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1 Our starting point: game theory

This class is going to be about Algorithmic Game Theory (AGT). That requires us to understand
game theory a bit. What are the characteristics of game theory?

In game theory, the fundamental objects of consideration are games, which involve a number of
players and their strategies. In particular, we assume players to be selfishly motivated, or at least
have an objective each player wishes to optimize. An important concept in game theory is the idea
of equilibrium; intuitively, equilibrium in a game is a situation in which no player has an incentive
to change her strategy. One of the most important results in game theory is what is called Nash
equilibrium.

One of the main applications of game theory is to model economic situations, ranging from simple
two player exchanges to huge online marketplaces. Of course, now this begs the question, what is
economics? An instinctual definition of economics: it is the study of how we all use money.

But economics need not be about money. As we shall see later, we can study an idealized market
model (albeit one that has been realized at one point in time) that does not use money whatsoever.
A better definition, and more textbook-like: economics is the study of scarce resources, each of
which have different uses.

Most people agree that game theory really took off with von Neumann’s papers and book Theory
of Games and Economic Behavior in the early 20th century. von Neumann, man of many talents,
also played a seminal role in the development of computer algorithms. Game theory and computer
science took off on their own paths, but the advent of the internet and electronic commerce has
brought the two fields together in a meaningful way, giving rise to algorithmic game theory, which
sits at the intersection of economics, theoretical computer science, operations management, and
industrial systems engineering.

2 Computer science, and what it can do for you!

We all love computer science. We love its algorithms, its theory, and its widespread applicability.
In particular, we all love its most important question: P vs NP. The question is about our burning
desire to understand the intrinsic difficulty of computational problems. Answering this question
will net you one million dollars - there’s definitely some interesting economics in that!

Computer science is also heavily concerned with constraint optimization problems, which are for-
mulated as follows:
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Optimization problem: Maximize/minimize an objective function f(x), subject to the con-
straints x ∈ C.

Examples of objective functions and constraints can vary wildly. For example, we may want to
minimize the cost of building a toy factory, but subject to the constraint that we actually build at
least 100,000 toys.

One of the big players in developing the computer science of optimization is AT&T labs, who
wished to use this knowledge to solve a very practical problem: improving the reliability of its
phone networks. Because of their efforts, as well as of computer scientists around the world, by
the 1990’s, lots and lots was known about single-objective optimization. Computer scientists then
studied multiobjective optimization:

Multiobjective optimization problem: Optimize f1(x), f2(x), . . . , fk(x) subject to the con-
straints x ∈ C.

By itself, multiobjective optimization already has many uses in economics. However, multiobjective
optimization in itself is still too simple to capture the dazzling complexity in real world economic
situations. For example, optimizing an objective function (or an array of objective functions)
is doable and well understood, but what happens when you have many people all competing to
optimize objective functions? One thing we can do is to view these situations as games.

Here’s where everything comes together: traditional game theory can answer things about the exis-
tence of equilibria for these kinds of games. However, being the devoted computer scientists we are,
we also are dying to know equally important things: how complicated is computing equilibrium? Is
it possible to reach equilibrium? This is a starting point of algorithmic game theory: applying ideas
and models from computer science to game theory. The tools of theoretical computer science are
well-suited towards the study of games, mostly because of our deep understanding of optimization
problems.

Nowadays, the confluence of algorithms and game theory has a very pragmatic application: the
internet, e-commerce, and social networks have realized fantastically complex networks and games.
Google AdWords is a prime example of algorithmic game theory in action. So answering questions
in algorithmic game theory has a definite real-world impact.

Just as we marked John von Neumann as the father of game theory and computer algorithms, we
can identify Christos Papadimitriou with writing the paper that put together the vision of AGT as
we know it today: in 1991, he wrote The Complexity of the Parity Argument and Other Inefficient
proofs of Existence.

3 A Brave New World

So what is the setup of our new paradigm? Whereas in both single- and multi-objective optimiza-
tion, the problem is essentially about one person’s interests, we have to consider multiple players
now, and their interests, which may - and generally will - be conflicting. For simplicity, we will only
consider a single objective function now: that is, every player seeks to optimize their own objective
function, but only one of them.
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So formally, let’s say we have players p1, . . . , pn, and they each have objective functions u1, . . . , un
they want to optimize, respectively.

p1 u1(x1, . . . , xn)
...

...
pn un(x1, . . . , xn)

Player pi controls variable xi only (note that these variables themselves may represent vectors or
some other kind of structure - not just single numbers). One can see where action comes from:
Player 1 wishes to optimize his objective function u1, but not all the variables are under his control!
He can only choose to change x1 in response to what others have chosen for x2, . . . , xn. Of course,
each of the xi’s have to satisfy constraints: xi must belong to some constraint set Ci.

This is the basic setup of a game. It is ridiculously general, but now we have some language to
work with. Before we continue, we will be entertained by a quiz:

Quiz 1 Suppose G = (V,E) is a finite directed acyclic graph (DAG). Prove that there exists a
vertex in V with outdegree is 0.

Proof. Take a vertex v1 ∈ V . If it has outdegree 0, then we are done. Otherwise, arbitrarily select a
neighbor v2 that is connected to v1 via an out-going edge (v1, v2) ∈ E. Continue collecting vertices
v1, v2, . . . , vk in this manner until we have found a vertex that has outdegree 0. We will not at any
point find a repeat vertex, because G is promised to be acyclic. Thus, k is at most |V |, so we are
guaranteed to find a vertex with outdegree 0.

4 Formal Model of Markets

Here, we discuss a formal model of a market system. This system is known as an Exchange
Market. In this system, there are two kinds of objects: Traders and Goods. There is not any
explicit notion of money.

To model an Exchange Market, we first assume that there are n different Traders, denoted as
t1, . . . , tn, and m different Goods, denoted g1, . . . , gm.

At the beginning of the model, each Trader must have something. The entire marketplace is
considered to have one unit of each Good. The amount of each Good that each Trader possesses at
the beginning is called the initial endowment, which is represented by the following “E-matrix”:

g1 . . . gm
t1 e1,1 . . . e1,m
...

...
. . .

tn en,1 en,m

satisfying, for all j ∈ {1, . . . ,m}:
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m∑
i=1

ei,j = 1

That is, Trader ti posesses Good gj in the quantity ei,j . In this model, Goods are considered
completely divisible, so 0 ≤ ei,j ≤ 1 may be a real number.

In order to completely modelthe Exchange Market, we need to capture each Trader’s self-interest.
This is modeled by the utility function. The utility function u : Rm → Rn can be viewed as
a collection of functions from g1, . . . , gm to a scalar representing the value of those goods to a
particular Trader. The ith component of u, denoted ui, denotes the utility function of the ith
Trader.

Together, u and E form the Exchange Market.

Some important questions arise from the Exchange Market model:

• What is a reasonable exchange?

• Does there exist a reasonable exchange?

• Can you compute the reasonable exchange efficiently?

Using the Exchange Market model, we can attempt to compute the market equilibrium from
the initial endowment and utility function, using an algorithm of Leon Walras.

Input: E, (u1, . . . , un)

In order to compute the market equilibrium, we use the concept of the virtual market. In the virtual
market, we assign a virtual price to each Good, even though the market itself does not contain
money. Therefore, the first step is to compute (p1, . . . , pm), the price for each Good.

Phase 1: Everyone sells their Goods for the designated price and the ith Trader now has bi of
virtual money:

bi =
m∑
j=1

ei,jpj

which can also be written as:

~b = ~ei
T ~p

Phase 2: Everyone buys Goods using their virtual money. The ith Trader buys ~xi Goods:

~xi = arg max{ui(~x)|~xT ~p ≤ bi}

subject to the constraint that supply must equal demand, represented by:
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n∑
i=1

~xi ≤


1
1
...
1



5 Quiz 2

Suppose G = (V,E) is a finite directed graph in which the in-degree of each vertex is at most 1 and
the out-degree of each vertex is at most 1. Prove that #{vertex with in-degree = 0} + #{vertex
with out-degree = 0} is an even number.

Proof. Observe that #{vertex with in-degree = 0} + #{vertex with in-degree = 1} = |V | and
#{vertex with out-degree = 0}+ #{vertex with out-degree = 1} = |V |.

Therefore, #{vertex with in-degree = 0}+#{vertex with in-degree = 1}+#{vertex with out-degree
= 0}+ #{vertex with out-degree = 1} = 2|V |

Therefore, #{vertex with in-degree = 0}+ #{vertex with out-degree = 0} = 2|V | −#{vertex with
in-degree = 1} −#{vertex with out-degree = 1}

Because each edge has one in-vertex and one out-vertex, #{vertex with in-degree = 1} = #{vertex
with out-degree = 1} = |E|.

Therefore, #{vertex with in-degree = 0} + #{vertex with out-degree = 0} = 2|V | − 2|E|. Since
2|V | − 2|E| is even, it follows that #{vertex with in-degree = 0}+ #{vertex with out-degree = 0}
is even.
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