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1 The Game

Consider a graph G(V,E) and n players, where the ith player is interested in moving from his source
node si ∈ V to a common sink t ∈ V . Each player strategically chooses a path, pi, from his source
to the sink in order to minimize his own cost Ci. The cost of a path pi depends on all the rest pj

and decreases with the number of players sharing the path 1.

To fix ideas, we can think of the graph as a public transportation network, where each edge
represents a bus route connecting two stations. The n players can be thought of as employees that
want to commute from their home stations si to a company located at station t. Assume that the
operation of each route requires a fixed amount of money, say one unit of cost, which people using
that route can share. Now, the natural objective of each employee is to find a path that minimizes
his commuting expenses.

More specifically, the cost function of the ith player can be written as

Ci(P) =
∑

e∈pi

1
np(e)

(1)

where P = [p1, . . . , pi, . . . , pn]T is the strategy vector and np(e) =
∣∣{pj ∈ P|e ∈ pj}

∣∣ is the number
of paths in P sharing an edge e.

Under best-response dynamics, the ith player “wakes up” arbitrarily, observes the current strate-
gic configuration P = [p1, . . . , pi, . . . , pn]T , and chooses the pi

′ that minimizes (and strictly improves)
his own cost Ci(P′), P′ = [p1, . . . , p

′
i, . . . , pn]T . We say that the game reaches an equilibrium if no

player has incentive to deviate from his current strategy, i.e., change his path. More formally, if
P[k] denotes the strategic configuration at time k, then there is a time 1 < teq <∞ such that if we
wake any player i at time teq, then we have P[teq+1] = P[teq ]. In fact, P[k] = P[teq ], ∀k ≥ teq.

A cost sharing network routing (CSNR) instance can be described by the following tuple:

CSNR =
(
N , G(V,E), {Pi}i∈N , {Ci : ×j∈NPj → R}i∈N

)

where N = {1, 2, . . . , n} is the index set of the players, G(V,E) is the network graph, Pi is the set
of all simple paths from si ∈ V to t ∈ V in G(V,E) (all the ith player’s strategies), and Ci is the
ith player’s cost function as defined in (1).

1Given a graph G(V, E), a path p from s ∈ V to t ∈ V can be formally defined as the set of adjacent edges:
p = {(s, v1), (v1, v2), . . . , (vk−1, vk), (vk, t)|vi ∈ V }

1



2 Existence of Equilibrium

2.1 Best Response Graphs

The best response dynamics of a game can be modeled as a directed graph F (P,R). The vertices,
v ∈ P , in the graph are the configurations of the strategic choices and the edges, e ∈ R, correspond
to player’s best responses. In our game, the vertices are P = [p1, . . . , pi, . . . , pn]T , pj ∈ Pj and there
is an edge from P to P′ = [p1, . . . , p

′
i, . . . , pn]T if pi

′ is the minimizer of Ci(P′), with Ci(P)−Ci(P′) > 0.
Note that in CSNR game the set of all possible configurations P is finite and the graph is finite.

2.2 Potential Games

Consider a function Φ that maps configurations in a game to a real number. In our example Φ
maps P = [p1, . . . , pi, . . . , pn]T to the reals. Now consider an edge in the best response graph from
P to P′ = [p1, . . . , p

′
i, . . . , pn]T . Call this change A→ Bi. We now define two functions.

∆Φ(A, Bi) := Φ(Bi)− Φ(A) (2)
∆Ci(A, Bi) := Ci(Bi)− Ci(A) (3)

Recall that Ci is the cost function of the ith player. Note that the function ∆Ci(A, Bi) is defined
for that i that made the best response in A → Bi. A game is a potential game if there exists a
function Φ such that, for all A and for all i, ∆Φ(A, Bi) and ∆Ci(A, Bi) have the same sign.

2.3 Existence of Equilibrium for Potential Games

We now argue that potential games have an equilibrium that can be achieved through best re-
sponse dynamics. Consider the best response graph of a potential game. Observe that for every
edge (A, Bi) in the graph, ∆Ci(A, Bi) is strictly negative. Which implies that Φ(Bi) < Φ(A). That
is for all edges (A, B) in the graph, Φ(B) < Φ(A).

Assume there exists a cycle in the graph. Then clearly there exists an edge (A, B) in the cy-
cle such that Φ(B) ≥ Φ(A). This is a contradiction. Thus, our graph is a finite directed acyclic
graph. Such graphs always have a sink node. Clearly, such a sink node represents an equilibrium.

2.4 CSNR game is a Potential Game

Here we will prove that CSNR game is a potential game and thus has an equilibrium that can be
achieved through best response dynamics.

Proof. Define a function Φ : ×j∈NPj → R as follows:

Φ(P) =
∑

e∈E

(
1 +

1
2

+ · · ·+ 1
np(e)

)
(4)
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where P = [p1, . . . , pi, . . . , pn]T , pj ∈ Pj , and np(e) =
∣∣{pj ∈ P|e ∈ pj}

∣∣. We will show that Φ is a
potential function for the CSNR game.

Let P′ = [p1, . . . , p
′
i, . . . , pn]T be the strategic configuration after the ith player’s best response, with

∆Ci(P, P′) < 0. We want to show that ∆Φ(P, P′) < 0.

Let E+ = {e ∈ p′i \ pi} and E− = {e ∈ pi \ p′i} be the set of edges included only in p′i and pi

respectively. We can partition the edges as the union of four disjoint sets:

E = E+ ∪ E− ∪ {e ∈ p′i ∩ pi} ∪ {e /∈ p′i ∪ pi}

It is evident that np′(e) 6= np(e) only for edges e ∈ E+ ∪ E−, since the number, np′(e), of players
using an edge, changes only for the edges where the paths pi and p′i differ. More specifically,

np′(e) =

{
np(e) + 1, , if e ∈ E+

np(e)− 1, if e ∈ E−

We can write:

∆Φ(P, P′) = Φ(P′)− Φ(P) =
∑

e∈E

(
1 +

1
2

+ · · ·+ 1
np′(e)

)
−
∑

e∈E

(
1 +

1
2

+ · · ·+ 1
np(e)

)

=
∑

e∈E+

(
1 +

1
2

+ · · ·+ 1
np′(e)

)
+
∑

e∈E−

(
1 +

1
2

+ · · ·+ 1
np′(e)

)

−
[ ∑

e∈E+

(
1 +

1
2

+ · · ·+ 1
np(e)

)
+
∑

e∈E−

(
1 +

1
2

+ · · ·+ 1
np(e)

)]

=
∑

e∈E+

(
1 +

1
2

+ · · ·+ 1
np(e) + 1

)
+
∑

e∈E−

(
1 +

1
2

+ · · ·+ 1
np(e)− 1

)

−
∑

e∈E+

(
1 +

1
2

+ · · ·+ 1
np(e)

)
−
∑

e∈E−

(
1 +

1
2

+ · · ·+ 1
np(e)

)

=
∑

e∈E+

1
np(e) + 1

−
∑

e∈E−

1
np(e)

=
∑

e∈E+

1
np(e) + 1

+
∑

e∈p′i∩pi

1
np(e)

−
∑

e∈E−

1
np(e)

−
∑

e∈p′i∩pi

1
np(e)

=
∑

e∈p′i

1
np′(e)

−
∑

e∈pi

1
np(e)

= Ci(P′)− Ci(P) = ∆Ci(P, P′) < 0

Hence, Φ(P) is a potential function for the CSNR game.
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3 Convergence to Equilibrium

In the previous sections we proved that an equilibrium point exists for the CSNR game. A natural
question, now, is how fast the players can reach it under best response dynamics.

3.1 How long can a sequence of best responses be?

Consider the best response graph F (P,R) for the CSNR game, as described in section 2.1, where
vertices correspond to strategic configurations P, and edges represent best responses. We have seen
that F (P,R) is a finite directed acyclic graph and thus any path from a vertex P to a sink P∗ is of
finite length. But how does this path length scale with respect to the number of players and the
size of the network?

Let r(s) be a the path in F (P,R), from a vertex s ∈ P to its corresponding sink ts ∈ P . We are
interested in bounding the number of edges in r(s) for all s ∈ P . Since r(s) is a best-response
sequence of a potential game, there is a strictly negative number ∆Φ(vk, vl) associated with every
edge (vk, vl) ∈ r(s), that corresponds to the reduction in the potential function after some player’s
response from vk to vl.

For a path r(s) in F (P,R) we have:

Φ(ts) = Φ(s) −
∑

(vk,vl)∈r(s)

|∆Φ(vk, vl)| (5)

where Φ(ts) is a local minimum of the potential function that is reached by starting from Φ(s) and
following the best response path r(s). See Fig.1 for an illustration of Eq.5.

To upper bound the number of edges in r(s) we can write:

Φ(ts) ≤ Φ(s) −
∑

(vk,vl)∈r(s)

min
(vk,vl)∈r(s)

{
|∆Φ(vk, vl)|

}

= Φ(s) −A(s) min
(vk,vl)∈r(s)

{
|∆Φ(vk, vl)|

}

or, equivalently:

A(s) ≤ Φ(s)− Φ(ts)
min(vk,vl)∈r(s)

{
|∆Φ(vk, vl)|

}

where A(s) =
∣∣{(vk, vl) ∈ r(s)}

∣∣, is the number of edges in r(s).

Since 0 ≤ Φ(a) ≤ |E|(ln(n) + 1), ∀a ∈ P , (this can be shown directly from in Eq.4, by setting
np(e) = n, ∀e ∈ E and upper bounding the harmonic number Hn by ln(n) + 1), we can further
upper bound the number of edges for all paths r(s) in F (P,R) by writing:

A(s) ≤ |E|(ln(n) + 1)
min(vk,vl)∈R

{
|∆Φ(vk, vl)|

} , ∀s ∈ P (6)

Hence, the length of all best-response sequences is upper bounded by a quantity inversely propor-
tional to the minimum possible change |∆Φ(P, P′)| in the potential function.
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�

where A(s) =
��{(vk, vl) ∈ r(s)}

��, is the number of edges in r(s).
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�
|∆Φ(vk, vl)|
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Figure 1: A best-response path to equilibrium and strictly negative reductions in the potential
function

3.2 How small can |∆Φ(P, P′)| be?

Let P = [p1, . . . , pi, . . . , pn]T be an arbitrary strategic configuration and let P′ = [p1, . . . , p
′
i, . . . , pn]T

be the strategic configuration after the ith player’s best response. Then,

∆Φ(P, P′) = ∆Ci(P, P′)
= Ci(P′)− Ci(P)

=
∑

e∈p′i

1
np′(e)

−
∑

e∈pi

1
np(e)

(7)

Lemma 1. d(K, n) ,

∣∣∣∣
∑K1

i=1
1
ai
−∑K2

j=1
1
bj

∣∣∣∣ ≥ n−2K , for all integers ai, bj ∈ {1, . . . , n} and K1, K2 ∈
{1, . . . ,K} : d(K, n) 6= 0

Proof. (by Elsholtz) First notice that a sum of K1 unit fractions, each of denominator ai ≤ n, can
be rewritten as a single fraction with a denominator bounded by the product of the ai, i.e, by nK1 .

Thus,
∑K1

i=1
1
ai

= xa
ma

, with ma ≤ nK1 and
∑K2

i=1
1
bj

= xb
mb

, with mb ≤ nK2 , ∀ai, bj ∈ {1, . . . , n}, and

their absolute difference can be written as d(K, n) =
∣∣∣ xa
ma
− xb

mb

∣∣∣ = |mbxa−maxb|
mamb

. Since d(K, n) is
constrained to be nonzero, the smallest possible value for |mbxa −maxb| is one (must be integer).
Hence, d(K, n) ≥ 1

mamb
≥ 1

n(K1+K2) ≥ n−2K , ∀K1, K2 ∈ {1, . . . ,K}.
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Now, we can use Lemma 1 to lower bound the expression in Eq.7 and get :

∣∣∆Φ(P, P′)
∣∣ ≥ n−2|E| (8)

Hence, a player’s response reduces the potential function Φ(P) by at least 1/n2|E|.

3.3 The speed of convergence

Putting Eq.6 and Eq.8 together, we get:

A(s) ≤ |E|(ln(n) + 1)
min(vk,vl)∈R

{
|∆Φ(vk, vl)|

}

≤ |E|(ln(n) + 1)/n−2|E| , ∀s ∈ P (9)

Hence, the CSNR game reaches an equilibrium after O
(
|E|n2|E| log(n)

)
best responses.
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