as the ‘recursive min inter-
arrival’ approach. One may of course further simplify the
dropping scheme by just dropping the K packets with the
minimum inter-arrival times among the M packets, which is
denoted as ‘simple min inter-arrival’ approach. It is worth
mentioning that the K dropped packets by the ‘recursive min
inter-arrival’ scheme do not necessarily have the minimum
inter-arrival times among the M packets.

Due to the difficulty in obtaining explicit (asymptotically)
optimal packet dropping schemes, we introduce two perfor-
mance bounds for asymptotically optimal packet dropping
schemes in the sequel. The extension to optimal packet drop-
ping schemes is straightforward.

Consider dropping a packet from the scheduling separation
interval containing the minimum subgroup. However, instead
of dropping it from the minimum subgroup, we drop the
second last packet of the given scheduling separation interval
and schedule the packets in this scheduling separation inter-
val using the single transmission deadline model. This can
be repeated K times. Note that those scheduling separation
intervals with no packets dropped are still scheduled based on
the individual delay constraint model. We denote this dropping
and scheduling approach as the ‘recursive single deadline’
approach. We have the following proposition:

Proposition 4.2: The total transmission energy resulted
from the asymptotically optimal packet dropping schemes for
the individual delay constraint model is asymptotically lower
bounded by that achieved by the ‘recursive single deadline’
approach described above.

We can improve the performance bound by observing the
following. Regardless of which packet is dropped in the s-th
scheduling separation interval (note that the first packet and

the last packet, Ms, are not dropped), the resulting arrival
times are always lower bounded by [t1, · · · , tMs−2, tMs ] and
the resulting departure time constraints are always upper
bounded by [t1, t3, · · · , tMs−1, tMs

] + T , where tj is the
arrival time of packet j in the scheduling separation inter-
val. Similarly, when Ks > 1 packets need to be dropped,
the energy performance is lower bounded by assuming ar-
rival times of [t1, · · · , tMs−Ks−1, tMs ] and departure time
constraints of [t1, tKs+2, · · · , tMs−1, tMs ] + T (equivalent to
drop packets Ms − Ks to Ms − 1, or the last set of Ks

packets except packet Ms, with a new delay constraint vector
[0,

∑Ks

j=1 dj+1,
∑Ks

j=1 dj+2, · · · ,
∑Ks

j=1 dj+Ms−Ks−2, 0] + T ).
A recursive procedure, similar to that in the ‘recursive single
deadline’ approach, can be derived based on the above drop-
ping and scheduling scheme. Such an approach is denoted as
the ‘recursive arrival departure’ approach.

Proposition 4.3: The total transmission energy resulting
from the asymptotically optimal packet dropping schemes for
the individual delay constraint model is asymptotically lower
bounded by that achieved by the ‘recursive arrival departure’
approach described above.

Corollary 4.3.1: E{Asymptotically Optimal} ≥
E{Recursive Arrival Departure} ≥ E{Recursive Single
Deadline}, where E{.} denotes the asymptotical total
transmission energy of a given scheme.

V. NUMERICAL RESULTS

In this section, we present numerical results for intelligent
packet dropping schemes. We assume a Poisson arrival rate
of λ = 1 packet/second. An energy function of w(τ) =
τ(22B/τ − 1) [3] is used.

For the single transmission deadline model, Figure 2 shows
the normalized transmission energy 1 for the no packet-
dropping case, and the optimal dropping (dropping the last K
packets) schemes. The transmission deadline T is set to 1/λ
seconds after the last packet arrives. The results were averaged
over 1000 independent runs. It can be observed that compared
with no packet dropping, the optimal dropping scheduler yields
significant energy savings even when K = 1 and it achieves
transmission energy close to the lower bound of w(1/λ). The
energy savings due to the optimal dropping increases as the
normalized packet size increases.

For the individual delay constraint model, Figure 3 com-
pares the performance difference between an asymptotically
optimal packet dropping scheme via brute-force search and the
‘recursive min subgroup’ scheme. The transmission energy is
normalized by that of the no-dropping case with a reduced
packet arrival rate of λ(1 −K/M). The results are averaged
over 10 independent runs. The two performance bounds are
also shown for comparison. As can be seen, the ‘recursive
min subgroup’ packet dropping scheme yields a transmission

1We first multiply by (1 − K/M) in order to make a fair comparison
between the schedulers with and without packet dropping, and then normalize
with respect to the ideal case when packets have fixed inter-arrival times of
1/λ.



Fig. 2. Normalized transmission energy (in %) vs. B for the single deadline
model, M = 1000.

Fig. 3. Normalized transmission energy vs. T for the individual delay
constraint model, M = 200, K = 2.

energy which is indistinguishable from that of the asymptot-
ically optimal scheme achieved via brute-force search. The
performance bound by the ‘recursive arrival departure’ scheme
is fairly tight, especially when the individual delay constraint
is relatively small or large. The performance bound by the
‘recursive single deadline’, on the other hand, is rather loose.

Figure 4 shows similar comparisons with M = 1000,
and K = 10. As can be seen, the energy savings due
to packet dropping decrease with T , which shows that the
dropping scheme is more effective for more demanding delay
constraints. The ‘recursive min inter-arrival’, based on the
observation of the minimum inter-arrival time in the minimum
subgroup in each iteration, achieves almost the same energy
savings as the more complicated ‘recursive min subgroup’
scheme. The simplest scheme, ‘simple min inter-arrival’,
which blindly drops the packets with minimum inter-arrival
times, yields some energy savings, but noticeably less than
other suboptimal dropping schemes.

VI. CONCLUSIONS

This paper investigated proactive packet dropping to achieve
transmission energy savings. The optimal packet dropping
schemes for the single transmission deadline model was de-
rived. For packets subject to individual delay constraints, the
optimal scheme appears to be intractable. Thus, asymptotically
optimal dropping schemes were pursued, along with sub-

Fig. 4. Normalized transmission energy vs. T for the individual delay
constraint model, M = 1000, K = 10, and B = 2.

optimal packet dropping schemes and performance bounds.
Simulations demonstrated significant energy savings are pos-
sible via intelligent packet dropping schemes.
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