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Lecture 7 - Auctions and Mechanism Design
Prof. Shang-hua Teng Scribes: Tomer Levinboim and Scott Alfeld

An Illustrative Example
We begin with a specific example of buying a house in a realestate auction. There is one house being
auctioned, and eight parties interested in purchasing it. The auction process is as follows:

I All eight parties submit sealed bids to the auctioneer.
II The auctioneer ignores all bids, and asks for new bids.
IIT All eight parties enter new sealed bids to the auctioneer.

The auctioneer then must determine two things — which bidder wins, and how much they pay for the house.
In one notable case of such an auction, the winner was Shang-Hua Teng (who had the highest bid), and the
asking price was his bid.

However, being the crafty soul our professor is, he made a keen observation. If he, as the highest bidder
were simply to refuse to buy the house, the best the auctioneer could expect to receive is the second-highest
bid. The auctioneer was therefore being unfair in asking the winner to pay his own bid, and through some
machine learning techniques and other acts of mathematical ingenuity, our professor was able to save himself
$80,000. We will see more of this issue about a fair auctioneer in a later section, but first we describe auctions
in more detail.

Auctions in General

For now, we will assume single-item Auctions. That is to say we have one item being auctioned, and several
bidders aiming to buy that item.

We begin with some notation. We say that every bidder has a valuation for the item being auctioned.
This is a measure of how much that bidder wants the item, or in other words, the maximum amount they
would be willing to pay to get the item. We define the utility of a bidder to be their valuation minus how
much they are charged, and we note that every bidder aims to maximize her own utility. Formally, we have
the following terms:

e 1 — The number of bidders.

e B = {b;} — The set of bids, where b; is the bid of the i-th player. Unless stated otherwise, we shall
impose an ordering on the bids by > by > ... b,.

e V = {v;} — The set of valuations, where v; is the valuation of the i-th player.
e P = {p;} — The prices, where p; is the price that that the i-th player is charged.
e u; = v; — p; — The utility of the i-th player.

The mechanism of an auction consists of the following:

e The bidding procedure.
e P(B), the pricing function, which determines P.
e A(B), the allocation function, which determines who receives the item.

Note that we will assume P and A are deterministic functions.



English Auction

Perhaps the most stereotypical auction is an open-outcry auction, which is a form of an English Auction. In
an English Auction, there is a “going price”, which increases over time. The going price may be increased
steadily by the auctioneer, or it may be determined by bidders openly exclaiming their bids. We will consider
the former method, wherein the going price begins at 0:

1. While more than one bidder is willing to pay the price:

e The going price increases.

e All bidders say whether they are willing or unwilling to pay the going price.
2. The item is awarded to the one bidder willing to pay the going price.
3. All bidders that did not win the item pay 0.
4. The winner pays the final going price.

Notice that whenever a player drops out of the auction, his true valuation is revealed. Players have an
incentive to remain in the game as long as the going price is less than their own valuation. It is therefore not
difficult to see that the winner would be the player with the highest valuation, i.e., player 1. Since player 2
drops out of the auction as soon as the going price is at least vs (and since he is the last one to drop out)
we conclude that player 1 should pay vs and that his utility should be u; = v1 — v > 0.

Vickrey Auction

Also known as a second-price auction, the Vickrey Auction[d] procedure was developed by the economics
professor William Vickrey and studied by Clarke and Groves. The bidding process in a Vickrey Auction is
as follows:

1. The bidders submit sealed bids to the auctioneer.
2. The auctioneer determines the allocation and pricing as follows:

(a) Allocation: The highest bidder (player 1) wins the item.
(b) Pricing: The winner pays the second highest bid (b2). All other players pay 0.

Note the following properties of the Vickrey Auction:

e As proved by Vickrey, although the Vickrey auction is a one-shot auction, it is mathematically equiv-
alent to the English auction (i.e., they yield the same results).

e Rational players are encouraged to be truthful (see the following section).

e The allocation produced maximizes social welfare in the sense that the bidder with the highest valuation
indeed gets the item (assuming rational bidders).

Truthfulness

Definition An auction mechanism is truthful if a bidder’s best option is to bid their valuation (set b; := v;),
no matter what the behavior of the other bidders.

An alternative definition for truthfulness might be “under the assumption that all other players are rational
/ bid according to their valuations, player P’s best option is to bid their own valuation”. We will be using
the first (stronger) definition.



Claim 1. The Vickrey auction is truthful.

Proof. Consider player ¢ and let B; = max;-;b;. We need to show that setting b; := v; maximizes the ith
player’s utility. We separate to two disjoint cases:

1. If v; > B; then

e for b; > v; - It holds that the utility u; < 0.
e for B; < b; < v; - The ith player wins and u; = v; — B; > 0.
e for b; < B; - u; = 0.

Therefore setting b; := v; (i.e., being truthful) is an optimal strategy (note that b, := B; + € is no

better than v; = b;).
2. Otherwise, v; < B; and therefore

e for b; < B; - The ith player will lose and u; = 0.
e for b; > B; - It holds that u; = v; — B; <0.

Again, setting b; := v; is an optimal strategy.

It follows that the truthful strategy is no worse than all other strategies and therefore maximizes the player’s

Variations of Vickrey

Variant I

In the first variant, there are now m (identical and indivisible) items to be auctioned. We modify the
allocation and pricing function as follows:

e Allocation: allocate the m items to the m highest bidders.

e Pricing: Let S denote the set of the winning players. Each of the m winners is charged according to
the (m — 1)’th highest bid (i.e., Vi € S, p; = max;¢gb;). The rest pay 0.

It is not difficult to see that under this auction mechanism is truthful. The proof is similar to that of Claim
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Variant II
The second variant takes the same form as Variant I, however for the pricing function we have the following:
e Pricing: The m winners are simply 1,...,m and the ¢th winner pays p; = b;—1. The rest are charged 0.

We argue that this scheme is not truthful - for the sake of brevity, suppose m = 2 and consider the winners
player 1 and player 2 who are charged by and b3 (resp.) It is clear that if player 1 had set by := b3 + ¢, he
would have been ranked the second highest bidder and thus would have been charged only b3. Therefore
lying is a better strategy.

Variant I11

Consider the original Vickrey Auction, where we modify the pricing function as follows:

e Pricing: the winner gets the item for free (pays 0). The other players pay —b; (i.e., each is compensated
by for not getting the item)

In the following section we prove this variant is truthful.



Groves’ Theorem
Stated here without proof, we present the following Theorem|[2].

Theorem 1 (Groves). Suppose we have a truthful auction with allocation function A and pricing function
P. Consider n arbitrary functions h; : B_; — R, where B_; is the set of all bids other than the i-th player’s.
If we can change the pricing function in the following way:

P = pi — hi(B-)
and leave A unchanged, the resulting auction is still truthful.
We apply Groves’ Theorem to prove the following Claim:
Claim 2. Variant III is truthful.

Proof. For all i define the function h; to be the function that returns the maximum value in B_;. We use
these functions on the original Vickrey auction mechanism to obtain a new pricing function and leave the
allocation function unchanged. Clearly by Grove’s Theorem the resulting auction is still truthful. Now, since
p1 = be and hy(B_1) = by we have that pj = 0 and similarly we can verify that for all ¢ # 1, p, = —by - that
is, the result auction is exactly Variant III. This completes the proof. O

Combinatorial Auctions

We now turn to a more complicated form of auction wherein there are m auctioned items, and each bidder’s
valuation is a mapping from a subset (or “bundle”) of the items to a monetary value. That is to say player
i has a valuation function v; : 2¢ — R where G is the set of goods. For example, suppose B="Bread’,
P="Peanut Butter’, and J="Jelly’ are for sale. One bidder might have a valuation of:

e {B,PJ} =40
e {BP} =25
o {BJ} =10

e anything else = 0 (Well, what would you do without the bread?)

Where single item auctions aim to assure that the bidder with the highest valuation wins, combinatorial
auctions aim for a similar optimization - we aim to design a mechanism that maximize the sum of the
valuations for all bidders who received a bundle. Formally, maximizing the total social welfare is obtained

by maximizing
> ki)

where k; is the bundle awarded to the i-th player. Note that we may instead wish to maximize quantities other
than social welfare. For example, a business (taking the role of the auctioneer) may instead be interested in
maximizing revenue. Throughout these notes, we focus only on the goal of maximizing social welfare.

A more concrete example (albeit a simplified example of Combinatorial Auction where only singletons
may have non-zero valuation) is the following variant of Google’s AdWords auction: The auctioned items are
the m available ad-positions on a Google search result page and each of the bidders would like to position
his ad in a single slot (meaning we can treat the valuation of the ith player as v; : G — R).

We can formulate this problem as the maximum weighted matching problem in a (complete) bipartite
graph, where the vertices of the bipartite graph are the bidders and ad-positions, and the weight of the edge
between a player and an ad-position is simply the bid offered by the player for this position (See Figure .
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Figure 1: In this instance of the simplified Adwords auction 3 ad-positions are being auctioned to 4 players
{A,B,C,D}. The weight of each edge (depicted by thickness) is the bid assigned by the player to that position.
Note that a solution that maximizes social welfare is a maximal weighted matching.

1 VCG Auction

We now examine a generalization of the Vickrey Auction to combinatorial auctions. A Vickrey-Clarke-
Groves auction[2] [I] provides a pricing function with the intuition being that you should pay only what your
cost to society. Let

T(B,G) = Zvi(ki)

be the total gain of a group of bidders when bundles are assigned through allocation function A. Intuitively,
the price the i-th player is charged the difference between the total gain of all the other bidders, and the
total gain that would have occurred if the i-th player never existed. More formally:

pi =Y vi(k;) = T(B\ {b},G)
J#i
Consider how much better off society would be had the winner not participated in the game in the first
place. In this new game player 2 (assuming rational bidders) gets the item while the rest are unaffected
in which case society gains vs, which is exactly the amount player 1 paid in the original game. We may
therefore view the outcome of the original game as player 1 paying for the “harm” he causes to society by

participating. This is referred to as the Vickrey-Clarke-Groves (VCG) principle, after the work of Clarke
and Groves[3].
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