CS 599: Algorithmic Game Theory Sept 22, 2010

Lecture 5 - Complexity of Games

Professor Shang-Hua Teng Scribes: Darryl DeWeese and John Kim

The Most Famous Complexity Class

Each complexity class characterizes a particular phenomenon in computer science. In the case of
NP, this phenomenon is the discrepancy between finding a proof and verifying a proof. The NP
versus P question asks: if you can verify a proof efficiently, can you find one efficiently?

The reason for NP’s fame is that it contains many of the problems that arise naturally in our lives.
Technically, only decision problems, in which we must answer “yes” or “no” according to whether
our input is a member of a particular set, are eligible for membership in NP. If it’s easy to verify
that the answer to a particular decision problem is “yes”, then the problem is indeed in NP. On
the other hand, if it’s easy to verify that the answer is “no”, then the problem is in a class called
co-NP. Some problems can be in both classes, such as the primality problem. Since the invention
of the AKS algorithm, we can determine in polynomial time whether a number is prime, making
“yes” instances of the problem easy to verify. But the “no” instances are easy to verify as well, if
we are provided with one of the factors of the number in question.

Another common problem in computer science is optimization, in which we seek to minimize or
maximize an objective function of some input. Intuitively, optimization problems are harder than
decision problems. It turns out that many interesting optimization problems can be rephrased as
decision problems, and thus the umbrella of NP includes many optimization problems as well.

Algorithmic Game Theory Rolls Differently

But in algorithmic game theory, we frequently encounter a problem which is neither of these: the
problem of finding an equilibrium. This falls under the category of search problems. An example
is the network routing game, where we are given a graph G = (V, E) and the discrete unit flows
f1, f2, ..., fn, each of which selfishly travels from a start node to a destination node. We seek paths
P1, P2, ..., Pn, Which properly route each unit flow such that they are in equilibrium.

This example happens to be a search problem over a total function, meaning that there is always
a solution—it’s just a matter of finding it. The search space for 3-SAT, on the other hand, is not
over a total function, because the instance may not be satisfiable. From analysis of potential games
in previous lectures, we know that finding an equilibrium for a potential game is always a search
over a total function, since an equilibrium always exists.

In a 1991 paper [1], Nimrod Megiddo, a researcher at IBM, along with Christos Papadimitriou,
showed that if there exists a search problem over a total function that is NP-complete, then NP =
co-NP. But this seems unlikely, suggesting that we need a class other than NP to characterize the
difficulty of total search.

A Closer Look at Network Routing

To begin our study of the difficulty of total search, let’s go back to the network routing game we
mentioned earlier. This time we add the notion that the game is symmetric, meaning that the
strategy space for each player is the same, i.e. they all have the same start node and end node.
Our input is a graph G = (V, E, s,t, k, cc(+)), where s and t are the start node and end node, k is the
number of selfish unit flows routing themselves through the network, and c.(n.(P)) specifies a cost
function for each edge which increases monotonically with the number of players using the edge,
ne(P). Just as before, the desired output is a vector of paths P = (py,pa, ..., pn) which properly
routes each unit flow such that they are in equilibrium.

In an earlier lecture, we proved that when the value of the cost function for each edge is equal to
the number of players using that edge, best response dynamics will converge in polynomial time.
But what about the relaxed case when the cost functions are merely monotonically increasing?
Best response dynamics could take exponential time to converge due to the large infinity of real
numbers. Regardless of the slow convergence of best response dynamics, can we still compute an
equilibrium state in polynomial time?

Consider our potential function for this game,

O(P) = [ce(1) + ce(2) + ... + Ce(ne(P))]

e

If we can find a vector of paths P* which globally minimizes ®, then P* will be in equilibrium,
because the value of ® improves as each player selfishly improves his path, and hence, if a player
could improve, then ® would not be at a global minimum. As luck would have it, we can minimize
® via a simple reduction to min-cost flow: for each edge e € E, replace e with k copies of itself, of
costs ce(1), ce(2), ..., ce(k), each of capacity 1. Now calculate the min-cost flow for the &k units.

Note that this scheme only finds an equilibrium that results in a globally minimal value of ®. There
are many other equilibriums at locally minimal values of ® which it will not find. And though we
achieved a polynomial algorithm as we originally set out to do, our victory will be short-lived, for
we have only solved a very special case of the congestion game. In the general case, this game is
not nearly so easy. Now it’s time to finally introduce the new class of problems we’ve been hinting
at.

Polynomial Local Search

To define the class of Polynomial Local Search problems, PLS, it helps to first define local opti-
mization problems. And in order to define local optimization problems, it helps to define general
optimization problems. So let an instance of a general optimization problem have a set F' of feasible
solutions and a cost function ¢(f) for all f € F. The goal is to find f* € F with optimal cost ¢(f*).
Given this definition, an instance of a local optimization problem is an instance of an optimization
problem in which each f € F has a neighborhood N(f) C F. The goal here is to find a feasible
solution which has cost no worse than its neighbors. Finally, an instance of a problem in PLS is
an instance of a local optimization problem where, for all f € F, ¢(f) and N(f) can be computed
in polynomial time. A problem p in PLS is PLS-complete if there is a polynomial time reduction

from all other problems in PLS to p, such that the local optima of p map to local optima of the
reduced problem [2].

An example of a PLS-complete problem is Local Max Cut. The input of Local Max Cut is a graph
G = (V,W), where W is a set of weighted edges. For a given cut (A, B) on G, the neighborhood
consists of cuts that can be achieved by moving one node from A to B or vice versa. Therefore
each neighborhood is of size n = |V|. The goal is to find a cut with locally maximal weight.

Another PLS-complete problem is the Bisection Problem. The input is identical to Local Max Cut,
except that n is even. Here, we desire a cut (A, B) with |A| = |B|. The neighborhood of such a cut
is the set of cuts that can be obtained by swapping a node in A with one in B. Again, the goal is
to maximize the value of the cut.

Yet another example of a PLS-complete problem is 3-SAT. Define the neighborhood of a variable
assignment to be any assignment that can be obtained by flipping one variable. Then the goal is
to find an assignment which locally maximizes the number of satisfied clauses.

Congestion Game Is PLS-complete

In order to prove this, we will show that an instance G = (V,W) of Local Max Cut can be
transformed into a congestion game in polynomial time, and that an equilibrium of this congestion
game maps to a locally optimal max cut back on G. So for each edge e € W, create two resources:
r4 and rB. Define a bijection between players and nodes, and define the strategy space of each
player to contain two choices: use all the “A” resources provided by adjacent edges, or all the “B”
resources provided by adjacent edges. Since each node has n—1 neighbors, this means that a player
can choose n — 1 “A” resources or n — 1 “B” resources. Define the cost function as follows: if one

player is using a resource, the cost is 0. If two players are using a resource, each pays a cost of w.

Consider a cut (A, B) on G and its relation to the choices of the players in the congestion game.
There is an obvious bijection between cuts and choices: a node is in A if and only if the corre-
sponding player chose to use the resources marked “A”, mutatis mutandis for B. Now consider a
player u € A. He pays a total of) _, w(u,v), since he is sharing the “A” resources adjacent to
him with the other players on the A side of the cut. Denote this cost c4(u). If he moved to the
set B, he would pay cg(u) = >, pw(u,v), which is the sum of the edges adjacent to him that are
crossing the cut. In equilibrium, no player wants to switch sides, meaning for each player v € A,
ca(u) < cp(u), mutatis mutandis for players in B. That is, a player switching sides would decrease
the weight of the cut. Therefore on G, in the cut induced by this equilibrium, the weight of the
cut is locally maximized.

Blogging Game

There are n bloggers, each of which has 1 unit of space he needs to fill with writing. The strategy
space of a blogger is as follows: he can write something original, he can copy the writing of other
bloggers, or some combination of these. Specifically, each blogger has a permutation of the indices
1 to n, which ranks how much he likes each blogger, himself included. If we denote the amount

that blogger ¢ will write as w;, then 0 < w; <1, and 1 — w; is how much he will copy.

Suppose the best response dynamic is for each blogger to copy greedily from everyone on his ranked
list, in order, until he reaches himself. If at this point, he hasn’t totaled 1 unit of writing, he will
write the difference himself. Then the bloggers are in equilibrium when no one wants to change his
mind about how much he will write. Note that each blogger may only copy original writing, e.g.
if blogger ¢ writes 0.7 units and copies 0.3 units, then blogger j can only copy a maximum of 0.7
units from blogger i. Also note that the solution space, in general, is not convex.

The question is then: does this game always converge to equilibrium? If so, how fast?

(This type of game is called an ordinal game, in which player preferences are qualitative, as opposed
to a cardinal game, in which preferences are quantitative.)

As an example, suppose there are four bloggers with the following permutations:

Player | Preference

1 2341
2 3412
3 4123
4 1234

In this scenario, each blogger prefers to copy every other blogger before writing anything himself.
One of the more obvious equilibrium vectors is (wy, we, w3, wy) = <i, %, %, %) In general, a vector

is an equilibrium in this example if and only if wy + we + w3 + w4 = 1.

References

[1] N. Megiddo and C. H. Papadimitriou. A note on total functions, existence theorems and com-
putational complexity. Theoretical Computer Science 81 (1991), pages 317-324.

[2] Nisan, Roughgarden, Tardos, and Vazirani, editors. Algorithmic Game Theory. Page 499. Cam-
bridge University Press, 2007.

