Cost Sharing Network Routing Game

Notes by Vasilis Ntranos

1 The Game

Consider a graph $G(V, E)$ and n players, where the $i^{\text {th }}$ player is interested in moving from his source node $s_{i} \in V$ to a common $\operatorname{sink} t \in V$. Each player strategically chooses a path, p_{i}, from his source to the sink in order to minimize his own cost C_{i}. The cost of a path p_{i} depends on all the rest p_{j} and decreases with the number of players sharing the path ${ }^{1}$.

To fix ideas, we can think of the graph as a public transportation network, where each edge represents a bus route connecting two stations. The n players can be thought of as employees that want to commute from their home stations s_{i} to a company located at station t. Assume that the operation of each route requires a fixed amount of money, say one unit of cost, which people using that route can share. Now, the natural objective of each employee is to find a path that minimizes his commuting expenses.

More specifically, the cost function of the $i^{t h}$ player can be written as

$$
\begin{equation*}
C_{i}(\mathrm{P})=\sum_{e \in p_{i}} \frac{1}{n_{p}(e)} \tag{1}
\end{equation*}
$$

where $\mathrm{P}=\left[p_{1}, \ldots, p_{i}, \ldots, p_{n}\right]^{T}$ is the strategy vector and $n_{p}(e)=\left|\left\{p_{j} \in \mathrm{P} \mid e \in p_{j}\right\}\right|$ is the number of paths in P sharing an edge e.
Under best-response dynamics, the $i^{\text {th }}$ player "wakes up" arbitrarily, observes the current strategic configuration $\mathrm{P}=\left[p_{1}, \ldots, p_{i}, \ldots, p_{n}\right]^{T}$, and chooses the $p_{i}{ }^{\prime}$ that minimizes (and strictly improves) his own cost $C_{i}\left(\mathrm{P}^{\prime}\right), \mathrm{P}^{\prime}=\left[p_{1}, \ldots, p_{i}^{\prime}, \ldots, p_{n}\right]^{T}$. We say that the game reaches an equilibrium if no player has incentive to deviate from his current strategy, i.e., change his path. More formally, if $\mathrm{P}^{[k]}$ denotes the strategic configuration at time k, then there is a time $1<t_{e q}<\infty$ such that if we wake any player i at time $t_{e q}$, then we have $\mathrm{P}^{\left[t_{e q}+1\right]}=\mathrm{P}^{\left[t_{e q}\right]}$. In fact, $\mathrm{P}^{[k]}=\mathrm{P}^{\left[t_{e q}\right]}, \forall k \geq t_{e q}$.

A cost sharing network routing (CSNR) instance can be described by the following tuple:

$$
\operatorname{CSNR}=\left(\mathcal{N}, G(V, E),\left\{\mathcal{P}_{i}\right\}_{i \in \mathcal{N}},\left\{C_{i}: \times_{j \in \mathcal{N}} \mathcal{P}_{j} \rightarrow \mathbb{R}\right\}_{i \in \mathcal{N}}\right)
$$

where $\mathcal{N}=\{1,2, \ldots, n\}$ is the index set of the players, $G(V, E)$ is the network graph, \mathcal{P}_{i} is the set of all simple paths from $s_{i} \in V$ to $t \in V$ in $G(V, E)$ (all the $i^{t h}$ player's strategies), and C_{i} is the $i^{t h}$ player's cost function as defined in (1).

[^0]
2 Existence of Equilibrium

2.1 Best Response Graphs

The best response dynamics of a game can be modeled as a directed graph $F(P, R)$. The vertices, $v \in P$, in the graph are the configurations of the strategic choices and the edges, $e \in R$, correspond to player's best responses. In our game, the vertices are $\mathrm{P}=\left[p_{1}, \ldots, p_{i}, \ldots, p_{n}\right]^{T}, p_{j} \in \mathcal{P}_{j}$ and there is an edge from P to $\mathrm{P}^{\prime}=\left[p_{1}, \ldots, p_{i}^{\prime}, \ldots, p_{n}\right]^{T}$ if p_{i}^{\prime} is the minimizer of $C_{i}\left(\mathrm{P}^{\prime}\right)$, with $C_{i}(\mathrm{P})-C_{i}\left(\mathrm{P}^{\prime}\right)>0$. Note that in CSNR game the set of all possible configurations P is finite and the graph is finite.

2.2 Potential Games

Consider a function Φ that maps configurations in a game to a real number. In our example Φ maps $\mathrm{P}=\left[p_{1}, \ldots, p_{i}, \ldots, p_{n}\right]^{T}$ to the reals. Now consider an edge in the best response graph from P to $\mathrm{P}^{\prime}=\left[p_{1}, \ldots, p_{i}^{\prime}, \ldots, p_{n}\right]^{T}$. Call this change $A \rightarrow B_{i}$. We now define two functions.

$$
\begin{align*}
& \Delta \Phi\left(A, B_{i}\right):=\Phi\left(B_{i}\right)-\Phi(A) \tag{2}\\
& \Delta C_{i}\left(A, B_{i}\right):=C_{i}\left(B_{i}\right)-C_{i}(A) \tag{3}
\end{align*}
$$

Recall that C_{i} is the cost function of the $i^{t h}$ player. Note that the function $\Delta C_{i}\left(A, B_{i}\right)$ is defined for that i that made the best response in $A \rightarrow B_{i}$. A game is a potential game if there exists a function Φ such that, for all A and for all $i, \Delta \Phi\left(A, B_{i}\right)$ and $\Delta C_{i}\left(A, B_{i}\right)$ have the same sign.

2.3 Existence of Equilibrium for Potential Games

We now argue that potential games have an equilibrium that can be achieved through best response dynamics. Consider the best response graph of a potential game. Observe that for every edge $\left(A, B_{i}\right)$ in the graph, $\Delta C_{i}\left(A, B_{i}\right)$ is strictly negative. Which implies that $\Phi\left(B_{i}\right)<\Phi(A)$. That is for all edges (A, B) in the graph, $\Phi(B)<\Phi(A)$.

Assume there exists a cycle in the graph. Then clearly there exists an edge (A, B) in the cycle such that $\Phi(B) \geq \Phi(A)$. This is a contradiction. Thus, our graph is a finite directed acyclic graph. Such graphs always have a sink node. Clearly, such a sink node represents an equilibrium.

2.4 CSNR game is a Potential Game

Here we will prove that CSNR game is a potential game and thus has an equilibrium that can be achieved through best response dynamics.

Proof. Define a function $\Phi: \times_{j \in \mathcal{N}} \mathcal{P}_{j} \rightarrow \mathbb{R}$ as follows:

$$
\begin{equation*}
\Phi(\mathrm{P})=\sum_{e \in E}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p}(e)}\right) \tag{4}
\end{equation*}
$$

where $\mathrm{P}=\left[p_{1}, \ldots, p_{i}, \ldots, p_{n}\right]^{T}, p_{j} \in \mathcal{P}_{j}$, and $n_{p}(e)=\left|\left\{p_{j} \in \mathrm{P} \mid e \in p_{j}\right\}\right|$. We will show that Φ is a potential function for the CSNR game.

Let $\mathrm{P}^{\prime}=\left[p_{1}, \ldots, p_{i}^{\prime}, \ldots, p_{n}\right]^{T}$ be the strategic configuration after the $i^{\text {th }}$ player's best response, with $\Delta C_{i}\left(\mathrm{P}, \mathrm{P}^{\prime}\right)<0$. We want to show that $\Delta \Phi\left(\mathrm{P}, \mathrm{P}^{\prime}\right)<0$.
Let $E^{+}=\left\{e \in p_{i}^{\prime} \backslash p_{i}\right\}$ and $E^{-}=\left\{e \in p_{i} \backslash p_{i}^{\prime}\right\}$ be the set of edges included only in p_{i}^{\prime} and p_{i} respectively. We can partition the edges as the union of four disjoint sets:

$$
E=E^{+} \cup E^{-} \cup\left\{e \in p_{i}^{\prime} \cap p_{i}\right\} \cup\left\{e \notin p_{i}^{\prime} \cup p_{i}\right\}
$$

It is evident that $n_{p^{\prime}}(e) \neq n_{p}(e)$ only for edges $e \in E^{+} \cup E^{-}$, since the number, $n_{p^{\prime}}(e)$, of players using an edge, changes only for the edges where the paths p_{i} and p_{i}^{\prime} differ. More specifically,

$$
n_{p^{\prime}}(e)= \begin{cases}n_{p}(e)+1,, & \text { if } e \in E^{+} \\ n_{p}(e)-1, & \text { if } e \in E^{-}\end{cases}
$$

We can write:

$$
\begin{aligned}
\Delta \Phi\left(\mathrm{P}, \mathrm{P}^{\prime}\right)= & \Phi\left(\mathrm{P}^{\prime}\right)-\Phi(\mathrm{P})=\sum_{e \in E}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p^{\prime}}(e)}\right)-\sum_{e \in E}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p}(e)}\right) \\
= & \sum_{e \in E^{+}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p^{\prime}}(e)}\right)+\sum_{e \in E^{-}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p^{\prime}}(e)}\right) \\
& -\left[\sum_{e \in E^{+}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p}(e)}\right)+\sum_{e \in E^{-}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p}(e)}\right)\right] \\
= & \sum_{e \in E^{+}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p}(e)+1}\right)+\sum_{e \in E^{-}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p}(e)-1}\right) \\
& -\sum_{e \in E^{+}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p}(e)}\right)-\sum_{e \in E^{-}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n_{p}(e)}\right) \\
= & \sum_{e \in E^{+}} \frac{1}{n_{p}(e)+1}-\sum_{e \in E^{-}} \frac{1}{n_{p}(e)} \\
= & \sum_{e \in E^{+}} \frac{1}{n_{p}(e)+1}+\sum_{e \in p_{i}^{\prime} \cap p_{i}} \frac{1}{n_{p}(e)}-\sum_{e \in E^{-}} \frac{1}{n_{p}(e)}-\sum_{e \in p_{i}^{\prime} \cap p_{i}} \frac{1}{n_{p}(e)} \\
= & \sum_{e \in p_{i}^{\prime}} \frac{1}{n_{p^{\prime}}(e)}-\sum_{e \in p_{i}} \frac{1}{n_{p}(e)}=C_{i}\left(\mathrm{P}^{\prime}\right)-C_{i}(\mathrm{P})=\Delta C_{i}\left(\mathrm{P}, \mathrm{P}^{\prime}\right)<0
\end{aligned}
$$

Hence, $\Phi(\mathrm{P})$ is a potential function for the CSNR game.

3 Convergence to Equilibrium

In the previous sections we proved that an equilibrium point exists for the CSNR game. A natural question, now, is how fast the players can reach it under best response dynamics.

3.1 How long can a sequence of best responses be?

Consider the best response graph $F(P, R)$ for the CSNR game, as described in section 2.1, where vertices correspond to strategic configurations P , and edges represent best responses. We have seen that $F(P, R)$ is a finite directed acyclic graph and thus any path from a vertex P to a sink P^{*} is of finite length. But how does this path length scale with respect to the number of players and the size of the network?

Let $r(s)$ be a the path in $F(P, R)$, from a vertex $s \in P$ to its corresponding $\operatorname{sink} t_{s} \in P$. We are interested in bounding the number of edges in $r(s)$ for all $s \in P$. Since $r(s)$ is a best-response sequence of a potential game, there is a strictly negative number $\Delta \Phi\left(v_{k}, v_{l}\right)$ associated with every edge $\left(v_{k}, v_{l}\right) \in r(s)$, that corresponds to the reduction in the potential function after some player's response from v_{k} to v_{l}.

For a path $r(s)$ in $F(P, R)$ we have:

$$
\begin{equation*}
\Phi\left(t_{s}\right)=\Phi(s)-\sum_{\left(v_{k}, v_{l}\right) \in r(s)}\left|\Delta \Phi\left(v_{k}, v_{l}\right)\right| \tag{5}
\end{equation*}
$$

where $\Phi\left(t_{s}\right)$ is a local minimum of the potential function that is reached by starting from $\Phi(s)$ and following the best response path $r(s)$. See Fig. 1 for an illustration of Eq.5.

To upper bound the number of edges in $r(s)$ we can write:

$$
\begin{aligned}
\Phi\left(t_{s}\right) & \leq \Phi(s)-\sum_{\left(v_{k}, v_{l}\right) \in r(s)} \min _{\left(v_{k}, v_{l}\right) \in r(s)}\left\{\left|\Delta \Phi\left(v_{k}, v_{l}\right)\right|\right\} \\
& =\Phi(s)-A(s) \min _{\left(v_{k}, v_{l}\right) \in r(s)}\left\{\left|\Delta \Phi\left(v_{k}, v_{l}\right)\right|\right\}
\end{aligned}
$$

or, equivalently:

$$
A(s) \leq \frac{\Phi(s)-\Phi\left(t_{s}\right)}{\min _{\left(v_{k}, v_{l}\right) \in r(s)}\left\{\left|\Delta \Phi\left(v_{k}, v_{l}\right)\right|\right\}}
$$

where $A(s)=\left|\left\{\left(v_{k}, v_{l}\right) \in r(s)\right\}\right|$, is the number of edges in $r(s)$.
Since $0 \leq \Phi(a) \leq|\mathrm{E}|(\ln (n)+1), \forall a \in P$, (this can be shown directly from in Eq.4, by setting $n_{p}(e)=n, \forall e \in E$ and upper bounding the harmonic number H_{n} by $\ln (n)+1$), we can further upper bound the number of edges for all paths $r(s)$ in $F(P, R)$ by writing:

$$
\begin{equation*}
A(s) \leq \frac{|\mathrm{E}|(\ln (n)+1)}{\min _{\left(v_{k}, v_{l}\right) \in R}\left\{\left|\Delta \Phi\left(v_{k}, v_{l}\right)\right|\right\}}, \forall s \in P \tag{6}
\end{equation*}
$$

Hence, the length of all best-response sequences is upper bounded by a quantity inversely proportional to the minimum possible change $\left|\Delta \Phi\left(\mathrm{P}, \mathrm{P}^{\prime}\right)\right|$ in the potential function.

Figure 1: A best-response path to equilibrium and strictly negative reductions in the potential function

3.2 How small can $\left|\Delta \Phi\left(P, P^{\prime}\right)\right|$ be?

Let $\mathrm{P}=\left[p_{1}, \ldots, p_{i}, \ldots, p_{n}\right]^{T}$ be an arbitrary strategic configuration and let $\mathrm{P}^{\prime}=\left[p_{1}, \ldots, p_{i}^{\prime}, \ldots, p_{n}\right]^{T}$ be the strategic configuration after the $i^{t h}$ player's best response. Then,

$$
\begin{align*}
\Delta \Phi\left(\mathrm{P}, \mathrm{P}^{\prime}\right) & =\Delta C_{i}\left(\mathrm{P}, \mathrm{P}^{\prime}\right) \\
& =C_{i}\left(\mathrm{P}^{\prime}\right)-C_{i}(\mathrm{P}) \\
& =\sum_{e \in p_{i}^{\prime}} \frac{1}{n_{p^{\prime}}(e)}-\sum_{e \in p_{i}} \frac{1}{n_{p}(e)} \tag{7}
\end{align*}
$$

Lemma 1. $d(K, n) \triangleq\left|\sum_{i=1}^{K_{1}} \frac{1}{a_{i}}-\sum_{j=1}^{K_{2}} \frac{1}{b_{j}}\right| \geq n^{-2 K}$, for all integers $a_{i}, b_{j} \in\{1, \ldots, n\}$ and $K_{1}, K_{2} \in$ $\{1, \ldots, K\}: d(K, n) \neq 0$

Proof. (by Elsholtz) First notice that a sum of K_{1} unit fractions, each of denominator $a_{i} \leq n$, can be rewritten as a single fraction with a denominator bounded by the product of the a_{i}, i.e, by $n^{K_{1}}$. Thus, $\sum_{i=1}^{K_{1}} \frac{1}{a_{i}}=\frac{x_{a}}{m_{a}}$, with $m_{a} \leq n^{K_{1}}$ and $\sum_{i=1}^{K_{2}} \frac{1}{b_{j}}=\frac{x_{b}}{m_{b}}$, with $m_{b} \leq n^{K_{2}}, \forall a_{i}, b_{j} \in\{1, \ldots, n\}$, and their absolute difference can be written as $d(K, n)=\left|\frac{x_{a}}{m_{a}}-\frac{x_{b}}{m_{b}}\right|=\frac{\left|m_{b} x_{a}-m_{a} x_{b}\right|}{m_{a} m_{b}}$. Since $d(K, n)$ is constrained to be nonzero, the smallest possible value for $\left|m_{b} x_{a}-m_{a} x_{b}\right|$ is one (must be integer). Hence, $d(K, n) \geq \frac{1}{m_{a} m_{b}} \geq \frac{1}{n^{\left(K_{1}+K_{2}\right)}} \geq n^{-2 K}, \forall K_{1}, K_{2} \in\{1, \ldots, K\}$.

Now, we can use Lemma 1 to lower bound the expression in Eq. 7 and get :

$$
\begin{equation*}
\left|\Delta \Phi\left(\mathrm{P}, \mathrm{P}^{\prime}\right)\right| \geq n^{-2|\mathrm{E}|} \tag{8}
\end{equation*}
$$

Hence, a player's response reduces the potential function $\Phi(\mathrm{P})$ by at least $1 / n^{2|E|}$.

3.3 The speed of convergence

Putting Eq. 6 and Eq. 8 together, we get:

$$
\begin{align*}
A(s) & \leq \frac{|\mathrm{E}|(\ln (n)+1)}{\min _{\left(v_{k}, v_{l}\right) \in R}\left\{\left|\Delta \Phi\left(v_{k}, v_{l}\right)\right|\right\}} \\
& \leq|\mathrm{E}|(\ln (n)+1) / n^{-2|E|}, \forall s \in P \tag{9}
\end{align*}
$$

Hence, the CSNR game reaches an equilibrium after $\mathcal{O}\left(|E| n^{2|E|} \log (n)\right)$ best responses.

References

[1] S.-H Teng. Lecture notes CS599 - Games, Economics, Networks and Data Analysis, Fall 2010.
[2] D. Monderer and L.S. Shapley, Potential games. Games and Economic Behavior 14 (1996), pp. 124143.
[3] R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. International Journal of Game Theory, 2:65-67, 1973.
[4] J.F. Nash, Equilibrium points in n-person games. Proc. National Academy of Sciences 36 (1950), pp. 4849.

[^0]: ${ }^{1}$ Given a graph $G(V, E)$, a path p from $s \in V$ to $t \in V$ can be formally defined as the set of adjacent edges: $p=\left\{\left(s, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right),\left(v_{k}, t\right) \mid v_{i} \in V\right\}$

