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Abstract

Strategic interactions often take place in an environment rife with uncertainty. As a result,
the equilibrium of a game is intimately related to the information available to its players. The
signaling problem abstracts the task faced by an informed “market maker”, who must choose
how to reveal information in order to effect a desirable equilibrium.

In this paper, we consider two fundamental signaling problems: one for abstract normal
form games, and the other for single item auctions. For the former, we consider an abstract
class of objective functions which includes the social welfare and weighted combinations of
players’ utilities, and for the latter we restrict our attention to the social welfare objective and
to signaling schemes which are constrained in the number of signals used. For both problems,
we design approximation algorithms for the signaling problem which run in quasi-polynomial
time under various conditions, extending and complementing the results of various recent works
on the topic.

Underlying each of our results is a “meshing scheme” which effectively overcomes the “curse of
dimensionality” and discretizes the space of “essentially different” posterior beliefs – in the sense
of inducing “essentially different” equilibria. This is combined with an algorithm for optimally
assembling a signaling scheme as a convex combination of such beliefs. For the normal form
game setting, the meshing scheme leads to a convex partition of the space of posterior beliefs
and this assembly procedure is reduced to a linear program, and in the auction setting the
assembly procedure is reduced to submodular function maximization.
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1 Introduction

In games with uncertainty, the information available to players may influence their strategic deci-
sions, and could fundamentally impact their utilities and their beliefs regarding the preferences of
other players. Consequently, a principal (market maker) who is privy to confidential state-of-nature
information may affect the equilibrium by strategically “leaking” information ahead of players’ de-
cisions — a practice often referred to as signaling. If the principal’s goal is to boost her own
objective in the outcome of the game, then her strategic decision regarding which information to
reveal is an optimization problem, which we refer to as the signaling problem.

We consider Bayesian games in which players have prior beliefs on the structure of the game,
and form posterior beliefs based on the information revealed by the principal. We restrict our
attention to games in which players share the same prior belief, and symmetric signaling schemes
which reveal the same information to all players. Thus, a signaling scheme defines a number of new
Bayesian (sub-)games — one for each realization of the information string (aka the signal). From
this viewpoint, the search space for signaling is the space of decompositions of the prior belief into
posterior beliefs. The goal of the principal is then to identify a signaling scheme which induces, on
average over the resulting Bayesian subgames, a favorable equilibrium.

We focus on two fundamental models previously considered in a signaling context. Our first
model, considered in [Dug14], is the most abstract: normal form games in which the payoff matrix is
parametrized by a state of nature, which is drawn from a common prior. We consider the signaling
question in normal form games for an abstract class of objectives which include the social welfare,
weighted combinations of players’ utilities, and utility functions which depend on players’ actions
in the various states of nature. Our second model, considered in [EFG+12, BMS12, DIR14] is that
of a Bayesian second-price auction, in particular when there is uncertainty regarding the identity
or attributes of the item for sale, and players’ private valuations for the various configurations of
the item are drawn from a distribution. We restrict attention to the social welfare objective in
this model, yet as in [DIR14] we place a bound on the communication bandwidth of the signaling
scheme — equivalently the number of different signals used to describe the item.

1.1 Context and Results

There are significant computational challenges involved in obtaining an (approximately) optimal
signaling scheme. Whereas the space of the posterior beliefs is a convex set, signaling problems in
even very simple settings involve a non-convex objective, or combinatorial constraints, which either
lead to hardness results or require novel algorithmic approaches. This is borne out in a number
of recent works which examine the algorithmic aspects of signaling, and we mention those most
relevant to this paper next.

Signaling in the Bayesian second-price auction model has perhaps received the most attention
from an algorithmic perspective. Emek et al. [EFG+12] and Miltersen and Sheffet [BMS12], con-
sider the signaling problem faced by an informed auctioneer who must decide to (partially) reveal
information regarding the item for sale, with the goal of maximizing his revenue. Whereas the
general problem is shown to be NP-hard, the special case in which players’ valuation distribution
has small support is solved in polynomial time. We also mention the work of Guo and Deligkas
[GD13], who consider a similar question albeit in a different model of uncertainty, and similarly
present NP-hardness results and heuristics for their model.

More recently, Dughmi et al. [DIR14] consider the same auction setting, albeit with the welfare
objective and subject to exogenous constraints on the signaling policy — most notably a commu-
nication constraint. There the problem was shown to be NP-hard to approximate better than a
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(1−1/e) factor, and approximation algorithms matching this guarantee were presented in the special
case in which players’ valuations are drawn from a small support distribution. The present paper
considers the general algorithmic question without a bound on players’ valuation distribution, while
relaxing the runtime requirement to quasi-polynomial. Specifically, we derive a quasi-polynomial-
time algorithm with an approximation ratio of (1 − 1/e), modulo an additive loss of ε times the
upper limit of a player’s valuation. Our result holds when players’ valuation distribution is given
explicitly, and more generally whenever said distribution can be sampled efficiently.

The other signaling model considered in this paper, that of abstract normal form games, has only
recently been examined from a complexity-theoretic perspective. Dughmi [Dug14] considered the
special case of two-player zero-sum games, and examined the design of symmetric signaling schemes
with the goal of maximizing the expected utility of one of the players. The results were mostly
negative, assuming the conjectured hardness of the planted clique problem, Specifically, it was
shown that no fully polynomial time approximation scheme (FPTAS) is possible for the signaling
problem for zero sum games, assuming the planted clique conjecture. This leaves open the potential
for a PTAS. In the present paper, we complement the impossibility result of [Dug14] with a quasi-
polynomial time approximation scheme (QPTAS), which applies more generally to general sum
normal form games with a constant number of players, and an abstract class of objectives which
includes the social welfare and weighted combinations of players’ utilities as a special case. For
general sum games, our result is a bicriteria result which forgoes the exact Nash equilibrium, and
instead computes a signaling scheme with ε-equilibria that are competitive with the ε′-equilibria of
every other signaling scheme whenever ε′ < ε (including ε′ = 0). Our result can also be extended
to Stackelberg games.

1.2 Our Techniques

Both our results rely on a “meshing method” applied to the space of posterior beliefs, or equivalently
the equilibria which they induce. The method proceeds in two main steps.

1. Construct a Small Dictionary of Equilibria: This is a discrete family of objects which indexes
the potential equilibria of a signaling scheme, with the property that they form an “ε-net”
of the space of all equilibria in a precise technical sense. This “net” forms our signaling
“dictionary”.

2. Construct a near-optimal Signaling Scheme: We then assemble a near-optimal signaling
scheme which induces subgames with equilibria from our dictionary. This involves solv-
ing a nontrivial optimization problem which optimally decomposes the prior distribution into
posterior beliefs inducing equilibria in our dictionary.

The technical challenge involved in step (1) is the identification of a net of the space of equilibria
which has “low approximation dimensionality” with respect to the space of signaling schemes and
the design objective. This arises due to the “curse of dimensionality” of the space of posterior
beliefs and the space of equilibria. For step (2), the challenge arises from the fact that not every
convex combination of posterior beliefs is a valid signaling scheme — indeed, the signaling scheme
must be a convex decomposition of the prior distribution. This induces a nontrivially constrained
optimization problem.

For the results of Section 3 for normal form games, our dictionary is based on a Lemma of
Lipton et al. [LMM03]. Specifically, their result implies the existence of a quasi-polynomial-sized
family of mixed strategy profiles which, simultaneously for all games and equilibria of those games,
includes a profile which approximates the payoffs of the equilibrium within an additive ε, and itself
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forms an ε-equilibrium. To combine these approximate equilibria into a signaling scheme, we make
two observations: First, the space of posterior beliefs inducing a particular equilibrium forms a
convex polytope; Second, the optimization problem of optimally partitioning the prior belief into a
quasi-polynomial number of posterior beliefs, one in each polytope corresponding to an equilibrium,
can be formulated via a linear program after an appropriate change of variables.

For the results of Section 4 for second-price auctions, constructing our dictionary takes more
work. Specifically, we consider all rules for selecting a winner of the auction as a function of
the drawn valuation matrix, and show that a quasi-polynomial number of such rules suffices to
approximate the welfare in all equilibria to within an additive error of ε. Assembling a signaling
scheme which induces such winner selection rules in an optimal combination is then reduced to
submodular function maximization subject to a cardinality constraint, which admits a (1 − 1/e)-
approximation algorithm.

1.3 Additional Discussion of Related Work

The study of the effects of information on strategic interactions, and mechanisms for signaling, has
its roots in the early works of Akerlof [Ake70] and Spence [Spe73]. Hirshleifer [Hir71] was the first
to observe that optimal information revelation is nontrivial, in the sense that more information
sometimes leads to worse market outcomes. This contrasts with earlier work by Blackwell [Bla51]
which implied that more information is always better for a single agent in a non-competitive envi-
ronment. Since then, many works have examined the effects of additional information on players’
equilibrium utilities. Lehrer et al. [LRS10] showed that additional information improves players’
utilities in common interest games — games where players have identical payoffs in each outcome,
and Bassan et al. [BGSZ03] exhibited a polyhedral characterization of games in which more in-
formation improves the individual utility of every player. The “linkage principle” of Milgrom and
Weber [MW82] exhibits natural conditions under which revealing additional information to buyers
in an auction improves the seller’s revenue; and Syrgkanis et al. [SKT13] examine failings of the
linkage principle in common value auctions. Unlike revenue, it is known that additional information
always improves welfare in a second-price auction.

Despite appreciation of the importance of information in strategic interactions, it is only recently
that researchers have started viewing the information structure of a game as a mathematical object
to be designed, rather than merely an exogenous variable. Kamenica and Gentzkow [KG09] examine
settings in which a sender must design a signaling scheme to convince a less informed receiver to
take a desired action. Recent work in the CS community, including by Emek et al. [EFG+12],
Miltersen and Sheffet [BMS12], and Guo et al. [GD13], examines revenue-optimal signaling in an
auction setting, and presents polynomial-time algorithms and hardness results for computing it.
Dughmi et al. [DIR14] examine welfare-optimal signaling in an auction setting under exogenous
constraints, and presents polynomial-time algorithms and hardness results under assumptions on
players’ value distributions; our auction signaling result applies to a generalization of their model.
Also relevant to our work is the recent result of Dughmi [Dug14], which essentially rules out an
FPTAS for the signaling problem in zero-sum games; our result on general games is a positive
counter-point to the result of [Dug14], slightly relaxing both the equilibrium definition and the
polynomial-time restriction.
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2 Preliminaries: Information Revelation and Signaling Schemes

2.1 Games

A Bayesian game is a family of games of complete formation parametrized by a state of nature θ,
where θ is assumed to be drawn from a known prior distribution. We consider two classes of such
games: explicit normal form Bayesian games, and Bayesian single item auction games.

Normal Form games

We consider normal form games of incomplete information, given by the following parameters.

• A positive integer n denoting the number of players, which we index by the set [n] =
{1, . . . , n}.

• A nonnegative integer m bounding the number of pure strategies of each player.1

• A finite family Θ = {1, . . . ,M} of states of nature, which we index by θ.

• A family of payoff tensors Aθi : [m]n → [−1, 1], one per player i and state of nature θ, where
Aθi (s1, . . . , sn) is the payoff to player i when the state of nature is θ and each player j plays
strategy sj .

A Bayesian normal form game of incomplete information is additionally equipped with a com-
mon prior distribution λ ∈ ∆M on the states of nature. Absent additional informational, risk
neutral players behave as in the complete information game Eθ∼λ[Aθ]. We consider signaling
schemes which partially and symmetrically inform players by publicly announcing a signal σ, cor-
related with θ; this induces a common posterior belief on the state of nature for each value of σ.
When players’ posterior belief over θ is given by µ ∈ ∆M , we use Aµ to denote the equivalent com-
plete information game Eθ∼µ[Aθ]. As shorthand, we use Aµi (x1, . . . , xn) to denote E[Aθi (s1, . . . , sn)]
when θ ∼ µ ∈ ∆M and si ∼ xi ∈ ∆m. In the event that the state of nature is θ and players play
the pure strategy profile s1, . . . , sn, we refer to the tuple (θ, s1, . . . , sn) as the state of play.

For all our results, we assume that a Bayesian game (A, λ) is represented explicitly as a list of
tensors

{
Aθi ∈ [−1, 1]m

n
: i ∈ [n], θ ∈ [M ]

}
, and a vector λ ∈ ∆M .

Single Item Second-Price Auctions

We consider Bayesian second-price auctions described by the following parameters:

• A nonnegative integer n denoting the number of bidders. We index the bidders by the set
[n] = {1, . . . , n}.

• A finite family Θ = {1, . . . ,M} of states of nature, indexed by θ. The states of nature
represent potential configurations of the item for sale.

• A common-knowledge prior distribution λ ∈ ∆M on the states of nature.

• A common-knowledge prior distribution D on valuation matrices V ∈ [0, 1]n×M

1Without loss of generality, we assume each player has exactly m pure strategies.
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We assume the state of nature θ ∈ Θ, describing the item being sold in the auction, is first drawn
from λ, and revealed to the auctioneer but not to the bidders. Then the auctioneer reveals a public
signal σ, a (partial) description of the item, according to some signaling scheme (See Section 2.2).
Subsequently, players’ valuations V ∈ [0, 1]n×M are drawn from D, where Viθ is player i’s value for
the item described by θ, and each player i privately learns his valuation Vi. Finally a second-price
auction is run, where bidders bid according to their private valuations and their posterior belief
(after learning σ) regarding the configuration of the item being sold.2

We note that we assume that D and λ are independent. We also emphasize that the auctioneer
knows nothing regarding V besides its distribution D prior to running the auction, and that the
bidders know nothing regarding θ besides its distribution λ and the signal σ.

For our algorithmic results, we assume that λ is represented explicitly as a vector, and that
D is given explicitly as a list of n ×M valuation matrices V1, . . . ,Vr ∈ [0, 1]n×M with associated
probabilities ρ1, . . . , ρr summing to 1. However, as we show in Section 4.2, our results also generalize
to the case in which D can only be sampled efficiently. The latter includes, as a special case, the
scenario in which players’ valuations are independent of each other, with each represented explicitly
as a list of vectors in [0, 1]M with associated probabilities.

2.2 Signaling Schemes

We examine policies whereby a principal reveals partial information regarding the state of nature
θ to the players. For our main results, we require that the principal reveal the same information
to all players in the game. A symmetric signaling scheme is given by a set Σ of signals, and a
(possibly randomized) map ϕ from states of nature Θ to signals Σ. Abusing notation, we use
ϕ(θ, σ) to denote the probability of announcing signal σ ∈ Σ conditioned on the state of nature is
θ ∈ Θ. We restrict attention to signaling schemes with a finite set of signals Σ, and this is without
loss of generality when Θ is finite. We elaborate on this after describing the convex decomposition
interpretation of a signaling scheme.

We note that signaling schemes are in one-to-one correspondence with convex decompositions of
the prior distribution λ ∈ ∆M — namely, distributions supported on the simplex ∆M , and having
expectation λ. Formally, a signaling scheme ϕ : Θ → Σ corresponds to the convex decomposition
λ =

∑
σ∈Σ ασ · µσ, where ασ = Pr[ϕ(θ) = σ] =

∑
θ∈Θ λ(θ)ϕ(θ, σ), and µσ(θ) = Pr[θ|ϕ(θ) = σ] =

λ(θ)ϕ(θ,σ)
ασ

. Note that ασ is the probability of announcing signal σ, and µσ ∈ ∆M is the posterior
distribution of θ conditioned on signal σ. The converse is also true: every convex decomposition of
λ corresponds to a signaling scheme.

We judge the quality of a signaling scheme by the outcome it induces signal by signal. Specif-
ically, the principal is equipped with an objective function of the form

∑
σ ασ · f(µσ), where

f : ∆M → R is some function mapping a posterior distribution to the quality of the equilib-
rium chosen by the players. For example, f may be the social welfare at the induced equilibrium,
or any weighted combination of players’ utilities at equilibrium, or something else entirely. In this
setup, one can show that there always exists an signaling scheme with a finite set of signals which
maximizes our objective, so long as the states of nature are finitely many. The optimal choice
of signaling scheme is related to the concave envelope f+ of the function f .3 Specifically, such a
signaling scheme achieves

∑
σ ασ · f(µσ) = f+(λ). Application of Caratheodory’s theorem to the

hypograph of f , therefore, shows that M + 1 signals suffice.

2As mentioned in [DIR14], the particular choice of auction is immaterial.
3f+ is the point-wise lowest concave function h for which h(x) ≥ f(x) for all x in the domain. Equivalently, the

hypograph of f+ is the convex hull of the hypograph of f .
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For concreteness, the reader can think of a signaling scheme ϕ as represented by the matrix
of pairwise probabilities ϕ(θ, σ). Since we only consider games where the states of nature, and
therefore also the number of signals w.l.o.g., are polynomially many in the description size of the
game, this is a compact representation. The representation of ϕ as a convex decomposition would
do equally well, as both representations can be efficiently computed from each other.

2.3 Meshing Schemes at a High Level

Note that direct discretization of the space of posterior beliefs ∆M is usually impractical when M
is large. Instead, our meshing scheme overcomes this “curse of dimensionality” by using a partition
of ∆M into a quasi-polynomial number of subspaces (of posterior beliefs). We then select at most
one posterior distribution from each component of the partition as the convex decomposition of
the prior λ. Naturally, such partition of ∆M needs to satisfy both the mathematical property that
there exists an approximately optimal convex decomposition of λ that respects the partition, and
the algorithmic property that such convex decomposition can be computed efficiently.

For Bayesian games, we use a net of the equilibrium space known to exists due to Lipton,
Markakis, and Mehta [LMM03] to induce the desired partition of ∆M , and use linear programming
to compute the convex decomposition of λ with respect to the partition. For Bayesian auctions,
we prove that logarithmic sized subsets of items can be used to define the desired partition of ∆M

that can be used in the submodular function maximization formulation developed in [DIR14].

2.4 Equilibria and Objectives

Given a Bayesian game, a symmetric signaling scheme (α, µ) with signals Σ induces |Σ| subgames,
one for each signal. The subgame corresponding to signal σ ∈ Σ is played with probability ασ, and
players’ (common) beliefs regarding the state of nature in this subgame are given by the posterior
distribution µσ ∈ ∆M . The quality of a symmetric signaling scheme in such a game is contingent
on a choice of an equilibrium concept, an equilibrium selection rule, and an objective function.

Normal Form Games

For normal form games, we adopt the approximate Nash equilibrium as our equilibrium concept.
There are two variants.

Definition 2.1. Let ε ≥ 0. In an n-player m-action normal form game with expected payoffs
in [−1, 1] given by tensors A1, . . . ,An, a mixed strategy profile x1, . . . , xn ∈ ∆m is an ε-Nash
Equilibrium (ε-NE) if

Ai(x1, . . . , xn) ≥ Ai(ti, x−i)− ε

for every player i and alternative pure strategy ti ∈ [m].

Definition 2.2. Let ε ≥ 0. In an n-player m-action normal form game with expected payoffs in
[−1, 1] given by tensors A1, . . . ,An, a mixed strategy profile x1, . . . , xn ∈ ∆m is an ε-well-supported
Nash equilibrium (ε-WSNE) if

Ai(si, x−i) ≥ Ai(ti, x−i)− ε

for every player i, strategy si in the support of xi, and alternative pure strategy ti ∈ [m].

Clearly, every ε-WSNE is also an ε-NE. Note that we omitted reference to the state of nature
in the above definitions — in a subgame corresponding to posterior beliefs µ ∈ ∆M , we naturally
use tensors Aµ1 , . . .A

µ
n instead.
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Fixing an equilibrium concept (ε-NE or ε-WSNE), a Bayesian game (A, λ), and a signaling
scheme ϕ : Θ → ∆(Σ), an equilibrium selection rule distinguishes an equilibrium strategy profile
(xσ1 , . . . , x

σ
n) to be played in each subgame σ — we call the tuple X = {xσi : σ ∈ Σ, i ∈ [n]} a

Bayesian equilibrium of the game (A, λ) with signaling scheme ϕ. Together with the prior λ, the
Bayesian equilibrium X induces a distribution Γ ∈ ∆Θ×[m]n over states of play — we refer to Γ as
a distribution of play. We say Γ is implemented by signaling scheme ϕ in ε-NE (ε-WSNE). This is
analogous to implementation of allocation rules in traditional mechanism design.

Our results concern objectives which depend only on the state of play, and we seek to maximize
the objective in expectation over the distribution of play. These include, but are not restricted
to, the social welfare of the players, as well as weighted combinations of player utilities. Formally,
our objective is given by a tensor F : Θ × [m]n → [−1, 1].4 We seek a signaling scheme ϕ :
[M ] → Σ, as well as a Bayesian ε-NE (ε-WSNE) X = {xσi ∈ ∆m : i ∈ [n], σ ∈ Σ}, maximizing
E[F(θ,~s)] over the resulting distribution of play. We use OPT εNE(A, λ) and OPT εWSNE(A, λ) to
denote the optimal values of these two optimization problems. As shorthand, we use f(ϕ,X) =
Eθ∼λ Eσ∼ϕ(θ) E~s∼xσ [F(θ,~s)] to denote the expectation of our objective F for signaling scheme ϕ
and corresponding Bayesian equilibrium X.

Single Item Auctions

In our second-price auction game, we adopt the (unique) dominant-strategy truth-telling equi-
librium as our solution concept. Specifically, given a symmetric signaling scheme ϕ : Θ → Σ,
for the subgame corresponding to the signal σ ∈ Σ it is a dominant strategy for player i to bid
Eθ∼λ[Viθ|ϕ(θ) = σ] — his posterior expected value for the item conditioned on the received signal σ.

For our objective, we restrict attention to the social welfare – the expected value of the winning
bidder for the item they win. Given a signaling scheme ϕ and a valuation matrix V ∈ [0, 1]n×M ,
assuming bidders play the truth-telling equilibrium this is given by:

welfare(ϕ, λ,V) = E
θ∼λ

E
σ∼ϕ(θ)

[
n

max
i=1

E
θ∼λ

[Viθ|ϕ(θ) = σ]

]
=
∑
σ∈Σ

n
max
i=1

∑
θ∈Θ

λ(θ)ϕ(θ, σ)Viθ

When V is drawn from a prior distribution D, the expected welfare is given by

welfare(ϕ, λ,D) = E
V∼D

[welfare(ϕ, λ,V)].

As noted in [DIR14], convexity of the welfare in the probabilities ϕ(θ, σ) implies that full-
information-revelation is optimal, in general. However, we consider signaling subject to a commu-
nication constraint — i.e. with Σ = {1, . . . , k} for an input parameter k < M limiting the number
of different messages describing the item for sale.

3 Signaling in Normal Form Games

We now consider signaling in explicitly represented games when the adopted solution concept is the
ε-Nash equilibrium or the ε-well-supported Nash equilibrium. We prove the following bi-criteria
result.

4Equivalently, we may think of the objective as the payoff tensor of an additional player in the game.

7



Theorem 3.1. Fix ε > 0, δ ≥ 0. Given as input an explicitly-described Bayesian normal form game
(A, λ) with n = O(1) players, m actions, and M states of nature, and an objective F : [M ]×[m]n →
[−1, 1], there is an algorithm with runtime poly(M,mlnm/ε2) which outputs a signaling scheme ϕ
and corresponding Bayesian (ε+δ)-equilibrium X satisfying f(ϕ,X) ≥ OPT δ(A, λ)− ε. This holds
for both approximate NE and approximate WSNE.

When the number of players is constant, we can in quasi-polynomial time approximate the
optimal reward from signaling while losing an additive ε in the objective as well as in the incentive
constraints. Our proof of this theorem hinges on three main lemmas: the first is drawn from the
work of Lipton et al. [LMM03] regarding the existence of a quasi-polynomial-sized “net” of the
space of equilibria; the second lemma states that the posterior beliefs implementing a particular
approximate equilibrium form a simple polytope, in doing so reducing the signaling problem to
optimization over convex decompositions of λ into a family of posteriors, each belonging to a given
polytope; and the third lemma shows that optimization over such convex decompositions reduces
to a linear program.

Lemma 3.2 (Lipton, Markakis and Mehta [LMM03]). Fix n = O(1). For each integer m and
ε > 0, there is a family of mixed strategies Nm,ε ⊆ ∆m with |Nm,ε| ≤ mO(logm/ε2) such that
for every n-player m-action normal form game A, objective tensor F : [m]n → [−1, 1], and δ-
NE (WSNE) x of A, there is an (ε + δ)-NE (WSNE) y of A such that each yi ∈ Nm,ε, and

|Es∼x[F(s)]−Es∼y[F(s)]| ≤ ε. Moreover, Nm,ε can be enumerated in time mO(logm/ε2).

Lemma 3.3. Fix a normal form game of incomplete information A with n players, m actions,
and M states of nature. Consider a mixed strategy profile x = (x1, . . . , xn) with xi ∈ ∆m. For each
ε ≥ 0, the class of posterior beliefs inducing x as an ε-NE (WSNE) is a convex polytope described
by poly(n,m) linear inequalities.

Lemma 3.4. Given a family of non-empty polytopes P1, . . . ,Pt ⊆ ∆M described by ` inequalities
each, a point λ ∈ ∆M , and linear objectives w1, . . . , wt ∈ RM , the non-linear optimization problem
(1) can be solved in poly(t, `,M) time.

maximize
∑t

σ=1 ασwσ · µσ
subject to α ∈ ∆t∑t

σ=1 ασµσ = λ
µσ ∈ Pσ, for σ = 1, . . . , t.

(1)

Before proving each of these lemmas, we first elaborate on how they imply Theorem 3.1. Given
a signaling scheme ϕ with decomposition form (α, µ), and an (approximate) equilibrium xσ for each
subgame corresponding to σ, the objective value is

f(ϕ, x) =
∑
σ∈Σ

ασF(µσ, x
σ)

where F(µ, x) denotes Eθ∼µ E~s∼xF(θ,~s).
Lemma 3.2 implies that, in order to complete the proof of Theorem 3.1, it suffices to show how

to exactly optimize, in the claimed time, over signaling schemes in which xσ ∈ N n
m,ε for each signal

σ ∈ Σ. We may restrict attention to signaling scheme/equilibrium combinations for which each
mixed strategy profile x ∈ N n

m,ε is selected for at most one subgame: when x is the equilibrium for
both the subgames Aσ1 and Aσ2 , we can “merge” the two signals σ1 and σ2 into a signal (σ1, σ2),
giving rise to a new subgame A(σ1,σ2) with posterior belief µ(σ1,σ2) =

ασ1
ασ1+ασ2

µσ1 +
ασ2

ασ1+ασ2
µσ2 and
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probability α(σ1,σ2) = ασ1 + ασ2 . Lemma 3.3 implies that x remains an (approximate) equilibrium
of the merged subgame. Moreover, the objective is unchanged because F(µ, x) is linear in its first
argument.

For notational convenience we assume that each x ∈ N n
m,ε is induced as an equilibrium of exactly

one subgame, by allowing signals which occur with probability 0, and discarding strategy profiles
in N n

m,ε which can not be induced as equilibria of any posterior belief. The latter can be done
in polynomial time, by checking whether the corresponding polytope (as given by Lemma 3.3) is
empty. Writing N n

m,ε =
{
x1, . . . , xt

}
for t = mO(logm/ε2), our optimization task can be written as

follows.

maximize
∑t

σ=1 ασF(µσ, x
σ)

subject to α ∈ ∆t∑t
σ=1 ασµσ = λ

xσ is an equilibrium of Aµσ , for σ = 1, . . . , t.

(2)

Lemma 3.3, and the linearity of F(., .) in its first argument, imply that optimization problem
(2) is of the form given in (1) with ` = poly(n,m). Lemma 3.4, and our assumption that n is a
constant, imply that (2) can be solved in time poly(M,m(lnm/ε2)). This completes the proof of
Theorem 3.1.

3.1 Proof Sketch of Lemma 3.2

The special case of this lemma for ε-NE and δ = 0 follows directly from the statement [LMM03,
Theorem 2], by including an additional player in the game with no actions, and payoffs given by
the objective tensor F evaluated on the strategies of the other (real) players. The set Nε,m is taken
to be the family of all mixed strategies which are uniformly distributed on a multiset contained in

[m] of size 3(n+1)2 ln(n+1)2m
ε2

.
More generally, at the heart of [LMM03, Theorem 2] is the fact that, for every mixed strategy

profile x ∈ ∆n
m, one can choose a mixed strategy profile y ∈ N n

ε,m, with supp(yi) ⊆ supp(xi) for
each i ∈ [n], so that |Ai(j, y−i)−Ai(j, x−i)| ≤ ε

2 for every player i and pure strategy j ∈ [m]. This
has the implication that y is an (ε + δ)-NE (WSNE) when x is a δ-NE (WSNE). Moreover, when
the objective is included as a player in the game with no nontrivial strategies (which is without
loss of generality), this also implies that |F(y)−F(x)| ≤ ε.

3.2 Proof of Lemma 3.3

For x to be an ε-NE of Aµ =
∑M

θ=1 µ(θ)Aθ, for µ ∈ ∆M , the following must hold:∑M
θ=1 µ(θ)Aθi (x) ≥

∑M
θ=1 µ(θ)Aθi (j, x−i)− ε, for i ∈ [n], j ∈ [m]. (3)

For an ε-WSNE, the analogous system of inequalities is:∑M
θ=1 µ(θ)Aθi (j, x−i) ≥

∑M
θ=1 µ(θ)Aθi (k, x−i)− ε, for i ∈ [n], j ∈ supp(xi), k ∈ [m]. (4)

Since x is fixed, in both cases we have a system poly(n,m) linear inequalities in µ.

3.3 Proof of Lemma 3.4

We write an equivalent linear program via a change of variables. Specifically, we let γσ = ασµσ.
Observe that after this change (1) becomes:

9



maximize
∑t

σ=1wσ · γσ
subject to α ∈ ∆t∑t

σ=1 γσ = λ
γσ
ασ
∈ Pσ, for σ = 1, . . . , t.

(5)

(5) is not yet a linear program. However, note that the constraint α ∈ ∆t is implied if we simply
add the constraints γσ � 0. Moreover, because γσ/ασ ∈ ∆M , ασ =

∑
θ γσ(θ) holds for every feasible

solution, allowing us to simplify the constraint γσ/ασ ∈ Pσ. Since Pσ is described an explicit linear
system Aσy � bσ, the non-linear system of inequalities Aσγσ/ασ � bσ can be re-written as the
linear system Aσγσ � (

∑
θ γσ(θ))bσ. This results in an equivalent linear program with variables

γ1, . . . , γt ∈ RM+ , from which ασ =
∑

θ γσ(θ) and µσ = γσ/(
∑

θ γσ(θ)) can be recovered efficiently.

3.4 Remarks

Zero-sum games When applied to two-player zero-sum games with the objective to maximize
the first-player’s payoff, our signaling scheme provides a stronger guarantee. In such setting, both
players retain the same payoff in any exact Nash equilibrium. Also, any ε-equilibria gives a payoff
that is ε close to the playoff of any exact equilibrium. Thus, the signaling scheme provided in
Theorem 3.1 can be directly compare with the quality of the optimal signaling scheme without
concerning equilibrium selection, instead of a bi-criteria guarantee.

Reducing the number of signals Although the signaling scheme provided in Theorem 3.1
might use quasi-polynomial number of signals, we can reduce the number of signals to M + 1. Let
wλ be the objective value of the signaling scheme, and consider the set of t signals used µ1 · · ·µt
and their corresponding expected objective values w1 · · ·wt. Observe that the M + 1 dimension
point (wλ, λ) is a convex combination of the set of points P = {(w1, µ1) · · · (wt, µt)}. Since wλ
is maximized, (wλ, λ) belongs to some facet of the convex hull of P . Hence by Carathéodory’s
theorem, (wλ, λ) can be written as a convex combination of only M + 1 points from P , and such
decomposition can be computed in time polynomial in the size of P . This decomposition gives a
valid signaling scheme with the same objective value, using only M + 1 signals.

Stackelberg games Our result can be extended to Stackelberg games which often arise in security
games [Dug14]. Recall that in a Stackelberg game [vSBHU10], one player (the leader) first commits
to a (mixed) strategy, and then all other players (followers) simultaneously play their strategies
upon learning the leader’s strategy. Our result can be readily extended to Bayesian Stackelberg
games when the objective of the signaling scheme is to maximize leader’s payoff. In this case,
we can simply drop the constraints regarding the leader in the polytopes defined in Lemma 3.3,
and only require the followers to play an approximate equilibrium in our algorithm presented in
Theorem 3.1.

4 Signaling in Bayesian Single Item Auctions

In this section, we consider the signaling problem in a Bayesian single item auction, as described
in Section 2. As in [DIR14], our goal is to maximize the social welfare subject to a communication
constraint k on signaling scheme. We present a quasi-polynomial time approximation scheme for
this problem when the valuation distribution D is given explicitly, and as a corollary also when D
is given by a sampling oracle. To aid in our proof, we begin with some technical background drawn
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from related work. In the discussion of this section, we will use (n,M, k, r)-second-price signaling to
denote the welfare-maximization signaling problem with n bidders, M configurations of the item,
k signals, and an explicitly-described valuation distribution supported on r matrices.

4.1 Background: Reducing to Submodular Maximization for small r

Recall that a signaling scheme is a randomized map from states of nature to signals. A deterministic
signaling scheme with k signals, naturally, is a deterministic map ϕ : Θ → [k]. Equivalently, such
a scheme corresponds to a partition of the states of nature Θ into k classes Θ1, . . . ,Θk, one per
signal. As might be apparent from Section 3, in general games randomized signaling schemes may
outperform their deterministic counterparts. However, this is not the case in our auction setting.

Lemma 4.1 ([DIR14]). For communication-constrained signaling in Bayesian second-price auc-
tions, there always exists a deterministic signaling scheme which maximizes expected social welfare.

Thus instead of solving the signaling problem by assigning probabilities in a continuous domain,
we can exploit the fact that our signaling problem has a combinatorial solution. This is the basis
for the (1− 1/e)-approximation algorithm of [DIR14] for (n,M, r, k)-second price signaling, which
we outline next. This algorithm reduces the signaling problem to submodular optimization,5 and is
computationally efficient when r, the support size of the valuation distribution D, is small. Using
V1, . . . ,Vr and ρ1, . . . , ρr to denote the support of D and the corresponding probabilities, respec-
tively, consider a deterministic signaling scheme in partition form Θ1, . . . ,Θk. Such a signaling
scheme induces kr subgames, one for each pair (Θσ,Vt). In each such subgame, there is a unique
winning player of the auction — the player i with maximum posterior value

1

λ(Θσ)

∑
θ∈Θσ

λ(θ)Vt(i, θ).

The social welfare, therefore, is given by

r∑
t=1

k∑
σ=1

max
i∈[n]

∑
θ∈Θσ

ρtλ(θ)Vt(i, θ). (6)

The key observation behind the algorithm of [DIR14] is that, given a “guess” for the winner
of the auction in each of these kr subgames, the optimal signaling scheme (Θ1, . . . ,Θk) can be
recovered in poly(n,M, r) time. More generally, given a list w1, . . . , wk, where wσ ∈ [n]r is the
winner tuple for signal σ, we can write the expected social welfare of a deterministic signaling
scheme Θ1, . . . ,Θk under the assumption that wσ(t) wins in the event (σ, t).

welfare(Θ1, . . . ,Θk, w1, . . . , wk) =
r∑
t=1

k∑
σ=1

∑
θ∈Θσ

ρtλ(θ)Vt(wσ(t)), θ). (7)

It is now clear that the optimal scheme, assuming winner tuples w1, . . . , wk, maps θ to the signal
σ maximizing

∑r
t=1

∑k
σ=1 ρtλ(θ)Vt(wσ(t), θ). The resulting scheme has social welfare at least as

given by the following expression, with equality holding for the optimal set of guesses w.

welfare(w1, . . . , wk) =
∑
θ∈Θ

max
σ∈[k]

r∑
t=1

ρtλ(θ)Vt(wσ(t)), θ). (8)

We summarize this discussion by the following lemma.

5Recall that a function f : 2Ω → R on a ground set Ω is submodular if it satisfies f(X)+f(Y ) ≥ f(X∪Y )+f(X∩Y )
for every X,Y ⊆ Ω.
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Lemma 4.2 ([DIR14]). Consider an instance (λ,D) of (n,M, r, k)-second-price signaling. Given
a list w1, . . . , wk ∈ [n]r of winner tuples, a deterministic signaling scheme ϕ : Θ → [k] with
welfare(ϕ,D, λ) ≥ welfare(w1, . . . , wk) can be computed in poly(n,M, r) time. Moreover, there is a
set of winner tuples w∗1, . . . , w

∗
k with welfare(w∗1, . . . , w

∗
k) equal to the optimum welfare of a k-signal

scheme.

The above lemma naturally leads to a set function maximization problem subject to a cardinality
constraint of k. By symmetry, we can think of a list of winner tuples w1, . . . , wk equivalently as
an (unordered) set W = {w1, . . . , wk}, assigning an order arbitrarily. Assuming winning tuples W ,
the signaling scheme of Lemma 4.2 has welfare at least

welfare(W ) =
∑
θ∈Θ

max
w∈W

r∑
t=1

ρtλ(θ)Vt(w(t), θ), (9)

with equality holding at optimality. The above function naturally extends to all W ⊆ [n]r, and
is monotone nondecreasing and submodular. To see this, note that it can be written in the form∑

θ maxw∈W gθ(w) — the function maxw∈W gθ(w) is monotone and submodular for each fixed θ,
and therefore the sum of such functions is as well. Thus maximizing the social welfare subject to
communication constraint k can be formulated as the following submodular maximization problem
subject to a cardinality constraint:

max
|W |=k,W⊆[n]r

welfare(W ). (10)

The problem of maximizing a monotone submodular function subject to cardinality constraint
is NP-hard in general, though can be approximated to within to a factor of (1 − 1/e) using a
simple greedy algorithm [NWF78]. The runtime of the algorithm is polynomial in the size of
the ground set, as well as the time needed to evaluate the function. This leads to a deterministic
(1−1/e)-approximation algorithm for (n,M, k, r)-second-price auction signaling which runs in time
poly(nr,M).

Theorem 4.3 ([DIR14]). There is a deterministic poly(nr,M)-time
(
1− 1

e

)
-approximation algo-

rithm for welfare maximization in (n,M, k, r)-second-price auction signaling.

Finally, we note that the above approximation guarantee is optimal, assuming P 6= NP , even
when r = 1 [DIR14]. Thus, our quasi-polynomial-time algorithms necessarily must yield no better
than a (1 − 1/e)-approximation, unless NP-complete problems can be solved in quasi-polynomial
time.

4.2 Quasi-Polynomial Algorithm for Auction Signaling

The exponential dependence on r in Theorem 4.3 limits its applicability. In this section, we present
an approximation algorithm for the (M,n, r, k)-signaling problem with runtime exponential in
log(nr) instead — quasi-polynomial in the size of the explicit input representation. The algorithm
achieves the same multiplicative approximation guarantee of (1 − 1/e), modulo an additive loss
that can be made arbitrarily small. As a consequence, we get a randomized quasi-polynomial-time
algorithm with a similar guarantee when valuation distributions are given by a sampling oracle.

Theorem 4.4. Given an instance of (n,M, k, r)-second-price signaling in the explicit model, and
an approximation parameter ε > 0, there is a deterministic algorithm which runs in MO(log(nr)/ε2)-
time, and computes a signaling scheme with k signals and expected social welfare (1−1/e)(OPT−ε),
where OPT denotes the optimal welfare of a k-signal scheme.
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Corollary 4.5. Given an instance of (n,M, k, r)-second-price signaling where the valuation distri-
bution is given via a sampling oracle, and parameters ε, δ > 0, there is a Monte Carlo algorithm
which runs in time MO(log(nMδ−1ε−2)/ε2), and with success probability 1 − δ outputs a signaling
scheme with k signals and expected social welfare (1− 1/e)(OPT − 2ε).

Corollary 4.5 follows from Theorem 4.4 by using standard Monte Carlo sampling and conver-
gence arguments, exploiting the fact that there are at most kM deterministic signaling schemes.
We include a self contained proof in Section 4.4. Theorem 4.4, on the other hand, follows from the
following Lemma, which we will prove in Section 4.3.

Lemma 4.6. Given an instance of the (n,M, k, r)-second-price signaling problem, and a parameter
ε > 0, there is a family of winner tuples Nε ⊆ [n]r with |Nε| = MO(log(nr)/ε2), satisfying

max
|W |=k,W⊆Nε

welfare(W ) ≥ max
|W |=k,W⊆[n]r

welfare(W )− ε. (11)

Moreover, Nε can be enumerated in time MO(log(nr)/ε2).

Armed with Lemma 4.6, we complete the proof of Theorem 4.4. We follow the blueprint outlined
in Section 4.1, using Nε as our ground set of winner tuples in lieu of [n]r. Specifically, we use the
greedy algorithm to approximately maximize welfare(W ) over W ⊆ Nε with |W | = k. This leads to
a signaling scheme with welfare at least (1− 1/e)(OPT − ε). Given the reduced size of the ground
set of our submodular function, the runtime is now poly(|Nε|, n,M, r) = MO(log(nr)/ε2).

4.3 Proof of Lemma 4.6

Given a multiset of item configurations Y ⊆ Θ, we distinguish the winner tuple induced by Y ,
which simply lists the winning player for each V t ∈ supp(D) assuming θ is drawn uniformly from
Y . Formally, the winner tuple w(Y ) = (w1(Y ), . . . , wr(Y )) induced by Y is defined by wt(Y ) =
argmaxni=1 Eθ∼Y [Vt(i, θ)]. We then define our set Nε as follows.

Nε =

{
w(Y ) : |Y | = 2 ln(4nr)

ε2
, Y ⊆ Θ

}
Nε is of the claimed size. It remains to show that considering only winner tuples in Nε in the

optimization problem max|W |=k welfare(W ) results in a loss of welfare no more than an additive ε.
This hinges on the following claim.

Claim 4.7. Fix ε > 0. For each X ⊆ Θ, there is multiset Y ⊆ X with |Y | = 2 ln(4nr)/ε2 such
that, ∣∣∣∣ E

θ∼λ
[Vt(i, θ)|θ ∈ X]− E

θ∼Y
[Vt(i, θ)]

∣∣∣∣ ≤ ε/2
for every t = 1, . . . , r and i = 1, . . . , n.

Proof. Consider taking 2 ln(4nr)/ε2 samples Y from the distribution λ|X. Standard application
of the Hoeffding bound and the union bound shows that Y satisfies the desired guarantee with
probability at least 1/2 > 0. The existential result then follows.

As a consequence, for every deterministic signaling scheme (Θ1, . . . ,Θk), we can choose a tuple of
multisets (Y1, . . . , Yk) with Yσ ⊆ Θσ and |Yσ| = 2 ln(4nr)/ε2 for each σ ∈ [k], so that the empirical
distribution Yσ always approximates, to within an additive ε/2, the posterior expected value of
every player in subgame σ. Hence, using the empirical distribution Yσ to determine the winner
of each signal Θσ preserves the social welfare in the corresponding subgame up to an additive ε.
When (Θ1, . . . ,Θk) is an optimal scheme, this implies that welfare(w(Y1), . . . , w(Yk)) ≥ OPT − ε,
as needed.
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4.4 Proof of Corollary 4.5

We fix an arbitrary deterministic signaling scheme ϕ (i.e. partition on items), and consider the
randomness in valuation matrices. Let f(ϕ, V ) be the expected welfare induced by ϕ when the
valuation matrix is V , and let f(ϕ,D) be the expected welfare induced by ϕ when the valuation
is drawn from D. By definition, f(ϕ,D) = EV∼D[f(ϕ, V )] ∈ [0, 1]. In order to estimate f(ϕ,D),
we take r samples V1, . . . , Vr from D and apply our algorithm in Theorem 4.4 as if the valuation
distribution is uniform on V1, . . . , Vr. We apply Hoeffding’s inequality to bound the probability
that welfare estimated from V1, . . . , Vt is far from its expectation.

Pr

∣∣∣∣∣∣1r
r∑
j=1

f(ϕ, Vj)− f(ϕ,D)

∣∣∣∣∣∣ ≥ ε/2
 ≤ 2e−rε

2/2,

so by setting r = Θ((M log k+ log(δ−1))/ε2), we get this probability to be at most δk−M . Because
there are at most kM deterministic signaling schemes, by union bound, we preserve the welfare up
to an additive error ε/2 for all of them. We conclude that, in this situation, our signaling scheme
computed as in Theorem 4.4 has expected welfare at least (1− 1/e)(OPT − 2ε).
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