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ABSTRACT
We introduce revenue submodularity, the property that mar-
ket expansion has diminishing returns on an auction’s ex-
pected revenue. We prove that revenue submodularity is
generally possible only in matroid markets, that Bayesian-
optimal auctions are always revenue-submodular in such mar-
kets, and that the VCG mechanism is revenue-submodular
in matroid markets with i.i.d. bidders and “sufficient compe-
tition”. We also give two applications of revenue submodu-
larity: good approximation algorithms for novel market ex-
pansion problems, and approximate revenue guarantees for
the VCG mechanism with i.i.d. bidders.
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1. INTRODUCTION
Auctions are often designed for a specific environment.

But environments are not always predictable and static: ini-
tial expectations might be based on wrong information; bid-
ders might withdraw or bring friends; and the auction de-
signer can potentially influence the environment directly, for
example by attracting new bidders to the market. For these
reasons, the way the revenue of an auction changes with
the underlying environment can be as important as the rev-
enue it achieves in a fixed environment. For example, the
VCG mechanism’s lack of revenue monotonicity — the fact
that adding new bidders can decrease its revenue — has
been widely cited as a “deal breaker” for its possible use as
a combinatorial auction (see e.g. Milgrom [15, §2.5.2] and
Rastegari et al. [20]).

This paper introduces revenue submodularity — essen-
tially, the property that market expansion has diminishing
returns on an auction’s expected revenue. For example, in a
multi-unit auction with bidders that have unit demand and
i.i.d. valuations, revenue submodularity means that the auc-
tion’s expected revenue is a concave function of the number
of bidders. In general, an auction is deemed revenue sub-
modular in an environment with potential bidders U if, for
every subset S ⊂ U and bidder i /∈ S, the increase in the
auction’s revenue from supplementing the bidders S by i is
at most that of supplementing a set T ⊆ S of bidders by the
same additional bidder i.

Natural auctions are not necessarily revenue submodular,
even in the simple setting of a multi-unit auction. Figure 1
shows the expected revenue of the Vickrey auction with a
reserve price in a 10-unit auction, as a function of the num-
ber n of unit-demand bidders with valuations drawn i.i.d.
from the uniform distribution on [0, 1].1 The three curves
correspond to the reserve prices r = .2, .5, .7. The curve for
r = .5 — the revenue-maximizing reserve price for this dis-
tribution — is noticeably concave. The curve for the high
reserve is essentially linear in the range of the plot. The
curve for the low reserve r = .2, however, is evidently non-
concave, with a “kink” between 10 and 15 bidders. The
first goal of this work is to attain a deeper understanding
of this phenomenon, by identifying necessary and sufficient
conditions — on environments, valuation distributions, and
auctions — such that revenue submodularity holds.

But why is revenue submodularity an interesting prop-
erty? We provide two applications in this paper (and an-

1In this auction, the winners are the highest 10 bidders
among those that meet the reserve, and all winners pay the
larger of the reserve and the 11th highest bid.
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Figure 1: Expected revenue of a 10-unit Vickrey auction, as a function of the number of bidders and the
reserve price. When the reserve price is .2, the expected revenue is not concave.

ticipate more). The first application is inspired by a fa-
mous result of Bulow and Klemperer [4], which states that
in multi-unit auctions with i.i.d. bidders, market expansion
increases the Vickrey auction’s revenue at least as much as
switching to an optimal selling procedure. This idea sug-
gests the market expansion problem, which in its simplest
form asks: which set of at most k bidders should be re-
cruited to increase a given auction’s revenue as much as
possible? Revenue submodularity is the key to achieving a
computationally efficient approximation algorithm for this
problem. As a second application, we show that revenue
submodularity, in conjunction with additional conditions,
leads to strong quantitative revenue guarantees for the (eco-
nomically efficient and prior-free) VCG mechanism.

1.1 Brief Summary of Results

1.1.1 Revenue Submodularity
We first identify the largest class of single-parameter do-

mains for which general revenue submodularity results are
possible: matroid markets, in which the feasible subsets of si-
multaneously winning bidders form a matroid (see Section 2
for definitions). Fortunately, matroid markets include sev-
eral interesting examples, including multi-unit auctions and
certain matching markets.

We then prove a number of positive results (Section 3).
First is a sweeping result for (Bayesian)-optimal auctions:
in every matroid market with independent (not necessarily
identical) valuation distributions, the revenue-maximizing
auction is revenue-submodular. The fact that the “r = .5”
curve in Figure 1 is concave is a very special case of this
result. The VCG mechanism, on the other hand, enjoys rev-
enue submodularity only under additional conditions, even
when valuations are i.i.d. draws from a well-behaved distri-

bution. For example, in a k-unit auction with n unit-demand
bidders, the Vickrey auction earns zero revenue when n ≤ k
and positive revenue when n ≥ k + 1, a clear violation of
revenue submodularity (concavity). We identify a key suffi-
cient condition under which the VCG mechanism is revenue-
submodular with i.i.d. bidders, which is a matroid rank con-
dition stating that there is “sufficient competition” in the
market. For example, in multi-unit auctions, sufficient com-
petition requires that the number of bidders be at least the
number of items. Finally, we prove that revenue submodu-
larity is not a monotone property of the reserve prices used:
reserve prices higher than those in an optimal mechanism
preserve submodularity (cf., the “r = .7” curve in Figure 1),
but reserve prices strictly between those in the VCG mecha-
nism (zero) and those in an optimal mechanism always have
the potential to destroy revenue submodularity, even when
there is sufficient competition in the market (cf., the“r = .2”
curve in Figure 1).

We obtain reasonably simple and direct proofs of these
results by appropriately applying two elegant and powerful
techniques: Myerson’s characterization of expected auction
revenue in terms of the expected “virtual surplus” of the
auction’s allocation; and the submodularity that arises from
optimizing a weight function over the independent sets of a
matroid.

We also prove in passing that matroid markets are pre-
cisely the downward-closed single-parameter domains for which
the VCG mechanism is always revenue monotone, meaning
that additional bidders can only increase the mechanism’s
revenue (Section 4).

1.1.2 Application: Market Expansion
Our first application of revenue submodularity is algorith-

mic and concerns the following problem. Under the con-



straint that a certain auction mechanism, such as the VCG
mechanism, will be deployed, how should the seller recruit
new bidders to maximize the auction’s revenue? This prob-
lem is clearly faced by sellers on eBay, by companies (like
search engines) that run ad actions, and by governments
that use spectrum auctions.

We focus on the following version of the market expansion
problem. The input is a matroid market with a set of poten-
tial bidders, a subset of initial bidders, an auction (defined
for all induced submarkets), and an expansion budget k.
The goal is to recruit a set of at most k new bidders to max-
imize the expected revenue of the auction on the submarket
induced by the original bidders together with the new re-
cruits. The budget models constraints on the seller’s avail-
able marketing resources for recruiting additional bidders.
This problem is trivial when the environment is completely
symmetric (i.i.d. bidders in a multi-unit auction) but, as
we prove, is hard otherwise. Our main result for this ap-
plication is that “greedy market expansion” — repeatedly
adding the new bidder that (myopically) increases the ex-
pected revenue of the auction as much as possible — is a
constant-factor approximation algorithm provided the given
auction is revenue-submodular over all sets containing the
initial bidders. This result also admits several extensions,
for example to the variant in which the budget on new re-
cruits is replaced by bidder recruiting costs.

1.1.3 Application: VCG Revenue is Approximately
Optimal

The VCG mechanism maximizes welfare and does not
require knowledge about bidders’ valuation distributions.
However, its payments are designed to enforce strategyproof-
ness and generate revenue only as a side effect. Are there
general conditions under which the VCG mechanism is guar-
anteed to have good revenue?

Our second application of revenue submodularity is to
approximate revenue-maximization guarantees for the VCG
mechanism. Specifically, in a matroid market with i.i.d. bid-
der valuations and “modest competition” — which we for-
malize using matroid connectivity — the VCG mechanism
always obtains a constant fraction of the revenue of an opti-
mal auction. Moreover, the approximation guarantee tends
rapidly to 1 as the degree of competition increases. We also
extend these guarantees to a standard model of pay-per-
click sponsored search auctions. These results suggest an
explanation for the persistent use of economically efficient
auctions for revenue-maximization problems:2 the cost (i.e.,
revenue loss) of running an efficient auction is typically small
and outweighed by the benefits (i.e., economic efficiency and
relative simplicity), even for a revenue-maximizing seller.

1.2 Related Work
To the best of our knowledge, we are the first to study

revenue submodularity in auctions and to consider market
expansion optimization problems. A few other works study
revenue guarantees for the VCG mechanism, in simpler set-
tings than ours. Bulow and Klemperer [4] give a sufficient

2For example, current keyword search auctions are mod-
eled after efficient auctions. While these auctions do employ
reserve prices, as revenue-maximizing auctions do, these re-
serves are relatively close to 0 and are apparently meant to
discourage irrelevant ads rather than to (directly) maximize
revenue.

condition on the number of additional bidders required to
exceed the (original) optimal revenue in a multi-unit auc-
tion, but do not compare the Vickrey and optimal revenue
in a fixed environment. Neeman [17] studies the convergence
of revenue to welfare as the number of bidders grows in a
single-item auction with i.i.d. bidders from a bounded dis-
tribution. Lambert and Shoham [14] study which sponsored
search auctions extract the full surplus in the limit, as the
number of bidders goes to infinity. Schwarz and Edelman [9]
empirically compare the revenue of the VCG and revenue-
maximizing auctions in a sponsored search context. Hartline
and Roughgarden [12] consider settings considerably more
general than this paper — arbitrary downward-closed single-
parameter settings and non-i.i.d. bidders — and so cannot
achieve revenue guarantees for the standard VCG mecha-
nism, as we do here for matroids and i.i.d. bidders. The
results in [12] are for the VCG mechanism supplemented
by optimal reserve prices and for the standard VCG mech-
anism after the entire market has been duplicated (in the
spirit of [4]).

A few other papers study matroids in auction settings but
are otherwise unrelated to our work. Talwar [21] studies fru-
gality and Cary et al. [6] study profit-maximization in pro-
curement settings; their techniques do not seem relevant for
the problem of selling goods, as in this paper. Bikhchandani
et al. [3] design economically efficient ascending auctions for
selling bases of a matroid, but are unconcerned with rev-
enue. For online auctions, where bidders arrive over time,
matroid domains are studied in Babaioff et al. [2] and Con-
stantin et al. [7].

2. PRELIMINARIES
This section reviews some standard facts from combina-

torial optimization and auction theory that are needed to
state and prove our results. Section 2.1 introduces matroids
and gives several examples. Section 2.2 states the key facts
about matroids that are required in our proofs. Section 2.3
reviews optimal auction design in Bayesian single-parameter
environments, as studied in Myerson [16]. We encourage the
reader familiar with matroids and auctions to skip ahead to
Example 2.12 at the end of the section.

2.1 Matroids
A set system consists of a ground set U and a collec-

tion I ⊆ 2U of subsets. We will only be interested in the
case where U is finite and both I and U are non-empty. A
matroid is a set system (U,I) that satisfies two properties.
First, it is downward closed, meaning that if S belongs to I,
then so do all subsets of S. The second condition is the Ex-
change Property, which asserts that whenever T, S ∈ I with
|T | < |S|, there is some x ∈ S \ T such that T ∪ {x} ∈ I.
Thus T can be extended by some element of S \T . In a ma-
troid context, the sets of I are called independent, and the
maximal such sets are the bases of the matroid. The matroid
properties easily imply that all bases have equal cardinality.
This common size is the rank of the matroid.

Matroids model a number of natural auction settings; we
mention a few below. In all cases, the ground set of the
matroid represents the set of bidders in the auction, and
the independent sets of the matroid represent the subsets of
bidders that can simultaneously win in the auction.



Example 2.1 (Uniform Matroids) In a uniform matroid,
the independent sets are the subsets of size at most k, where k
is some nonnegative integer. Both matroid properties obvi-
ously hold. A uniform matroid models an auction with k
identical units of a good and unit-demand bidders. The
bases of a uniform matroid are the subsets of size exactly k;
obviously, k is also the rank of the matroid.

Example 2.2 (Transversal Matroids) A transversal ma-
troid is defined via an undirected bipartite graph (V1, V2, E);
its ground set is V1 and a subset S ⊆ V1 is independent if
and only if the vertices of S can be simultaneously matched
to (distinct) vertices of V2. The Exchange Property can be
proved using an augmenting path argument. The rank of
a transversal matroid equals the cardinality of a maximum
matching in the corresponding bipartite graph. A transver-
sal matroid models a matching market, where V1 is a set of
bidders, V2 is a set of goods, and the edges E specify which
goods each bidder is interested in. (Here, each bidder has a
common value for the goods in which it is interested.)

Example 2.3 (Graphic Matroids) A graphic matroid is
defined by an undirected graph G = (V, E); the ground set
is E and the independent sets are the acyclic subsets of E.
Such a set system is obviously downward closed, and the Ex-
change Property can be proved by comparing partitions into
connected components. If G is a connected graph, then the
bases of the corresponding graphic matroid are the spanning
trees of G, and the matroid rank is |V | − 1.

We require a standard matroid operation to model the
addition (or removal) of new bidders in a market. Given a
matroid M = (U, I) and a subset S ⊆ U , the restriction
of M to S is the set system (S, IS), where IS = {T ∩ S :
T ∈ I} is the projection of I onto S. Every restriction
of a matroid to a non-empty set is again a matroid. We
sometimes call this a submatroid of the original matroid or
say that S induces the matroid (S, IS).

2.2 Submodularity and Weighted Rank
Suppose we endow every element e of a matroid M with a

real-valued weight we. The weight of a set is then the sum of
the weights of its constituent elements. The weighted rank
of M under w is defined as the maximum weight of one of
its independent sets. For a nonnegative weight function the
weighted rank is determined by a basis of the matroid; with
general weights, non-maximal independent sets can deter-
mine the weighted rank.

The weighted rank of a matroid can be computed by the
following algorithm which greedily constructs an indepen-
dent set via a single pass over the elements: (i) sort the ele-
ments e1, . . . , en from highest to lowest weight (breaking ties
arbitrarily) and initialize S = ∅; (ii) for each i = 1, 2, . . . , n
in turn, if ei has nonnegative weight and S ∪ {ei} ∈ I, then
add ei to S. For graphic matroids, this algorithm is sim-
ply Kruskal’s algorithm (e.g. [13, §2.1]). The correctness of
this algorithm for general matroids can be proved using the
Exchange Property. Similarly, if the clause “if ei has non-
negative weight” is omitted, then the corresponding greedy
algorithm computes a maximum-weight basis of the matroid.

In the proof of Theorem 4.1, we use the following charac-
terization of the maximum-weight basis of a given matroid
and weight function in terms of the cycles of the matroid

(i.e., minimal dependent sets). See e.g. Kozen [13, Theorem
3.11] for a proof.

Proposition 2.4 (Cycle Property) Let M be a matroid
with distinct element weights. An element is excluded from
the (unique) maximum-weight basis of M if and only if it is
the minimum-weight element of some cycle.

Submodularity is a set-theoretic analog of concavity, and it
is central to this work. We repeat here the formal definition.

Definition 2.5 (Submodular Function) A function f :
2U → R defined on all subsets of a finite non-empty set U is
submodular if

f(S ∪ {i}) − f(S) ≤ f(T ∪ {i}) − f(T )

for every T ⊆ S ⊂ U and i /∈ S.

Our results on revenue submodularity rely on the submod-
ularity of the weighted rank function on the submatroids of
a given matroid. For the uniform weight function, this fact
is well known.

Proposition 2.6 ([24, Theorem 1.2.3]) For a matroid
M = (U, I), let f(S) denote the rank of M restricted to S.
Then f is a submodular function.

The generalization to weighted rank follows easily.

Corollary 2.7 (Weighted Rank Is Submodular) For a
matroid M = (U, I) and weight function w on U , let f(S)
denote the weighted rank of M restricted to S. Then f is a
submodular function.

Proof. First, Proposition 2.6 extends trivially to 0-1 weight
functions, since the corresponding weighted rank function
of M is the same as the (unweighted) rank function of the
matroid obtained from M by projecting I onto the positive-
weight elements of U . For a general weight function w,
project I onto the positive-weight elements and label these
elements {1, 2, . . . , n} so that w1 ≥ w2 ≥ · · · ≥ wn > 0. For

i = 1, 2, . . . , n, let w(i) denote the weight vector in which the
elements {1, 2, . . . , i} have weight 1 and all other elements
have zero weight. Let fi denote the corresponding (sub-
modular) weighted rank function. Since a nonnegative lin-
ear combination of submodular functions is again submod-
ular,

Pn

i=1(wi − wi+1) · fi is submodular. (By convention,
wn+1 = 0.) Since the output of the greedy algorithm for
maximizing weighted rank depends only on the ordering of
the elements’ weights (and ties are irrelevant), the indepen-
dent set that maximizes the weighted rank w.r.t. the weight
function w also simultaneously maximizes the weighted rank
w.r.t. each of w(1), . . . , w(n). Thus f =

Pn

i=1(wi −wi+1) ·fi,
completing the proof.

The following converse to Proposition 2.6 also holds.

Proposition 2.8 ([24, Theorem 1.2.3]) Let M = (U,I)
be a set system and f(S) the largest size of a set of I that
is contained in S. If f is submodular, then M is a matroid.

There are numerous other characterizations of matroids.
We conclude with one useful in the proof of Theorem 4.1.



Proposition 2.9 ([19, Corollary 2.1.5]) A downward- closed
set system (U, I) with I 6= ∅ is a matroid if and only if for
every pair A,B of maximal sets in I and y ∈ B, there is
some x ∈ A such that A \ {x} ∪ {y} ∈ I.

2.3 Optimal Auction Design
Our auction model is standard (e.g. [16]). There is a pop-

ulation U of bidders, and a set of feasible outcomes, each in-
dicating the “winning” and “losing” bidders in the outcome.
For example, in a k-unit auction, there is a feasible outcome
for each subset of at most k bidders; in a matching market,
feasible outcomes correspond to matchings between bidders
and desired goods. The applications we have in mind are
downward closed; as noted above, this means that for ev-
ery feasible set of winners, every subset of this set is also
feasible.

A bidder i has value 0 for losing, and a valuation vi for
winning that is a priori unknown to the auctioneer. Each
bidder bids to maximize its payoff vixi−pi, where xi is 1 if it
wins and 0 otherwise, and pi is its payment to the auctioneer
(assumed 0 if xi = 0). A mechanism is a specification of
an allocation rule (the xi’s) and a payment rule (the pi’s),
which together select who wins and who pays what in each
bid profile.

The efficiency and revenue of a mechanism outcome for
bidders with valuations v are defined as

P

i
vixi and

P

i
pi,

respectively. We usually study the expected revenue of a
mechanism, under the assumption that the bidders’ val-
uations are independently distributed according to known
distributions F1, . . . , Fn with strictly positive density func-
tions f1, . . . , fn. We focus on strategyproof mechanisms, in
which each bidder is guaranteed to maximize its payoff by
revealing its true private valuation to the mechanism, irre-
spective of the valuations and behavior of the other bidders.
Because of this, we use the terms bids and valuations inter-
changeably.

In single-parameter problems like those studied in this
paper, truthful mechanisms are relatively well understood.
An allocation rule can be extended via a (essentially unique)
payment rule to a strategyproof mechanism if and only if the
rule is monotone, meaning that a winner who increases its
bid always continues to win (keeping other bids fixed) [16].
For example, in a single-item auction, the “highest bidder
wins” rule is monotone; the “second-highest bidder wins”
rule is not.

Example 2.10 (The VCG Mechanism) The VCG mech-
anism is defined by the allocation rule that always picks the
feasible set with the largest sum of valuations. It is easy
to see that this allocation rule is monotone and can there-
fore be extended to a strategyproof mechanism via suitable
payments. These payments are: each winner is charged a
price equal to the smallest bid at which it would continue
to win (keeping other bids fixed). For a k-unit auction with
unit-demand bidders, the VCG mechanism specializes to the
Vickrey auction, with all winners paying the (k +1)th high-
est bid.

Remark 2.11 (The Clarke Pivot Rule) The payments
of the general VCG mechanism are defined only up to a
bid-independent “pivot term” (see e.g. [15]). In this paper,
we study only the Clarke pivot rule which normalizes the
payment of every losing bidder to zero.

The virtual valuation corresponding to a distribution Fi

and a valuation vi is defined as

ϕi(vi) = vi −
1 − Fi(vi)

fi(vi)
. (1)

A distribution is regular if the corresponding virtual valu-
ation function is increasing over the distribution’s support.
We note that a virtual valuation can be negative; for exam-
ple, if F (v) = v on [0, 1], then ϕ(v) = 2v − 1.

The importance of virtual valuations is illustrated by the
following lemma of Myerson [16, Lemma 3.1]: for every
mechanism, its expected revenue (over draws from the Fi’s)
equals the expected virtual value of its allocation:

Z

 

X

i

ϕi(vi)xi(v1, . . . , vn)

!

f1(v1) · · · fn(vn)dv1 · · · dvn

(2)
Thus the revenue-maximizing strategyproof mechanism max-
imizes the expected total virtual value (2) subject to mono-
tonicity of the allocation rule [16].

With regular distributions, the optimal auction simply
maximizes the virtual value pointwise (i.e., separately for
each valuation profile). Since the virtual valuation func-
tions corresponding to regular distributions are increasing,
this defines a monotone allocation rule and yields a strate-
gyproof mechanism once suitable payments are defined.

Finally, we discuss non-regular distributions; this requires
some technical concepts, but we require them only for the
proof of Theorem 3.1. With such distributions, the alloca-
tion rule above is not monotone and hence cannot be ex-
tended to a strategyproof mechanism by any payment rule.
To overcome this obstacle, Myerson [16] defined a nonde-
creasing function called an ironed virtual valuation. This
function is meant to be a monotone proxy for the virtual val-
uation function. Maximizing the ironed virtual value of the
allocation and breaking ties in a valuation-independent way
turns out to be equivalent to maximizing the virtual value
of the allocation (2) subject to monotonicity, and therefore
results in an optimal auction [16].

Formally, the (nondecreasing) ironed virtual valuation ϕ̄
corresponding to a virtual valuation ϕ is defined by the fol-
lowing procedure.

1. For q ∈ [0, 1], define h(q) = ϕ(F−1(q)).

2. Define H(q) =
R q

0
h(r)dr.

3. Define G as the convex hull of H – the largest convex
function bounded above by H for all q ∈ [0, 1].

4. Define g(q) as the derivative of G(q), where defined,
and extend to all of [0, 1] by right-continuity.

5. Finally, ϕ̄(z) = g(F (z)).

To summarize, in a single-parameter environment with in-
dependent valuation distributions, maximizing the expected
auction revenue reduces to always selecting the feasible set
with maximum total ironed virtual value.

Example 2.12 (Matroid Markets with i.i.d. Bidders)
Consider a set U of bidders and suppose that the feasible sets
of winners form a matroid. Suppose further that bidders’
valuations are i.i.d. draws from a regular distribution F with
(increasing) virtual valuation function ϕ. In this case, the



VCG and revenue-maximizing mechanisms are close cousins.
The VCG mechanism maximizes the total value of the win-
ners (Example 2.10). In a matroid market, this allocation
rule can be implemented by ordering bidders by valuation
and running the greedy algorithm from Section 2.2. As dis-
cussed above, the optimal mechanism maximizes the total
virtual value of the winners. In a matroid market, this cor-
responds to ordering bidders by virtual valuation, running
the greedy algorithm, and halting once the negative virtual
valuations are reached. Since bidders’ valuations are i.i.d.
draws from a regular distribution, the orderings by valua-
tion and by virtual valuation coincide. Thus, the optimal
mechanism is nothing more than the VCG mechanism sup-
plemented with the optimal reserve price r∗ = ϕ−1(0).

3. REVENUE SUBMODULARITY

3.1 Optimal Auctions
We first observe that revenue submodularity can be crisply

characterized for revenue-maximizing auctions. This charac-
terization also establishes matroid domains as the largest set
of domains for which general revenue-submodularity results
are possible.

We study the following property of a given domain or
market (i.e., a set of bidders and feasible subsets of winners):

(*) for every set of independent valuation distributions
for the bidders, the corresponding optimal auction is
revenue-submodular.

Theorem 3.1 (Submodularity of Optimal Auctions)
A market has property (*) if and only if it is a matroid mar-
ket.

Proof. For the “if” direction, fix a matroid market with
bidders U and independent distributions F1, . . . , Fn for the
bidders’ valuations. Condition on the valuations of all bid-
ders in U . For S ⊆ U , let ϕ̄(S) denote the maximum sum of
ironed virtual valuations (Section 2.3) possessed by an inde-
pendent set contained in S; by Myerson’s Theorem [16], the
optimal auction for the market induced by S chooses such
a set for this valuation profile. Since the market on U is a
matroid market, Corollary 2.7 implies that ϕ̄(S) is submod-
ular on U . Taking expectations, the expected sum of the
winners’ ironed virtual valuations is submodular on U . (A
convex combination of submodular functions is again sub-
modular.) Applying (2) now shows that the optimal auction
is revenue-submodular.

For the converse, consider a domain for which the optimal
auction is always revenue-submodular, and in particular has
this property when every bidder’s valuation is determinis-
tically 1. In this case, the revenue of the optimal auction
in a submarket S ⊆ U is the largest size of a feasible set
contained in S. In other words, the auction revenue corre-
sponds to the rank function of the set system. This rank
function is submodular only when the set system comprises
the independent sets of a matroid (Proposition 2.8).

3.2 VCG Without a Reserve Price
The plot is thicker for other mechanisms, even in the very

special case of multi-unit auctions. (Recall Figure 1.) For
example, consider a k-unit auction with n unit-demand bid-
ders. For all n ≤ k, the Vickrey auction earns zero revenue.

There is a sudden jump to positive revenue when n = k +1,
a clear violation of revenue submodularity. With non-i.i.d.
bidders (e.g., many “small” bidders and few “large” bidders),
the same problem can arise even when the total number of
bidders is much larger than the number of goods. The best
we can hope for with the VCG mechanism is that revenue
submodularity kicks in once there is “sufficient competition”.
Precisely, we consider i.i.d. bidders and prove submodularity
over the full-rank sets — sets that contain a basis of the full
matroid market M . In a k-unit auction, this corresponds to
bidder sets of cardinality at least k.

Theorem 3.2 (Submodularity of VCG) Fix a matroid
market M with bidders U and valuations drawn i.i.d. from
a regular distribution F . The expected revenue of the VCG
mechanism for induced matroid markets MS is submodular
on the set of full-rank sets S ⊆ U .

Theorem 3.2 is false, even in a single-item auction, if the
full-rank assumption is dropped (as we have seen), if the
i.i.d. assumption is dropped (Example 3.3), or if the regu-
larity condition is dropped (Example 3.4).

Proof. Condition on the bidders’ valuations. Let C be
large enough that the “shifted virtual valuation” γ(vi) :=
ϕ(vi) + C is nonnegative for every bidder i. Since the valu-
ations are i.i.d. draws from a regular distribution, the (com-
mon) virtual valuation function ϕ is increasing, and thus γ
is a nonnegative weight vector that orders the bidders by
valuation.

In a matroid market, all nonnegative weight functions that
order the bidders in the same way are maximized by a com-
mon (maximal) independent set. (This follows from the op-
timality of the greedy algorithm, as in the proof of Corol-
lary 2.7.) Thus while the VCG mechanism explicitly maxi-
mizes the sum of the valuations of the winners, it inadver-
tently maximizes the sum of their shifted virtual valuations
as well. Letting γ(S) denote the latter maximum in the
submarket induced by S, this observation and Corollary 2.7
establish the submodularity of γ over all subsets of U .

Define ϕ(S) as the total virtual value of the VCG mech-
anism’s allocation in the submarket S. The submodularity
of γ translates to submodularity of ϕ on full-rank sets. To
see this, take two full-rank sets A and B with A ⊆ B, and
a bidder i /∈ B. By submodularity of γ,

γ(A ∪ {i}) − γ(A) ≥ γ(B ∪ {i}) − γ(B).

Now, on full-rank sets S, ϕ(S) = γ(S) − r(M) · C, where
r(M) denotes the rank of the full matroid M . Thus

ϕ(A ∪ {i}) − ϕ(A) ≥ ϕ(B ∪ {i}) − ϕ(B),

as claimed.
Finally, taking expectations over the bidders’ valuations

and applying (2) proves the theorem.

Example 3.3 (Necessity of i.i.d. Distributions)
Consider a single-item auction where the bidding popula-
tion consists of two types of bidders, one with value drawn
uniformly from [0, ǫ] (small bidders) for small ǫ and another
with value drawn uniformly from [0, 1] (big bidders). Sup-
pose that the market consists initially of small bidders. Con-
sider the revenue of the Vickrey auction. Adding the first big
bidder causes an increase in expected revenue of at most ǫ.



Adding a second big bidder increases the expected revenue
by at least 1/3− ǫ. Thus non-submodularity occurs even on
full-rank sets.

Example 3.4 (Necessity of Regular Distributions)
Consider a single-item auction where the valuation of each
bidder is 1 with probability p, and 0 with probability 1 −
p. (A continuous perturbed version of this distribution also
works.) The revenue of the Vickrey auction is 0 with one
bidder. Adding the second bidder increases the revenue to
p2. Adding the third bidder increases the revenue to p3 +
3p2(1 − p). For small p, p3 + 3p2(1 − p) − p2 > p2 − 0 and
non-submodularity results.

3.3 VCG with an Arbitrary Reserve Price
Consider the VCG mechanism with some reserve price r.

Thus far, we have identified conditions for revenue submod-
ularity with zero reserve and with the Myerson reserve r∗,
which in matroid markets correspond to the VCG and op-
timal mechanisms, respectively (Example 2.12). What if a
different reserve price is used, either by choice or because
of inaccurate statistics? Perhaps surprisingly, there is a big
difference between overestimating the optimal reserve price
(which never affects submodularity) and underestimating it
(which can destroy submodularity, even on full-rank sets).

Theorem 3.5 (VCG with Incorrect Reserve Prices)

(a) For every regular distribution F with optimal reserve
price r∗ = ϕ−1(0), every matroid market with bid-
ders U with valuations drawn i.i.d. from F , and every
r ≥ r∗, the expected revenue of the VCG mechanism
with reserve price r is submodular on U .

(b) For every ǫ ∈ (0, 1), there is a regular distribution F
with optimal reserve price r∗ and a matroid market
for which the expected revenue of the VCG mechanism
with reserve price (1 − ǫ)r∗ is not submodular on full-
rank sets.

Proof. For part (a), condition on the bidders’ valua-
tions. Project the independent sets of the matroid onto the
bidders that meet the reserve price. Since r ≥ r∗ and F
is regular, all such bidders have nonnegative virtual valu-
ations. As in the proof of Theorem 3.2, regularity implies
that the VCG mechanism with reserve price r inadvertently
maximizes the total virtual value over the (projected) in-
dependent sets of the matroid. Thus the virtual value of
the mechanism’s allocation is the weighted rank of a ma-
troid. As in previous proofs, applying Corollary 2.7, taking
expectations over valuations, and invoking (2) establishes
revenue-submodularity.

Part (b) can be established using the distribution F that is
an equal (50/50) mixture of the uniform distribution on [0, 1]
and the “equal revenue distribution” with distribution func-
tion 1 − 1/x on [1,∞). This distribution is continuous and
regular, and its optimal reserve price is 1. Fix an arbitrarily
small constant ǫ > 0 and consider a graphic matroid com-
prising a cycle of length n (for n large) plus one parallel
copy e′ of one of the edges e. Let q = (1 + ǫ)/2 denote
the probability that a sample from F exceeds the reserve
price r = 1 − ǫ. When both e and e′ are absent, the ex-
pected revenue of the VCG mechanism with this reserve is

q(n − 1)(1 − ǫ), with every winner paying the reserve price.
When one of {e, e′} is added, the expected revenue increases
by (essentially, for large n) q(1 − ǫ). When both parallel
edges are added, there are two relevant cases (for n large).
The valuations of e, e′ are both above 1 with probability
1/4, and the additional revenue in this case is the expected
minimum of two samples from the equal revenue distribu-
tion, which is 2. In the other relevant case, at least one
of the valuations of e, e′ exceeds the reserve price and at
most one of them exceeds 1. This occurs with probability
(1− (1− q)2)−1/4 = 1/2+ ǫ− ǫ2/4, and the additional rev-
enue in this case is at least 1− ǫ. A quick calculation shows
that the combined extra revenue from the two cases strictly
exceeds 2q(1− ǫ). Since the revenue increase from adding e
and e′ is more than double that of adding either one indi-
vidually, we have a violation of revenue-submodularity that
involves only full-rank subsets of the matroid.

4. REVENUE MONOTONICITY OF THE VCG
MECHANISM IN MATROIDS

We note in passing an interesting analog of Theorem 3.1
for the revenue monotonicity of the VCG mechanism (with
the Clarke pivot rule). Precisely, a mechanism is revenue
monotone in a single-parameter downward-closed domain
(U, I) if, for every set of bidder valuations v and set S ⊆ U ,
the mechanism’s revenue in the full market is at least that
in the market induced by S and v.

Theorem 4.1 (Monotonicity of VCG) The VCG mech-
anism is revenue monotone in a downward-closed market if
and only if the market is a matroid market.

Proof. For the “if” direction, fix a matroid market M =
(U, I) and valuations v for the bidders. Breaking ties using
bidders’ names, we can treat their valuations as distinct.
Recall that the payment of a winner in the VCG mechanism
is the value of the smallest bid at which the bidder would
continue to win. The Cycle Property of matroids (Proposi-
tion 2.4) implies that the payment of a winner e in the VCG
mechanism is the maximum, over all cycles C that contain e,
of the minimum weight of an element of C. As soon as e’s
bid falls below this value (and no sooner), the Cycle Prop-
erty dictates that e will no longer be selected by the VCG
mechanism.

Next, by induction, we can consider only sets S that ex-
clude a single bidder e of U . We can simulate the alloca-
tion and revenue of the mechanism after bidder e has been
deleted by decreasing e’s bid be from its original value ve to
zero (holding other valuations fixed). Let B1 and B2 denote
the bases chosen by the VCG mechanism when be = 0 and
when be = ve, respectively; we aim to show that revenue in
the former outcome is at most that in the latter outcome.
The characterization of VCG payments in a matroid market
immediately implies that every bidder of B1 ∩ B2 pays at
least as much in the second outcome as in the first. For the
rest of the proof, assume that B1 6= B2; otherwise we are
done. We note that B1 must have the form B2 \ {e} ∪ {f}
for some f /∈ B2: by the Cycle Property, e is the only candi-
date member of B2 \B1; and by the Exchange Property, all
bases have equal cardinality. The VCG mechanism obtains
payment at most vf from f when be = 0, since the pay-
ment of a bidder is bounded above by its bid. Finally, the
VCG payment of e when be = ve is vf , since every bid by e



smaller than vf would lead the VCG mechanism to choose
an allocation excluding e (namely B1).

For the “only if” direction, consider a non-matroid down-
ward-closed market M = (U, I). By Proposition 2.9, there
are maximal sets A, B of I and an element y ∈ B such
that A \ {x} ∪ {y} /∈ I for every x ∈ A. Suppose that the
bidders of A ∪ {y} have valuation 1 and all other bidders
have valuation 0. The set A maximizes welfare over the
sets of I (with welfare |A|) and, by our choice of A and y,
every other set of I has welfare at most |A| − 1. The VCG
mechanism thus generates zero revenue in this market. We
complete the proof by identifying a submarket in which the
VCG mechanism earns strictly positive revenue.

Since I is downward closed, we have A ∪ {y} /∈ I and
(A∩B)∪{y} ∈ I. We can therefore choose a set A′ ⊇ A∩B
and an element x ∈ A \ B such that A′ ∪ {x} ∪ {y} /∈ I
and A′ ∪ {y} ∈ I. In the matroid market induced by A′ ∪
{x, y}, there are at least two welfare-maximizing solutions,
A′ ∪ {x} and A′ ∪ {y}. The VCG mechanism chooses an
allocation that includes either x or y (or both), and will
collect a payment of 1 from this bidder.

Unlike the other results in this paper, Theorem 4.1 is not
stated for distributions over bidders’ valuations. Pointwise
revenue monotonicity (as in Theorem 4.1) obviously implies
expected revenue monotonicity with respect to every distri-
bution over bidders’ valuations.

5. NEAR-OPTIMAL MARKET EXPANSION
Given a market and a mechanism for it, and also an initial

submarket, which k additional bidders should be recruited
to generate the largest increase in the auction’s revenue?
This question is trivial when bidders are indistinguishable,
as in a multi-unit auction with i.i.d. bidder valuations: any
k additional bidders will do. As the next example shows,
this basic optimization problem becomes quite subtle with
bidder asymmetries.

Example 5.1 (Expanding a Graphic Matroid)
Consider a graphic matroid market G = (V, U), and suppose
that the initial submarket S is a spanning tree of G, that
k = 1, and that the mechanism used is the VCG mecha-
nism. Suppose bidders’ valuations are i.i.d. draws from an
exponential distribution with rate 1. Adding a new bidder
creates a cycle, say of length ℓ. Once valuations have been
sampled, the VCG mechanism will select all bidders but the
lowest one i on the cycle, and the other ℓ − 1 bidders of
the cycle will each be charged vi. (Bidders off the cycle are
charged 0.) The expected revenue of the VCG mechanism
(over the random valuations) is (ℓ − 1)/ℓ, since 1/ℓ is the
expected value of the minimum of ℓ independent exponen-
tial random variables. Thus, in this instance, the optimal
solution to the market expansion problem is to add the edge
of U \ S that creates the longest cycle.

The market expansion problem is inapproximable with-
out revenue submodularity, for example in matroid markets
with the VCG mechanism and without a full-rank initial
submarket.

Theorem 5.2 The market expansion problem for general
matroids and the VCG mechanism admits no polynomial-
time algorithm with non-zero approximation ratio, unless
P = NP .

Proof. Vardy [22] proved that finding a cycle of a given
length in a binary matroid — i.e., linearly independent sub-
sets of vectors over the two-element field — is NP -hard.
Given such a matroid and the empty initial market, there
are k bidders whose recruitment generates positive revenue
for the VCG mechanism if and only if the matroid has a
cycle of length at most k.

Even with revenue submodularity, as in graphic matroids
with the revenue-maximizing auction (Theorem 3.1), the
market expansion problem is NP -hard.

Theorem 5.3 Optimal market expansion is NP -hard, even
for graphic matroids, i.i.d. valuations, and the revenue-max-
imizing auction.

Proof. (Sketch.) Reduction from Hamiltonian cycle. Gi-
ven a connected graph with n vertices, consider the corre-
sponding graphic matroid, the empty submarket, and a bud-
get of n new bidders to recruit. Bidders’ valuations are (say)
i.i.d. draws from the exponential distribution with rate 1.
By (2), the expected revenue in a given submarket is the ex-
pected maximum virtual value of an acyclic subgraph. For a
given subgraph with n edges and valuation profile, the max-
imum virtual value of an acyclic subgraph is simply the sum
of the positive virtual valuations, unless these bidders in-
clude a cycle, in which case some positive virtual valuations
must be thrown out. Hamiltonian cycles (if any) are the
submarkets that minimize the expected amount of positive
virtual value so wasted, and thus are the submarkets that
maximize expected revenue.

Revenue submodularity leads directly to a positive result
for near-optimal market expansion. By greedy market ex-
pansion, we mean the heuristic of repeatedly (k times) re-
cruiting the new bidder that increases the expected revenue
of an auction the most. Our next result follows from a clas-
sic analysis of Nemhauser, Wolsey, and Fisher [18]. They
showed that for every nonnegative, monotone, and submod-
ular set function f on a universe U , this greedy heuristic
outputs a set S′ that is a (1 − 1/e)-approximation to the
maximum-value subset of U of size at most k: f(S′) ≥
(1 − 1/e) · max|S|≤k f(S).

Theorem 5.4 Greedy market expansion is a (1−1/e)-approx-
imation algorithm for the market expansion problem when-
ever the given auction is revenue monotone and revenue sub-
modular on all submarkets containing the initial market.

For example, since the revenue-maximizing auction with ar-
bitrary (not necessarily regular or i.i.d.) independent dis-
tributions is obviously revenue monotone (in expectation),
Theorems 3.1 and 5.4 imply that greedy market expansion is
a (1 − 1/e)-approximation algorithm in every matroid mar-
ket.

For the VCG mechanism and bidder valuations that are
i.i.d. draws from a regular distribution, Theorems 3.2, 4.1,
and 5.4 imply that greedy market expansion is a (1 − 1/e)-
approximation algorithm in matroid markets with a full-
rank initial market.

Extensions of Theorem 5.4 are easy to come by. If only
an α-approximation algorithm is available for the subroutine
that chooses the optimal next bidder to add — for example,
due to sampling error in estimating the expected revenue



of a mechanism in a given submarket — the approximation
bound degrades only to 1 − 1/eα (see e.g. [11]).

The budget of k can be replaced by an arbitrary matroid
constraint on the bidders of U \ S without changing the
approximation guarantee [5]. For example, the feasible re-
cruitable sets might correspond to assignments of a fixed
number of recruiters to different locations subject to geo-
graphic constraints (a transversal matroid).

As a third extension, we can attach a fixed recruiting cost
to each bidder e. The objective is then to maximize rev-
enue minus recruiting costs. Adding costs can ruin revenue
monotonicity but does not affect submodularity. As long as
the revenue submodularity condition in Theorem 5.4 holds
and the profit earned when recruiting the entire market is
nonnegative, the market expansion problem can be approx-
imated to within a factor of 2/5 using randomized local
search [10].

6. REVENUE GUARANTEES FOR THE VCG
MECHANISM

6.1 Matroid Markets
Are there interesting conditions under which the VCG

mechanism inadvertently yields near-optimal revenue? In
matroid markets, even“modest competition”suffices for such
a guarantee. Competition is quantified by the packing num-
ber of the matroid, defined as the maximum number of dis-
joint bases that the matroid contains.

Theorem 6.1 (A Guarantee for VCG’s Revenue) In
every matroid market M = (U,I) with packing number κ
and bidders’ valuations drawn i.i.d. from a regular distri-
bution, the expected revenue of the VCG mechanism is at
least a (1 − 1/κ) fraction of that of the revenue-maximizing
mechanism.

For example, in multi-unit auctions, the packing number
is simply the factor by which the number of bidders exceeds
the number of goods (rounded down to an integer). The
VCG mechanism generates zero revenue when k ≤ n, so no
approximation is possible when the packing number is 1. A
packing number of 2 suffices for a constant-factor approxi-
mation, and the expected revenue of the VCG mechanism
converges rapidly to that of the optimal mechanism as the
packing number increases. Similarly to Theorem 3.2, all of
the hypotheses in Theorem 6.1 are generally necessary.

A key step in the proof of Theorem 6.1 is a generalization
of a result of Bulow and Klemperer [4] that is interesting in
its own right. The result resolves the following thought ex-
periment. Suppose a seller initially employs the VCG mech-
anism in a given market with i.i.d. bidder valuations. Which
of the following two options is better for revenue: switching
to an optimal auction tailored to the given valuation distri-
bution, or performing a little market expansion? The next
lemma shows that expanding a matroid market by a new
basis (under the VCG mechanism) is more profitable than
switching to an optimal mechanism. For example, for a k-
unit auction with n bidders, adding k additional bidders is
guaranteed to boost expected revenue beyond that of an op-
timal auction in the original market. For a matching market
with k goods (a transversal matroid), adding k bidders who
are collectively willing to accept all k goods achieves the
same guarantee.

Lemma 6.2 (Bulow-Klemperer in Matroid Markets)
Let M be a matroid market with bidders U with valuations
drawn i.i.d. from a regular distribution. The expected rev-
enue of the VCG mechanism for M is at least that of every
optimal mechanism for a matroid market MS that is induced
by a set S ⊆ U that excludes a basis of M .

Proof. Recall from Example 2.12 that the VCG mecha-
nism can be implemented via the greedy algorithm of Sec-
tion 2.2 that considers bidders in nonincreasing order of val-
uation. Recall also that the output of the greedy algorithm
depends only on the ordering of the bidders, and that, for
i.i.d. valuations drawn from a regular distribution, the bid-
der orderings by valuation and by virtual valuation coin-
cide. Thus, as in the proof of Theorem 3.2, the VCG mech-
anism inadvertently maximizes the total virtual value over
the bases of the matroid. (Since virtual valuations can be
negative, there can be non-maximal independent sets with
still higher total virtual value.)

Fix matroids M and MS that satisfy the conditions of the
lemma and consider the probability space of valuations of
bidders in U . Let the random variable W denote the set
of winners in the optimal mechanism for MS. Since U \ S
contains a basis, the Exchange Property of matroids implies
that, for every point in the probability space, W ⊆ S can be
extended to a basis of M using bidders of U \ S. For each
possible value of W , choose such an extension XW ⊆ U \ S
arbitrarily.

To aid the analysis, define a “hybrid mechanism” on M
that allocates to the set W ∪XW . Since W ∪XW is a basis,
the VCG mechanism on M chooses an allocation with at
least as much total virtual value as that chosen by the hy-
brid mechanism. By (2), the expected revenue of the VCG
mechanism is at least that of this hybrid mechanism. We
will complete the proof by showing that the optimal mecha-
nism for MS has expected revenue equal to that of the hybrid
mechanism on M . The expected revenue of the hybrid mech-

anism can be written as: E
h

P

i∈W
ϕ(vi) +

P

i∈XW
ϕ(vi)

i

.

Conditioning on the valuations of bidders in S fixes the
value of W and hence XW . Since XW ⊆ U \S, the indepen-
dence of the bidders’ valuations implies that the conditional
expectation of ϕ(vi) for i ∈ XW is the same as its uncon-
ditional expectation. This unconditional expectation is 0;
one proof is to apply the identity (2) to the (zero-revenue)
1-unit 1-bidder auction that always gives the good to the
bidder (for free). We can then rewrite the expected revenue
of the hybrid mechanism as E

ˆ
P

i∈W ϕ(vi)
˜

, which by defi-
nition equals the expected revenue of the optimal mechanism
for MS .

We now complete the proof of Theorem 6.1 using the rev-
enue submodularity of the optimal mechanism.

Proof. (of Theorem 6.1.) For a matroid market X, let
OPT (X) denote the expected revenue of the optimal mech-
anism. Let B1, . . . , Bκ denote κ disjoint bases of the given
matroid M = (U, I). Obviously, deleting all of these bases
from M decreases the expected revenue of the optimal mech-
anism by at most OPT (M). Since the expected revenue
of the optimal mechanism is submodular on subsets of U
(Theorem 3.1), we have

Pκ

i=1[OPT (M)−OPT (MU\Bi
)] ≤

OPT (M). So, there is a basis Bi with [OPT (M)−OPT (MU\Bi
)]

≤ OPT (M)/κ and hence OPT (MU\Bi
) ≥ (1−1/κ)·OPT (M).

Lemma 6.2 implies that the expected revenue of the VCG



mechanism in M is at least OPT (MU\Bi
), which completes

the proof.

For a k-unit n-bidder auction, we can take advantage of
the additional symmetry to strengthen Theorem 6.1 using
a “fractional packing number”: the expected revenue of the
Vickrey auction is at least a (1−k/n) fraction of that of the
optimal auction. We omit the straightforward proof.

6.2 Sponsored Search
Our results also apply to a standard model of pay-per-

click keyword auctions (see for instance [1, 8, 23]). In this
model, an auction is run by a search engine on the event
of a search query and n bidders (advertisers) compete to
have their advertisement displayed in one of k slots. A slot-
specific, publicly known parameter called the click-through
rate Θj specifies the probability of a click on an advertise-
ment placed in slot j. Higher slots are assumed to attract
more clicks, meaning Θj ≥ Θj+1 for every j.

The efficient and revenue-maximizing keyword auctions
are both revenue-equivalent to a randomization over k multi-
unit auctions, where the jth auction sells j identical units
and is chosen with relative probability Θj − Θj+1. This is
shown for efficient auctions in [1, 8, 23]; minor modifica-
tions to the proofs (to incorporate reserve prices) yield the
same statement for optimal auctions. The probability dis-
tribution over multi-unit auctions is the same in both cases.
These facts imply easily the same bound as in Theorem 6.1,
and its extension to fractional packing numbers, for keyword
auctions.

A potential criticism of this result is that, in some key-
word auctions, the number k of slots is in principle infinite.
But intuitively, only the slots that receive non-negligible
clicks should matter. To make this idea precise, assume that
click-through rates fall geometrically with ratio γ. Then, we
can show that for every j ∈ {1, . . . , k}, the efficient auction
α(j, n, γ)-approximates the revenue of the optimal auction,
where α(j, n, γ) = (1− j/n)(1 − (j + 1)(γj − γj+1) − γj+1).
For instance, when γ = 1/2 and j = 5 (and k is arbitrar-
ily large), the expected revenue of the VCG mechanism is
at least a (1 − 5/n)(0.89) fraction of that of the revenue-
maximizing auction.

7. OPEN QUESTIONS
Our work suggests a number of open directions. First, are

there additional assumptions (e.g., on bidders’ valuations)
under which revenue submodularity or an approximate vari-
ant holds in non-matroid domains? The same question can
be asked about approximation guarantees for the expected
revenue of the VCG mechanism. Finally, we believe that
market expansion optimization problems should be studied
more broadly. For example, is there a better approximation
algorithm than greedy market expansion in matroids? Are
there non-trivial approximation algorithms for non-matroid
domains, where revenue submodularity — and, for the VCG
mechanism, even revenue monotonicity — can fail?
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