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Lecture 9 : PPAD and the Complexity of Equilibrium Computation
Prof. Xi Chen Scribes: Cheng Lu and Sasank Vijayan

1 Complexity Class PPAD

1.1 What does PPAD mean?

PPAD stands for Polynomial Parity Argument on Directed Graphs. It is a complexity class of
search problems defined by Christos Papadimitriou in 1994. In general they are called Total Search
Problems, i.e. problems which are guaranteed to have a solution. Sperner’s Lemma is an example
of one such problem which is guaranteed to have a trichromatic triangle.

To help define the PPAD class we start with a trival problem called End-of-Line.

Definition 1. Given a PPAD graph G and a vertex v € G, where v is a leaf node. Find a node
v* #£ v, such that v* is also a leaf node.

The above problem definition appears trivial with a linear time algorithm to obtain a solution.
However there is a subtulty involved. Which is that the graph G is not actually given but is
generated from a boolean circuit.

Boolean Circuit:

'n' input bits

Boolean Circuit (C)
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In the above Boolean circuit C',C'(u) is the computational result of the circuit and u denotes the
binary steam. The circuit provides a predecessor and successor pair for all vertices in the graph,
ie. C(u) = (v,w)

If w denotes the vertices on the graph then, |V| =2" « € [0,2" — 1] and v, w € [0,2" — 1] J {0}



Since |V| = 2", checking if the vertex is a leaf node cannot take place in linear time and the
appearace of a trivial linear solution to the algorithm is misleading.

We now define the PPAD complexity class.

1.2 PPAD definition:

Definition 2. Any problem A is in PPAD if there is a polynomial time reduction from A to the
End-of-Line problem,

i.e. A<, B, where B = End-of-Line Problem

In other words for any problem A in PPAD there exists two ploynomial time computable functions
f and g satisfying the following mapping:

r — f(r), where r = input for A & f(r) = input for B

g(S) «— S, where S = solution for B & ¢(S) = solution for A

1.3 Why is PPAD interesting?

Lots of game theoretic problems are in PPAD or even PPAD complete. Also PPAD has a close
relationship with Fixed Point problems. To some extent we can say that PPAD characterizes a class
of Fixed Point problems because of its close connection to Sperner’s Lemma.

2 Two Dimensional Sperner’s Lemma

2.1 The Problem

H-1

0 N-1

Given the following set of colors for the problem { Red, Greeen, Blue}, an N x N grid and a function
f that maps the points on the grid to the colors,

ie. f:[0,N —1] x[0,N — 1] — {Red, Green, Blue}

Lemma 3. If f satisfies the above boundary condition, 3 a trichromatic triangle in the grid.



We also have a computation version of the 2D-Sperner’s problem:
Definition 4. Given a boolean circuit C with 2n input bits and C(i,j); where C(i,j) = color of
(i,7) in the grid, i,j € [0, N — 1] and |V| = 2", the output of the problem is a tricromatic triangle.

Note: The circuit only gives color to the interior points of the grid as the boundary colors are
already fixed. Also since the domain of the problem is a 2-dimensional grid and hence is in a sense
easier to generalize.

2.2 2D-Sperner’s Lemma is PPAD-complete
To prove 2D-Sperner’s Lemma is in PPAD we reduce the 2-dimensional version of the problem to
the End-of-Line problem.

Reduction: Any triangle in the grid gives a vertex in the PPAD graph and an edge is a path going
from one triangle to another. Following this representation we obtain a PPAD graph were any leaf
of the graph is a trichromatic triangle. Using this reduction sketch we can prove that 2D-Sperner’s
Lemma is in PPAD.

Theorem 5. Search problem 2D-Sperner’s lemma is PPAD-complete.
In fact 2-dimensional Sperner’s Lemma is a PPAD-complete problem as proved by Xi Chen and
Xiaotie Deng in 2006. For exact proof, please refer to [1]. The 3-dimensional version of the problem

is also PPAD-complete which was proven earlier by C. Papadimitriou. It is also interesting to note
that 1D-Sperner’s lemma can be computed in polynomial time.

3 2-Player Nash Equilibrium

We revise the concept of a 2-Player Nash Equilibrium.

A 2-player game is a game where the strategies of the players are represented by a pair of n x n
matrices A and B.

ie. G=(A,B), where A, B € R™*"

Definition 6. Given that © and y are the strategies of players 1 and 2 respectively, then (x,y) is
in Nash Equilibrium if,

xAy > 2’ Ay V2’ and xBy > xBy' Y/

where xAy is the payoff of the 1st player and xBy is the payoff of the 2nd player.

There is also another equivalent version of the problem defined as follows:

Definition 7. Given that © and y are the strategies of players 1 and 2 respectively, then (x,y) is
in Nash Equilibrium if

Aiy>Ajy=x;=0and zB; >zB; = y; =0

where A;, A; refer to the ith row and jth row of utility matric A and B;, B; refer to the ith row
and jth row of utility matriz B.



The intuition behind Definition 7 is that Vi, j, if row ¢ > row j then the 1st player never plays row
j and if column ¢ > column j then the 2nd player never plays column j as their strategies.

4 The Complexity of 2-Player Nash Equilibrium

Now we come to the central theorem in the lecture.

Theorem 8. Finding 2-player Nash equilibrium is PPAD-complete.

Proof. For the full proof of Theorem 8, please refer to [2]. The following is the sketch of the main
ideas.

The proof is divided into 2 steps:

1. Reduce from 2D-Sperner Problem to Generalized Circuit Problem.

2. Reduce from Generalized Circuit Problem to 2-Player Nash Equilibrium.

Step 1: Generalized circuits are generalizations of classical Boolean circuits. A typical generalized
circuit is shown in Figure 1.

Figure 1: A typical generalized circuit
A generalized circuit contains the following components:

1. Variables: There are K(K € N*1) real variables X1, X3,... Xoi_1 in the circuit. Indexing the
numbers by odd numbers for ease of following reduction. V1 <1i < K, X9;_1 € [0, %]

2. Arithmetic Gates: There are some kinds of binary-to-one arithmetic gates in the circuit. As
an example, an addition gate is shown in Figure 2:



Figure 2: Addition gate

It performs the following operation: X5 = min(X; + X3, &)(Note that X5 € [0, &]). It is
notable that a gate multiplying a variable with a constant is allowable in the circuit while a
gate doing multiplication operation between two variables is not within the specifications of
a generalized circuit.

3. Boolean Gates: Boolean gates AND, OR and NOT are inherited from Boolean circuits but
they operate in a slightly different way. For any real variable Xo;,_1, if X9;—1 = 0, it is
equivalent to Boolean value FALSE. If Xo; 1 = %, it is equivalent to Boolean value TRUE.
If Xo;—1 € (0, %), it has value N/A or UNKNOWN to a Boolean gate. A Boolean gate is
only applicable for two Boolean values. More specifically, if the inputs to a Boolean gate all
have Boolean values TRUE/FALSE, the Boolean gate would run as classical Boolean gate.

Otherwise the Boolean gate would output any value z € [0, -].

It is important to note that every variable Xs; 1 can be at most the output of one gate. This
property is essential to the reduction of Step 2.

An assignment to variables X1, X3, ..., Xox_1 is satisfiable if V1 < i < K, Xy,_; € [0, %] and for
every gate in the circuit, the value of the output variable matches exactly the value(s) of the input
variable(s) to the gate according to the gate operation. Given a legal generalized circuit, since it
may contain cycles, the existence of a satisfiable assignment is nontrivial. However, since we have
a range to restrict every real variable, like a cap, Brouwer’s fixed point theorem is applicable in
this problem to prove that for every valid generalized circuit, there must be at least one satisfiable
assignment. Therefore we can define Generalized Circuit Problem:

Definition 9. Given a generalized circuit, find a satisfiable assignment.

To complete the reduction in Step 1, let’s consider an instance of 2D-Sperner Problem. Let a simple
triangle be any triangle with two right-angle edges of length 1. Consider any simple triangle 7" in
the 2D-Sperner grid. For any point P in T, color(P) is the color of P which is defined as the color
of the closest integer point (grid point) to P (See Figure 3).

L

Figure 3: A simple trangle in a 2D-5pernear grid



Based on the color of P, we associate P with a function vec(P) : {red, green, blue} — R? which is
defined as follows:

1. color(P) = red, vec(P) = (+,0),
2. color(P) = green, vec(P) = (0, %),

3. color(P) = blue, vec(P) = (—

For a fixed point P, we define a line of 81 points { P_40(x—40,Y—40), P-39(—-39,y-39), ..., P_1(x_1,y-1),
P = Py(z0,90), P1(z1,91), - - -, P39(w39, Y39), Pao(T40,ya0) } such that ¥V —40 < i < 40, Pi(;,y;) =
Po(zo,y0) + (5, —). Here n is a sufficiently large number over 40 or just the input parameter n of
2D-Sperner problem. According to the above definitions, every point P;(—40 < i < 40) is associated
with a color color(P;) and a vector vec(P;) = (z¥,y!). We have the following geometry lemma:

Lemma 10. If |z = 8%2?2_40xf| < ?%K and |y = 8—112;12_401/};’] < 3%(7 the simple triangle containing
P = Py(xo,y0) is trichromatic.

The proof of Lemma 10 is based on contradiction. Suppose the simple triangle containing P is not
trichromatic, then the triangle can have at most 2 colors. According to the setting of the 81 points,
every point must have the color of one of the points of the simple triangle. Therefore there are only at
most two types of different vectors in the vector set {vec(P_a0),vec(P_39),...,vec(P-1),vec(Fy),vec(Pr),
...,vec(Psg),vec(Py)}. However, no matter what the two types of vectors are and how many vec-

tors are for each type, averaging over all the vectors by the coordinates would definitely cause the
absolute average value of at least one coordinate larger than ?%K

If two coordinates of a vector are any numbers in [0, %], we call the vector a bad vector. A stronger
geometry lemma claims that if there are at most two bad vectors, and if the two average coordinates
of the 81 points are both small as above, the simple triangle containing P is still trichromatic. This
stronger conclusion ensures the correctness of the reduction in Step 1.

For any instance of 2D-Sperner problem, the corresponding polynomially reduced generalized circuit
sketch looks like the following:
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Figure 4: The reduced generalized circuit structure from 2D-Sperner problem

The basic construction idea is as follows. We first use variables X; and X3 to encode point P’s
position. Then we use addition and subtraction gates to figure out the encodings of the positions of
points P;(—40 < i < 40). Afterwards we use binary representation extractors to obtain the positions
of the respective closest grid points of P_40 to Py, followed by queries to the given Sperner circuits
to get respective colors. By mapping the color information to the vectors with the help of color-
vector comparators, we can finally calculate the averages. Last but not least, we need an addition
backward loop to update the position of P to make it closer to the desired location.

The color-vector comparators would apply some Boolean gates. As mentioned before, some of the
outputs of the Boolean gates may be UNKNOWN, which can be any value in [0, %] They are
certainly bad for us. That’s why we need 40 pairs of additional points to overcome the fragility of
the comparators and guarantee at most two vectors are bad among all the 81 vectors generated in
the circuit. Then based on the stronger version of geometry lemma we guarantee that finally the
satisfiable assignment to the circuit would be able to map back to a solution to the 2D-Sperner
problem. 40 is a constant neither depending on n nor ﬁ It is guessed that changing 40 to 10
might work as well.

Step 2: In fact the reduction in Step 2 starts from a more generalized version of generalized circuit
problem called Approzimate Generalized Circuit Problem, which only differs at the specifications of a
satisfiable assignment. In approximate generalized circuit problem, an assignment is approximately
satisfiable if the values of all the real variables X2;_1(1 < i < K) are all within range [0, % + €] and
all the output values of gates are within an € bias of the standard outputs(e > 0). Take the circuit
in Figure 2 for example, if min{X; + X3, %} — e < X5 < min{X; + X3, %} + €, the assignment is
approximately satisfiable. In our reduction approximate generalized circuit problem is to find an
€= %—approximately satisfiable assignment. Most importantly, it can be proved that 2D-Sperner
problem can also be reduced to approximate generalized circuit problem.



We start with an instance of approximate generalized circuit C of K real variables X1, X3,..., Xox_1.
We reduce it to an instance of a specific 2-player game G = (A, B), where A, B € R*$*2K are re-
spective utility matrices of the 2 players. Then for any Nash equilibrium (z,7) € R2+2E of game
G, we shall generate a %—approximate solution (X1, X3,..., X2k 1) to circuit C accordingly and
thus complete the proof.

We choose Matching Pennies Game as out reduction target. For VK € N1, we define a standard
K matching pennies game as G}, = (A*, B*), A*, B* € R2EO2K - For vV1 < i < K, ASi 12i1 =
A5 19i=A%0 1 =AS =M= 2K+1 the rest parts of A* are filled with 0s. B* = —(A*)T.

For the Nash equilibria of game G, we have the following lemma:

Lemma 11. (z,y) is a Nash equilibrium of G iff T2i—1 + T2 = Y2i—1 + Y2i = %(1 <i<K).

If 2oi 1+ X0; = Y21+ Y2 = %(1 < i < K), it is easy to verify that (z,y) is a Nash equilibrium. If
(z,y) is a Nash equilibrium, by contradiction, w.l.o.g we can assume that x; + x9 < x3 + x4. The
utility of player 2 on column 1 is —M (z1+x2) and the utility of player 2 on column 3 is —M (x3+x4).
Hence —M (z1 + x2) > —M (x5 + x4). According to Definition 7, we have y3 = y4 = 0. Then if
we look at row 3 and row 4 of player 1, since ys = y4 = 0, also based on Definition 7 we have
x3 = x4 = 0. However, it contradicts the initial assumption that xs 4+ x4 > x1 + 22 > 0.

We can perturb a standard K matching pennies game to an approzrimate K matching pennies game.

Definition 12. G% = (A’, B') is an approvimate K matching pennies game if V1 < i < 2K,1 <
JS2K,0< Aj; — A3, Bj; — B, < 1.
We have a similar lemma for an approximate K matching pennies game:

Lemma 13. If G- = (A, B’) is an approzrimate K matching pennies game, for any Nash equilib-
rium (z,y) of G, % — € < T9i—1 + T2, Y2i—1 + Y2i < % +e(l <i<K), where e = QLK

By contradiction, w.l.o.g, assume z3 + 4 > x1 + x2 + €. The utility of player 2 on column 1 is
uct = Yjepr)Bljr; = —M (21 + 22) + Xjepk)(By; — B;)r; > —M (21 + x2). The utility of player
2 on column 3 is ucz = Xjcpx) Bs;v; = —M (23 + 24) + Sjepr)(Bs; — Bij)r; < —M (w3 + 24) + 1.
Uel — Uz > M(xz + x4 — 21 —22) — 1 > Me —1 = 1. According to Definition 7, we thus
have y3 = y4 = 0. Then if we look back at row 3 and row 4 of player 1, since y3 = y4 = 0,
similarly based on Definition 7 we have 3 = x4 = 0. However, this contradicts the condition that
T3+ T4 > T+ 22 +€> 0.

The general reduction idea is as follow. For every type of gate g in C' with K real variables, we
reduce it to a feasible perturbation over the standard K matching pennies game G, thus generate
an instance of approximate K matching pennies game G’%. For each of the reduction, we prove
that a Nash equilibrium of G’ would correspond to a approximately satisfiable assignment over
input and output variables of g. We take the addition gate in Figure 2 as an example and show
that a Nash equilibrium (z,y) of G must satisfy z5 < min{z1 + 23, -} + €, the right half of the
approximately satisfiable condition of the addition gate.

Since the indices of input variables are 1 and 3 and the index of the output variable is 5, we perturb



the standard K matching pennies game as

Ls=Ais+1=M+1,

66=Abs+1=M+1,

15=Bis+1=1,
Bis=Bis+1=1,
Big=DBss+1=—-M+1.

The rest parts of A’ and B’ are the same as A* and B* respectively. By contradiction, suppose
in a Nash equilibrium (z,y), z5 > min{z1 + 23, &} + €. Since 25 + 26 < + + ¢, it can only
be x5 > x1 4+ x3 + €. Consider the utilities of column 5 u.5 and column 6 ucs of player 2. uc.5 =
x1+as—M(xs+x6), ues = (—M+1)x5—Mxg. Ues—ucs = T1+23—25 < —€. Hence ys = 0. Consider
the utilities of row 5 u,5 and row 6 u,¢ of player 1. u,5 —ur6 = y5 —ys < 0. Hence x5 = 0. However,
it should be x5 > 1 + 3 + € > 0. Thus we have a contradiction and x5 < min{z; + z3, %} + e

For all the other arithmetic and Boolean gates in an approximate generalized circuit, we can always
do the similar constructions and approximate satisfiability proofs. A common property share by
all the constructions is that if the output variable of a gate is Xo;_1, only rows (2i — 1), (2i)
and columns (2i — 1), (2¢) of the standard K matching pennies game will be perturbed and all
the other rows and columns won’t change. Since every variable X9, 1(1 < ¢ < K) can be the
output variable of at most one gate, all the perturbations made by all the gates in the same
circuit would not conflict with each other. Therefore, for a given generalized circuit C', we can
incorporate all the perturbations made by all the gates in C in the same standard K matching
pennies game G, to generate a legal approximate K matching pennies game G’ and show that
for every Nash equilibrium (z = (z1,22,...,T2x—1,%2K),Y) In G, Xoi—1 =x2;1(1 <i < K) isa
%—approximately satisfiable assignment to circuit C'. Thus we complete the reduction in Step 2.

To sum up, since 2D-Sperner Problem can be reduced to 2-Player Nash Equilibrium and 2D-Sperner
Problem is PPAD-complete, 2-Player Nash Equilibrium is PPAD-complete. O
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