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1 Best Response, Equilibrium Strategies and Best
Response Dynamics

Establishing the notion of best response goes back to the work of von Neumann.
In some sense, the best response captures the distributed decision of particles
in a system with selfish and diverse interests. His work is followed by the
contributions of giants of game and economic theory such as Nash and Arrow-
Debrew. This notion is the essence of our understanding of rational agents and
is the key step in order to develop the notion of equilibrium of a game. We
will define these notions in the context of games related to computer science
applications. Namely, we look at two instances of, so called, congestion games
as explained below.

1.1 Network Routing Game

In our first example, we consider the situation in which our players are interested
to route their traffic in a shared network. Namely, we are given a graph G(V, E)
where for example an edge e between u and v represents a link between two
internet routers.

e There are n users 1,...,[l where user ¢ is interested to route from node s;
to node t;.

e Each link has a delay which depends on the number of users using that
link.

e Every user is selfish and wants to minimize her own total delay (Therefore,
the delay is assumed to be additive).

Notice that in the absence of other users, the best strategy in order to
meet the objective is to take the shortest path (The path with the shortest



number of hubs, assuming that the links are homogenous.) Here, by a strat-
egy, we mean any of the potential paths that connect s; to ¢;. Now, sup-
pose that each user somehow chooses one of such paths as her strategy. The,
consider (Py, P,...,P;, ..., P,) which represents a configuration of strategic
choices. For every such configuration, we can look at ¢;, the cost function of
each user. Namely, we can define ¢;(Py, Ps, ..., P;, ..., P,) as the cost of player
i given a configuration. Given a configuration P = (P, Pa,..., P, ..., Py),
the best response of any player 7 can be defined roughly as P; that minimizes
¢i(P1,Ps,..., P, ..., P,) fixing all other Pjs. A better response is the one that
simply has a lower cost compared to our current strategy. And the equilibrium
is roughly defined over best responses where everyone does not have an incentive
to deviate.

In order to arrive at the precise definition of equilibrium, consider an asyn-
chronous world, in which at every time, some player ¢ “wakes up” arbitrarily
and observes the current configuration, and based on it chooses a strategy in
the set of all strategies that minimizes his delay at the moment and sleep. Let
P; denote the configuration at time j. We define this dynamic process reaches
an equilibrium if there is a time 1 < j < oo such that if we wake up any player
i at j we have P; = P;_1. It is easy to check P = P;_; for all k > j.

We call the above-explained process the best-response dynamics. Below is a
list of questions that can be raised once we fix the dynamics.

1. Is there an equilibrium?
2. Is the equilibrium strategies unique?

3. Is it possible to reach the equilibrium through the best-reponse dynamics
(BRD)?

4. How long does it take to reach an equilibrium if one exists and can be
reached through BRD?

5. Is the game one-shot or repeated?

2 Existence of Equillibrium

2.1 Best Response Graphs:

The best response dynamics of a game can be modelled as a directed graph. We
illustrate this using our congestion game example. The vertices in the graph
are the configurations of the strategic choice, which in our case are just the
sets of paths chosen by the players. Observe that in this example, the set of
possible configurations is finite and the graph is finite. Given a configuration,
one of the players reacts and makes his best response. In particular, if the i*"
player responds, then the configuration changes from (Pi, Ps,...,Pi, ..., P,)t
to (Pl,P27... P ...,Pn)t.

[



To capture this change, there is an edge from the vertex (Py, Ps, ..., Pi, ..., P,)t
to (Py, Py,..., Pl ..., P,)! fromevery i€ 1,2,...,n.

[

2.2 Potential Games:

Our goal in this section is to prove the existence of equillibrium for the conges-
tion game example. We will do so by proving the existence of equillibrium for
a class of games called potential games. And then show our congestion game is
a potential game.

Consider a function ® that maps configurations in a game to a real number.
In our example ® maps (Py, P, ..., P,) to the reals. Now consider an edge in the
dynamic response graph from (Py, Py, ..., P, ..., P,) to (P, Py, ..., P/,..., P,)".
Call this change A — B;. We now define two functions.

AD(A, B;) := 3(B;) — B(A)

Api(A, B;) i= pi(B;) — pi(A)

Recall that p; is the utility function of the i" player. Note that the function
Ap;(A, B;) is defined for that ¢ that made the best response in A — B;. A
game is a potential game if there exists a function ® such that, for all A and
for all i, A®(A, B;) and Ap;(A, B;) have the same sign.

2.3 Existence of Equillibrium for Potential Games

We now argue that potential games have an equillibrium that can be achieved
through best response dynamics. Consider the best response graph of a po-
tential game. Observe that for every edge (A4, B;) in the graph, Au;(A, B;) is
strictly positive. Which implies that ®(B;) > ®(A). That is for all edges (A, B)
in the graph, ®(B) > ®(A).

Assume there exists a cycle in the graph. Then clearly there exists an edge
(A, B) in the cycle such that ®(B) < ®(A). This is a contradiction. Thus our
graph is a finite directed acyclic graph. Such graphs always have a sink node
(from previous class). Clearly, such a sink node represents an equillibrium.

2.4 Alternate Characterization of Potential Games

Potential games are the games whose best response graph is a directed acyclic
graph (DAGS).

From the previous section, it is clear that the best response graphs of potential
games are DAGs. The converse is left as an exercise. Hint: Use topological
ordering on DAGs, to construct a potential function.



2.5 Equillibrium for the Congestion Game Example

All that remains to be shown is that our example has a potential function.
Rosenthal defines a family of potential functions for a class of congestion games
[1]. First, we define the notion of edge congestion n. for our example. Given
a configuration, the number of paths sharing an edge is called as the edge
connectivity of that edge. Formally,

ne(Pl,Pg, - ,Pn) = |{PZ|6 e Pl}|
The potential function is defined as follows

<I>(P1,P2,...,Pn):Z(O+1+2+...+ne)
eck

We claim that ® is indeed a potential function. Consider the transition A =
(P,...,P,...,P,)t - B = (P,...,P/,...,P,)". The only edges whos con-
gestion change are the ones in only one of either P; or P/. Call the set of edges
that are in P; but not in P/ as A,y And the set of edges in P/ and not in P; as
A;n- The congestion of the edges in A,,; drop by 1 and those in Ay, increase

by 1. Thus
O(B) - d(A)= Y ne— Y. ne
e€EA;p, e€Aout
= Zne_zne_Auz
ecP! eep;

Thus A® turns out to be exactly equal to Ay; (and hence in sign). Thus our
example is a potential game and hence has an equillibrium.

3 Quiz 2

Let x1,91, T2, Y2, - - -, Tn, Y Where z; € {0,1},y; € {0,1},Vi be variables. Con-
sider the set of constraints: y; = ;41,1 < i <nand z; = 0,y, = 1. Prove that
for every solution,

(i) 3¢ such that x; # y;
(i) [{il; # yi}| is odd

Solution: As zero is not odd, (ii) implies (i).

in—i—yi:xo—}—yn:l mod 2

i

= |{ilz; # yi}] is odd.
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