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ABSTRACT 
In the paper a digital material design framework is presented to 
compute multi-material distributions in three-dimensional (3D) 
model based on given user requirements for additive 
manufacturing (AM) processes. It is challenging to directly 
optimize digital material composition due to extremely large 
design space. The presented material design framework 
consists of three stages. In the first stage, continuous material 
property distribution in the geometric model is computed to 
achieve the desired user requirements. In the second stage, a 
material dithering method is developed to convert the 
continuous material property distribution into 3D printable 
digital material distribution. A tile-based material patterning 
method and accordingly constructed material library are 
presented to efficiently perform material dithering in the given 
3D model. Finite element analysis (FEA) is used to evaluate the 
performance of the computed digital material distributions. To 
mimic the layer-based AM process, cubic meshes are chosen to 
define the geometric shape in the digital material design stage, 
and its resolution is set based on the capability of the selected 

AM process. In the third stage, slicing data is generated from 
the cubic mesh model and can be used in 3D printing processes. 
Three test cases are presented to demonstrate the capability of 
the digital material design framework. Both FEA-based 
simulation and physical experiments are performed; in addition, 
their results are compared to verify the tile-based material 
pattern library and the related material dithering method.  

 
KEYWORDS 
Digital material, computer-aided design, additive 
manufacturing, dithering, Stereolithography 

1   INTRODUCTION  
Additive manufacturing (AM) can use multiple types of 
materials (e.g. rigid and flexible materials) to fabricate a 
heterogeneous object with complex shape. Several AM 
processes with such capabilities have been developed before 
such as nozzle deposition [1], direct metal deposition [2], and 
micro droplets dispensing [3]. In our previous work [4], a 
mask-image-projection based Stereolithography (MIP-SL) 
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process was also developed to fabricate heterogeneous objects 
with digitally controlled multi-material deposition. Similar 
multi-material MIP-SL process has also been used in scaffold 
fabrication for tissue engineering [5, 6].  

In the MIP-SL process, an input three-dimensional (3D) 
model is sliced into a set of two-dimensional (2D) layers, 
which are defined as mask images. The generated mask images 
are then projected onto photocurable resin to selectively 
solidify related layers that are accumulated to build the 
designed model. During the layer-based fabrication process, the 
local material properties of a small region such as stiffness and 
electrical conductivity can be changed by controlling the 
material composition of the region. Consequently, an 
accordingly built heterogeneous object may satisfy complex 
user requirements by integrating different materials at various 
places. Hence, in addition to geometric shapes that are 
commonly used in product design, an object can also use 
various multi-material compositions to achieve desired design 
performance. Such fabrication capability provides tremendous 
design freedom to enable design performances that are difficult 
or infeasible to be achieved before [7]. However, how to design 
a heterogeneous object such that it can achieve given design 
performance and, at the same time, can be fabricated by AM 
processes is critical yet challenging. Such a problem is the 
focus of this paper. The AM process considered in our study is 
the multi-material MIP-SL process [4]; however, the proposed 
design method is general and can be extended to other AM 
processes as well.  

Figure 1 shows the proposed digital material design 
framework, in which a 3D model and user’s design 

requirements are used as the input. Based on them, mask 
images are generated as the output that can be used in the MIP-
SL process to fabricate the accordingly designed object. The 
design requirements considered in this paper are shape 
deformation under given loads and constrains. The material 
property that controls the shape deformation of an object is the 
stiffness of the composition material, which is defined as 
Young’s modulus value. The design framework consists of 
three stages. In the first stage, a Young’s modulus value 
distribution in the input 3D model is computed to achieve the 
given design requirements. To speed up the computing process, 
Finite Element Analysis (FEA) simulation based on volumetric 
elements such as tetrahedrons is used to optimize the Young’s 
modulus values in a continuous space domain. In the second 
stage, a N-level material dithering method is used to convert 
the continuous Young’s modulus distribution into discrete 
material composition that is 3D-printable and has close 
Young’s modulus values. That is, the continuous distribution of 
material property is approximated by a distribution of two or 
more types of printable materials. A library of N-level tile-
based material patterns is pre-computed to efficiently compute 
such an approximation. In addition, cubic meshes that mimic 
the AM processes are used to define the discrete volumetric 
domain. The resolution of the cubic meshes can be set base on 
3D printer’s XYZ resolutions. In the third stage, slicing data (i.e. 
mask images for the MIP-SL process) is generated that can be 
directly used by 3D printers. In addition to Young’s modulus, 
the material property in our design framework can also be 
others such as electrical conductivity. 

 Figure 1. Work flow of the proposed framework. 
Hence the digital material design problem considered in 

this paper can be formulated as follows. 
Problem Definition. Consider the cubic mesh of a 3D 

model with each cubic element corresponding to the smallest 
feature size that a 3D printer can fabricate. Assume one of N 
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types of materials can be deposited in each cubic element.  If a 
heterogeneous object based on the given 3D model has a total 
of n cubic elements. The object will have Nn possible material 
compositions. And our goal is to compute a composition that 
can satisfy the given design requirements.  

Note that the design space considered in our digital 
material composition problem is extremely large.  For example, 
for a very simple cubic mesh with 101010 cubic elements, 
n=1000; accordingly, the number of possible material 
compositions for 2 types of materials would be 21000 =1e+301. 
Consequently, using some brute force approaches to explore 
such large combinatorial compositions is infeasible. At the 
same time, search heuristics such as genetic algorithm (GA) are 
also difficult due to such a large design space. In the paper we 
present a digital material design approach by first converting 
the discrete material composition problem into a continuous 
material property design problem, and then using a heuristic-
based material discretization approach to compute discrete 
material composition based on the continuous material property 
distribution.  

The technical contributions of the paper are highlighted as 
follows:  A digital material design framework is presented to 

compute 3D-printable material composition based on user’s 
design requirements;  Two computation approaches are identified to compute 
continuous material property values in a 3D model based on 
given design requirements;  A novel N-level material dithering method is presented that 
can effectively convert continuous material property value 
into discrete material composition with two or more types of 
materials;  A library of tile-based material patterns and pre-computed 
material properties are presented for the dithering-based 
material discretization;  A cubic mesh representation and a related slicing algorithm 
are developed for the MIP-SL process to generate mask 
images based on the computed digital material compositions.  
The remainder of the paper is organized as follows. Section 

2 reviews the related work. Section 3 introduces two 
computation methods that can be used in generating continuous 
Young’s modulus values in a 3D model based on user’s design 
requirements. Section 4 discusses the tile-based material pattern 
library and related material properties. Section 5 presents a 
material dithering algorithm using the pre-computed material 
pattern library to convert the continuous Young’s modulus 
values into 3D-printable material composition. Section 6 
introduces a slicing algorithm to compute mask images that are 
required by the MIP-SL process. Section 7 presents the 
experimental results of three test cases. Finally, conclusions are 
drawn with future work in Section 8. 
2   RELATED WORK 
Material design based on design requirements  
Bickel et al. presented an approach to achieve automatic 
material design driven by user requirements [8, 9]. They firstly 

used a sampling based approach to model the mechanical 
property (Young’s modulus) of the available base materials for 
layered manufacturing. Then a combinatory optimization was 
used to select base material for each volumetric region. 
However, the resolution of the volumetric tessellation is very 
low because the solid will be divided into only several layers. 
Although the combinatory optimization can give an optimal 
material distribution among those layers, the result is not 
accurate due to the low resolution of volumetric optimization 
domain. If a space domain with high resolution is used, the 
combinatory optimization will become time consuming due to 
extremely large design space. Hiller and Lipson [11] presented 
an approach, in which a 3D model is first tessellated into voxels, 
and then discrete cosine transform (DCT) is used to reduce the 
dimension of the optimization domain in order to efficiently 
conduct the material optimization. In the GA-based approach, 
FEA is used to evaluate the approximation error during each 
iteration. Xu et al. [10] presented an approach based on 
material space reduction technique to significantly reduce the 
optimization space, which makes it feasible to compute 
material distribution even for high resolution volumetric mesh. 
In their algorithm, the considered material space is continuous. 
However, the materials that are available in the layered-based 
AM processes are usually limited to two or three types of 
materials. In addition, the volumetric elements used in their 
algorithm are tetrahedron; it is challenging to convert such a 
volumetric element into a layered material layout with close 
material property for 3D printing. Our design framework 
adopts the approach [10] in the first design stage while 
addressing the material layout conversion problem in the 
second design stage (refer to the discussion in Section 3). 

Chen et al. [12] presented a general framework for 3D 
printing to convert user specifications to material distribution. 
Two data structures are designed for the framework. Reducer 
tree is used to hold the volumetric tessellation and tuner node is 
used to handle the combinatorial optimization. Widimce et al. 
[13] presented a flexible and parallelized pipeline that imitates 
the graphics rendering pipeline. No combinatorial optimization 
is needed in the volumetric domain. Instead, the pipeline takes 
3D model and related texture as user input.  Accordingly each 
voxel is processed into 3D-printable material by imitating how 
graphics pipeline processes each pixel into displayable color. 
This approach is highly parallelizable and programmable. 
However, the user input is only limited to appearance. Other 
material distribution design approaches have also been 
developed for achieving given appearance requirements based 
on 3D printing [14, 15]. In addition to using material 
distribution to achieve given design requirements, many other 
design methods have been developed for 3D printing by using 
unit structures to achieve given user specifications [22-28]. 
Material dithering and half-toning 
Dithering and half-toning are well-known techniques for 2D 
color printing.  A dithering algorithm for colored 3D printing 
was presented in [17] to control local material composition in 
3D printing. It converts continuous-tone representation of 
heterogeneous objects into discrete version of machine 
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instructions. However, the method mainly focuses on 
minimizing the color approximation error based on the 
dispersed-dot ordered dithering approach by Bayer [18]. No 
FEA evaluation is used on the resultant dithering results. Zhou 
and Chen [19] presented a 3D half-toning algorithm for a 3D 
printing process based on ink-jet droplets; however, the 
approach is not targeting on approximating the mechanical 
property provided by material distribution in continuous 
domain. Both of the methods were inspired by the half-toning 
methods that have been well developed for 2D color printing. 
Most of the 2D half-toning techniques can be classified into 
three categories: (1) clustered-dot ordered dithering, (2) 
dispersed-dot ordered dithering, and (3) dynamic thresholding. 
Reviews of those half-toning methods can be found in [20-22]. 
The dithering method used in our design framework is inspired 
by the dispersed-dot ordered dithering approach; however, 
instead of visual appearance, we consider the mechanical 
behavior in the material dithering process, which has different 
principle from the color appearance in color printing. In our 
study, the pre-defined dithering patterns are designed based on 
the isotropic mechanical behavior, and the FEA-based 
simulation is used to evaluate the mechanical behavior.  
3   COMPUTATION OF CONTINUOUS YOUNG’S 

MODULUS DISTRIBUTION  
In the first stage of our design framework, a continuous 
Young’s modulus distribution is computed based on user’s 
design requirements. Two options are available in our design 
framework to enable a user to compute such material property 
distribution.  The first option is a material property 
optimization method [10] in which an algorithm is used to 
convert user’s input into a continuous Young’s modulus 
distribution in the given computer-aided design (CAD) model. 
The second option is a feature-based design method, which 
allows a user to interactively design the material distribution 
inside a CAD model [11]. The two options are briefly discussed 
as follows. 
Computation of material property distribution in continuous 
domain 
For a given 3D model with external load and the boundary 
conditions, the approach presented in [10] can efficiently 
generate a continuous Young’s modulus distribution in the 
designed object. The idea is to first tessellate the CAD model 
into a tetrahedron model in order to apply the FEA-based 
simulation. Then the design problem is formulated as an 
optimization problem to find the optimal material vector that 
can best achieve the user specified mechanical response. The 
problem can be formulated using the following equations: 

min,   1
2 E LE + α

2 f(E) − f̅ + αβ
2 ‖u − u‖              (1) 

where E is the material vector, each of its element being the 
Young’s modulus of a tetrahedron, L is the discrete mesh 
Laplacian for scalar fields that are defined on the tetrahedron of 
a mesh (such as E), f ̅and u are the user specified loading force 
and displacement, f  and u  are the loading force and 
displacement vectors in each iteration of the FEA-based 

simulation, and α, β are the weights that define the importance 
of matching forces and displacements.  

The material space (i.e. the space in which material vector 
E is defined) is continuous and has the dimension n (assume n 
is the number of tetrahedrons). Since the FEA-based simulation 
needs to be conducted in each iteration to evaluate the 
difference between the current mechanical response and the 
desired mechanical response, the optimization will be 
extremely slow if a traditional optimization technique such as 
gradient decent method is used. Model reduction is a well-
known technique that can be used to achieve fast deformation 
simulation [30]. It can dramatically reduce the dimension of the 
problem with as little error introduced as possible. In [10], the 
authors adopted model reduction to reduce the dimension of the 
material space. By applying the transformation E = Bz where  
is the material basis matrix, and z is the reduced material vector, 
E in Equation (1) can be replaced to obtain the optimization 
problem: 

min,   1
2 z Qz + α

2 f(E) − f̅ + αβ
2 ‖u − u‖              (2) 

where Q = B LB is the reduced Laplacian matrix. Reducing the 
dimension of material vector improves the optimization speed 
by two orders of magnitude and helps it to achieve nearly 
interactive material design speed.  

Figure 2 shows a test result based on the approach [10]. 
From the input tweezers model and expected mechanical 
response, the method can generate a continuous Young’s 
modulus distribution. Note that different distributions can be 
generated for varying specified responses (refer to Figure 2a 
and 2b). The output of the approach is a tetrahedron mesh, in 
which each tetrahedron has Young’s modulus values defined in 
a continuous domain. 

 Figure 2. Design of continuous material property of a 
medical tweezers. Tweezers tetrahedral mesh is loaded with 
forces at A and B, so that the tweezers deform and grasp a 
pill with a normal contact force at C and D. (a) The spatial 
distribution of Young’s moduli is optimized so that the 
displacements at A,B,C,D remain the same, yet the normal 
contact force on the pill at C,D decreases 20x, to 0.02N. (b) 
Same as (a), except that the normal contact force is made 5x 
stronger (2.15N). In the material legend, 1x corresponds to 
the Young’s modulus of aluminum (70GPa).  

(a) 

(b) 
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In our paper the Vega FEA library [35] is used in the FEA-
based simulation of all the test cases. Vega is capable of both 
linear and non-linear simulation with material vector reduction 
as an option.  
Feature based design tool 
Our design framework also allows the use of an interactive 
material design tool to generate or edit the spatial distribution 
of Young’s modulus [11]. The continuous material distribution 
can be controlled by a set of features. Assume the Young’s 
modulus of two types of materials (soft and hard) are ysoft and 
yhard with ysoft < yhard. Since the output Young’s modulus 
distribution will be in a continuous range [ysoft, yhard], we can 
use m to represent the normalized material composition value 
within [0,1] and linearly map it into the interval [ysoft, yhard]. In the feature-based material design tool, the control 
features can be given in any shapes. In our prototype system, 
four types of control features are defined including point, axis, 
plane, and line segment. An illustration of the Young’s 
modulus distribution using the four types of control feature and 
a combined of three control features is shown in Figure 3. 

 
Figure 3. The illustration of designed Young’s modulus 
distribution using different control features. (a) an given 
CAD model, (b) the plane control feature, (c) the axis 
control feature, (d) the point control feature, (e) the line 
segment control feature, and (f) a combination of three 
control features: line segment, axis and point. Note that the 
control features are associated with yhard, and the 
distribution is initialized into 0.0, which indicates ysoft. 

For any given CAD model M and a point p ∈ M , by 
defining function F(u) , we can have m = F(u ) , where u  
and m  are distance vector and material composition vector 
associated with p, respectively. Since the distribution is 
initialized into 0.0 (ysoft) and there are r control features 
associated with 1.0 (yhard). The r-dimensional vector u =
(u , , u , , … … , u )  in which u , , i ∈ 1, r  are the minimum 
distance from p to any material-1 control feature C , i ∈ 1, r . 
The return vector m = (m , , m , ) represents the percentage 
ratio of ysoft and yhard at point p. In order words, the material 
property value at p is calculated by m , y + m , y . 
The function F(u)  calculates the percentage m ,  at point p 

based on u . Then the percentage for background material, 
material 2 can be calculated simply by 1 − m , . Hence, 
function F(u) can be represented by the following formula: 

F u = f u , 1 − f u = (m , , m , )                (3) 
in which the function f u  is used to calculate m , . And the 
function f u  can be defined as follow: 

f u = h ∑ g u ,                                       (4) 
in which g u ,  is elementary function associated with control 
feature C , which calculates the percentage of material-1 at 
point p under the influence of the control feature C . h(x) is a 
regulating function that can be defined as: 

h(x) = 1                              x 1x          x 0 and x 10                               x 0
                      (5) 

It will guarantee the value of m ,  to be in the range of [0, 1]. 
Hence m , , the total percentage of y  at p, is given by the 
regulated summation of the percentages under all material-1 
associated with the control features.  

Our prototype system employs a novel way to intuitively 
define the influence function g u ,  for control feature C . The 
influence range for C  is constructed by two areas. The first area 
is called core area, which has the material property value 
homogeneously equal to y  at any point in it. The second 
area is called the boundary area, in which the percentage of y  decrease as the distance to C  becomes larger. The user is 
free to control the radius of core area around C  and the radius 
of boundary area around the core area. In addition, the user can 
define the transmission function for the boundary area. For 
example, Figure 4 shows the effect of different radius of core 
area and boundary area using exponential functions.   

 
Figure 4. The effect of different radius of core area and 
boundary area. (a) the truss structure model and the 
control feature plane, (b) the core radius is 0 and the 
boundary radius is 2, (c) the core radius is 1 and the 
boundary radius is 2, (d) the core radius is 1 and the 
boundary radius is 0.4. The spatial distribution of Young’s 
modulus values is shown in colors between ysoft and yhard. 
Cubic mesh generation based on fabrication constraints 
There are two major reasons that prevent the continuous 
material property distribution being directly achievable in 3D 
printing. The first reason is that the number of available 
materials is limited for a 3D printer. It is impractical to print 
each dot (or small region) with the desired material property 
that is given in the continuous material property distribution. In 
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our digital material design framework, this issue is resolved by 
using our N-level tile-based material pattern design (refer to 
Section 4). The second reason is that in 3D printing, the 
material dot that can be printed is in specific shape, and the 
material property is homogeneous within it. The material dot of 
a 3D printer is usually a rectangular cell. Assume the building 
direction is along the Z axis. The X and Y dimensions of the cell 
equal to the minimal feature sizes of the AM process in the XY 
plan, and the Z dimension of the cell equals to its minimum 
layer thickness in the Z axis. In our study we assume the Z 
dimension equals to the X and Y dimension for simplicity. 
Hence each cell considered in the paper would be a cube (as a 
voxel); however, our method can also be extended to more 
general cell shapes and sizes. 

A solid voxelization method such as [31, 32] can be used 
to convert an input surface mesh into a uniform cubic model. In 
our prototype system, we first convert the surface mesh into a 
LDNI model [33]. This makes the cubic mesh generation rather 
efficient since the in/out classification of each cube can be 
easily determined. Figure 5 shows the generated uniform cubic 
mesh for a given buddy model in STL format.  

 
Figure 5. Cubic mesh generation from a surface model. 

4   TILE-BASED MATERIAL PATTERN DESIGN 
Two computation approaches to generate a continuous Young’s 
modulus distribution were discussed in Section 3. However, the 
spatial distribution of Young’s modulus is in continuous 
domain and cannot be directly printed using a 3D printer. How 
to use printable materials given by a 3D printer to closely 
approximate the computed Young’s modulus distribution is an 
open question that still requires significant effort.   

The basic approach used in our digital material design 
framework is to compose cubic-based tiles based on pre-
defined material patterns to build a digital material library such 
that various Young’s modulus values between [Ysoft, Yhard] can 
be achieved. Note that a cubic element in a tile corresponds to 
the smallest material dot that a 3D printer can fabricate. In our 
implementation based on the MIP-SL process, such a cubic 
element is ~0.1mm. Our tile-based material pattern design idea 
was inspired by the half-toning method that has been developed 
for 2D color printing.  To display a gray-scale image, a tile in 
2D printing is designed by using two basic elements (i.e. black 
and white dots). Similarly, we can use two types of materials 
(e.g. hard and soft materials) to form different distribution 
patterns such that the constructed tiles can achieve desired 
Young’s modulus values. Figure 6(a) shows an example of 

various 22 tiles. By changing the material pattern of how soft 
and hard materials are used in the tile layout, five different 
Young’s modulus values can be achieved by the 22 tiles. 
Suppose the Young’s modulus values of the soft and hard 
materials are 7.79e5 Pa and 2.31e8 Pa, respectively. The FEA-
based simulation can be used to predict the Young’s modulus 
of the tensile bars that are consisted of the three new tiles. 
Accordingly, a material pattern library as shown in Figure 6(a) 
can be constructed.   

 

 
Figure 6. A material pattern library based on 22 tiles. (a) 
An illustration of different material patterns and the 
related Young’s modulus values; (b) a comparison between 
physically tested Young’s modulus and FEA-simulated 
Young’s modulus. From left to right, the material 
composition changes progressively from soft to hard. 
Concept validation 
A systematical material pattern design method is required to 
convert the continuous Young’s modulus distribution into 
printable material composition that can closely approximate its 
material property. In order to validate the concept of the tile-

(a) 

(b) 
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based material pattern design approach, we performed physical 
experiments to verify the computed Young’s modulus based on 
the FEA simulation for the newly constructed tiles. For the 
aforementioned 22 tiles as shown in Figure 6(a), tensile bars 
related to the five different material pattern designs were 
fabricated. Each tensile bar consists of consecutive tiles that are 
repeated in both X and Y directions. A tensile test machine was 
used to measure the Young’s modulus values of the fabricated 
tensile bars. Figure 6(b) shows the tensile testing equipment 
and the fabricated tensile bars. 

Based on the given ysoft and yhard, the FEA simulation was 
used to compute Young’s modulus values of the three blended 
tile configurations.  Similar to the physical tensile tests, we fix 
one end of the tensile bar and apply a loading force  at the 
other end in the FEA simulation. The displacement ∆l  at each 
vertex v  of the loading face can be recorded based on the 
applied loading force. Accordingly, the Young’s modulus of 
the related tile configuration can be calculated based on the 
following equations: 

E = σ
ε                                                            (6) 

σ = F
A                                                                 (7) 

ε =
∑ ∆lnl                                                          (8) 

where A is the area of the loading face, n is the total number of 
vertices on the loading face, and l is the total length of the bar. 
Figure 6(b) shows a comparison of the experimental testing 
results with the FEA-based simulation results. The two sets of 
results correspond to each other well, which verifies the tile-
based material pattern design concept. 
Tile-based material pattern design methodology 
Similar to the 22 tiles, a N-level material pattern library is 
constructed by using different number of cubic elements in a 
tile and varying material composition patterns. In addition, a 
constructed tile can be formed in 2D or 3D. A 2D tile with 
dimension n has a total of n2 cubic elements that all lay inside a 
single layer. In comparison, a 3D tile with dimension n in the 
three orthogonal directions has a total of n3 cubic elements. 
Note that a desired property for the designed tiles is isotropic, 
i.e., the Young’s modulus shown by the tile is independent to 
the loading directions. Accordingly, for n=3, Figures 7 and 8 
show all the isotropic 33 tile patterns in 2D and 3D, 
respectively.  

Isotropic material pattern design with increased sizes can 
be applied recursively on 22 or 33 tiles. In other words, 
larger tiles can be formed by using the previously designed 
smaller tiles. Hence a N-level material pattern design method 
can be developed as follows. Assume starting from level 0, a 
tile is formed by using cubic elements that correspond to the 
smallest elements that can be built by a 3D printer. Each cubic 
element is built using one of the two or more available 
materials (e.g. soft and hard materials). The tiles as shown in 
Figures 7 and 8 are all belonged to level-0 tiles. Accordingly, 
level-1 tiles can be formed using level-0 tiles by picking two 

material patterns of level-0 tile as the new input “soft” and 
“hard” materials. The basis material patterns can be any level-0 
tile patterns. Accordingly, the selected level-0 tile patterns can 
be used to form new level-1 tiles. Figure 9 shows an example 
of the constructed level-1 material tile patterns. The newly 
constructed material patterns are all isotropic as well.  The 
process can be repeated recursively to form level-2 tiles until 
level-N tiles. 

 
Figure 7. Isotropic patterns for 2D 33 tile. Totally there 
are 8 different isotropic material patterns. 

 
Figure 8. There are a total of 27 elements in the 3D 33 tile. 
They can be classified into four groups. The material type 
within each group should be the same in order to generate 
isotropic tile. For each group, they are either all soft or all 
hard. Hence, there are a total of 24=16 different isotropic 
material patterns for the 3D 33 tile. 

 
Figure 9. An illustration of how to construct Level 1 tile. By 
considering two Level 0 tile patterns as “soft” and “hard” 
material element, we can grow Level 1 patterns using the 
basis material patterns that are taken from a subset of 
Level 0 tile patterns. 

Note that, in addition to being isotropic, the level-N 
patterns obtained from the aforementioned recursive process 
always have their Young’s modulus values between the 
Young’s modulus values of the two input level-N-1 patterns 
that are used as the “soft” and “hard” materials. Such monotone 
property on Young’s modulus values is important for the newly 
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constructed level-N patterns. Such monotone property can be 
satisfied if the following two conditions are satisfied:  

(1) The “soft” level-N-1 pattern has a smaller Young’s 
modulus value than the “hard” level-N-1 pattern;  

(2) The basis material patterns taken from level-0 patterns 
have monotone property on their Young’s modulus 
values.  

 

 
Figure 10. The level-0 and level-1 2D tile pattern library 
and their corresponding Young’s modulus values based on 
the FEA simulation. 

Building a N-level tile-based material pattern library 
Based on the N-level material pattern design method, a material 
pattern library can be pre-computed to approximate the 
continuous Young’s modulus between those of the soft and 
hard materials. Figure 10 shows a level-0 library and a level-1 
2D tile library that is obtained using the patterns in the level-0 
library as the basis and input patterns. In the example, the 
Young’s modulus values of the soft and hard materials are set 
as 2.69e6 Pa and 2.69e9 Pa, respectively. 

Similar to the examples of the N-level tile pattern library in 
2D, the presented design method and related library 
construction procedure can also be used for 3D tiles. Figure 11 
is the chart of Young’s modulus for level-1 3D tile. Note that, 
in a level-2 3D tile, there are 272727 unit cubic elements. 
We can easily achieve a resolution of 126 on Young’s modulus 
values using this level-2 3D tile library.  

 
Figure 11. The 6 patterns selected to produce a level-2 3D 
tile pattern library. There are a total of 126 Young’s 
modulus values as shown in the figure between those of the 
soft and hard materials. 
5   N-LEVEL MATERIAL DISCRETIZATION 
Based on the N-level tile pattern library as discussed in Section 
4, a material dithering algorithm is developed to efficiently 
convert the continuous Young’s modulus distribution into 3D 
printable material distribution on the cubic model.  
N-level tile-based dithering algorithm 
As discussed in Section 3, when computing a cubic model from 
a given surface model, the size of each cubic element is 
selected based on the minimal feature size of the used 3D 
printer. Accordingly, those cubic elements can be organized 
into a set of tiles. For example, suppose 2×2 2D tiles are used. 
Figure 12 shows an example of the tiles for a set of given cubic 
elements.  There could be additional cubic elements that cannot 
be properly organized into a tile. In this case, dummy elements 
can be added to form a complete tile. Note that these dummy 
elements will not be considered in the process planning stage.  
Hence they will not be fabricated in the 3D printing process. 

(a) 

(b) 

(c) 
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Figure 12. Illustration of handling outstanding elements. 

After organizing all the cubic elements into a set of tiles, 
each tile needs to be determined on which material pattern to 
use to achieve the best approximation of the related Young’s 
modulus value. A simple strategy is to first calculate the 
designed Young’s modulus of each tile; accordingly, a material 
pattern with the closest Young’s modulus value can be selected 
from the pre-computed material pattern library. To calculate 
Young’s modulus value in each tile, we can integrate all the 
Young’s modulus values inside the volume of the tile, and then 
divide it by the tile volume. This approach is general and can 
be applied no matter whether the input continuous Young’s 
modulus distribution is represented using tetrahedron mesh or 
analytical function. However, the integration approach is 
computational expensive. In our implementation, a simpler 
approach is used to evaluate the Young’s modulus value of 
each tile.  The more efficient heuristic used in our study is to 
estimate a tile’s Young’s modulus based on the average of 
Young’s modulus values in all the cubic elements of the tile. 
The Young’s modulus value of each cubic element can be 
evaluated using its centroid point as a representative although 
more sampling points in the element can be used as well. 

Choosing the closest material pattern to approximate the 
desired Young’s modulus in each tile is intuitive and simple; 
however, using more sophisticated methods may achieve more 
accurate approximation. In our study, we investigated the error 
diffusion methods that have been widely used in 2D color 
printing. The basic idea of error diffusion is to evaluate the 
approximation error of each tile, and to spread the error to its 
neighboring tiles such that their desired Young’s modulus 
values can be adjusted accordingly.  

There are many error diffusion methods. Instead of 
spreading error with constant weight ratio (e.g. Floyd and 
Steinberg weights [34] as shown in Figure 13a), we derived a 
new error spreading method that is more suitable for material 
dithering based on Young’s modulus. For simplicity, consider 
the loading force is given on orthogonal directions. For 
example, the four tiles, T1 – T4, are shown in Figure 13. Figure 
13(b) demonstrates how T1 spread its error to T2 and T3; and 
Figure 13(c) shows how T4 receives error spread from both T2 and T3. Starting from T1, since it is the first element, its desired 
Young’s modulus value E1 will not be adjusted by the errors 
received from its neighbors. We can directly pick the material 
pattern that has the closest Young’s modulus to E1 from the N-
level material pattern library.  Suppose the related tile now has 
the Young’s modulus E1. Tile T2 will be somehow influenced 
by the error between E1 and E1. Hence its desired Young’s 
modulus will be adjusted from E2 to E2′ accordingly. We found 
that the adjusted Young’s modulus E2′ of T2 need to follow the 
physical governing equation: 

l σ
E1 + l σ

E2 = l σ
E1 + l σ

E2′                               (9) 
where  is the edge length of a tile, σ is the stress provided by 
the horizontal force. Hence l + l  is the desired elongation 
that tiles T1 and T2 are supposed to provide together, and l +
l  is the elongation provided by T1 and T2 after E1 is 
approximated by E1 and E2 adjusted to be new desired Young’s 
modulus E2′. We can easily calculate E2′ because E1, E1, E2 are all known variables. We will eventually choose a material 
pattern whose Young’s modulus is closest to E2′  when we 
handle T2. The same principle applies in both horizontal and 
vertical directions. Since the error only spread rightward or 
downward, T2 and T3 will only be influenced by T1. And T4 presents a more general case because it has to consider the 
errors spread from both T2 and T3.  

 

   
Figure 13. Error diffusion methods. (a) Floyd and Steinberg 
method; (b) error spreading directions; and (c) error 
receiving directions. 

Assume the material patterns chose for T2 and T3 have the 
Young’s modulus E2 and E3, respectively. Given Equation (9), 
for both horizontal and vertical directions, we can compute the 
adjusted Young’s modulus for T4. This means that we will have 
an over-constrained system, in which the E4′  value for the 
horizontal and vertical directions is not the same. We resolve 
this conflict by taking average of the elongation that E4′  is 
supposed to provide in both directions. The governing equation 
is given as follows. 

l σ
E4′ = 1

2 l σ
E2 + l σ

E4 − l σ
E2

+ l σ
E3 + l σ

E4 − l σ
E3        (10) 

with E2 , E2 , E3 , E3  and E3  all known, we can solve E4  
using equation (10). Accordingly, the material pattern whose 
Young’s modulus is the closest to E4′ can be chosen for T4. In 
Section 7, we reported the performance of different error 
diffusion methods including our error diffusion approach and 
the approach based on Floyd and Steinberg weights for error 
spreading. 

(a) 

(b) (c) 
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Discussion on tile dimension selection 
By comparing the tensile test results as shown in Figure 16, it 
can be observed that the approximations of both 22 and 33 
tiles are significantly better than those of 11 tiles (i.e. using 
constant threshold). This result verifies that, in generally, the 
more Young’s modulus values that a tile can represent, the 
better approximation can be expected.  However, it may not 
always be appropriate to enlarge the tile size in order to achieve 
more Young’s modulus values in the N-level material library. 
Notice that there exists a trade-off between the resolution of the 
tile within an object and the Young’s modulus resolution that a 
tile can represent. For example, if 2×2 tile is selected, there will 
be 5 different Young’s modulus in level-0. If 3×3 tile is 
selected, there will be 8 Young’s modulus available in level-0. 
However, for the same cubic meshes with the finest printing 
resolution, the number of tiles if 2×2 tiles are used will be 1.5 
times larger than that of 3×3 tiles, which will give the dithering 
algorithm more degree of freedom to conduct the 
approximation. 

We also investigate how the tile size influences the 
dithering performance by comparing the tensile test results 
between 2×2 and 3×3 tile (refer to Figure 16). It can be 
observed from Figure 16 that the 2×2 tiles provide better 
approximation result. This observation is not expected given 
that 3×3 tiles has eight Young’s modulus values and 2×2 tile 
has only five Young’s modulus values. However, after further 
investigation, it is identified that the Young’s modulus related 
to the 2×2 tiles has finer resolution in the relatively soft region 
than that of 3×3 titles (refer to Figure 14). The elongation 
performance in the tensile test is dominated by the soft 
materials, which explains why the 2×2 tiles have a better 
approximation result than the 3×3 tiles. 

 
Figure 14. Young’s modulus plot for 2×2 level-1 tile and 3×3 
level-1 tile. Although they share the same Young’s modulus 
range, the 2×2 tile gives more resolution in the relatively 
soft region. 

In summary, although the tiles with larger Young’s 
modulus resolution tend to provide better approximation, there 
exists a trade-off between the Young’s modulus resolution and 
the total tile number inside the heterogeneous object. In 
addition, how the Young’s modulus is spread in the range of 
soft materials should be considered in order to select proper tile 
design for specific applications. 

6   PROCESS PLANNING FOR THE MIP-SL PROCESS 
In the multi-material MIP-SL process, one mask image is used 
to define the shape of one type of materials. Assumption two 
materials (i.e. soft and hard materials) are available in the MIP-
SL based 3D printer. Each layer will need two mask images to 
build the two types of materials in each layer. In principle, the 
union of the two mask images for one layer should be the cross 
section image of the CAD model on this layer (refer to Figure 
15). Hence for an input CAD model, two sets of mask images L  and L  are prepared after slicing the model into a set of 
layers, with L  for soft material and L  for hard material. 

After getting the cubic mesh, it is trivial to generate the 
mask images since each cubic cell in the mesh is already 
corresponding to the minimal feature that can be built by the 
MIP-SL based 3D printer. We can easily create mask images 
on each layer and “fill in” pixels on each mask image according 
to the cubic elements and their corresponding materials. Based 
on our experiments using our prototype MIP-SL system, the 
minimal feature that can be safely built is corresponding to a 
block consisting of 15×15 pixels in our system. So for each 
cubic element, we fill in 15×15 pixels in the mask image for its 
material type as illustrated in Figure 15. 

 Figure 15. Illustration of the slicing algorithm. 
7   TESTING RESULTS 
Three test cases are used to test the developed digital material 
design framework. 

 
Figure 16. Input tet-mesh and its Young’s modulus 
distribution (each dot represent a tetrahedron and its 
Young’s modulus is indicated by color). All the dithering 
results are shown with each dot representing a cube in the 
cubic mesh. 
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Figure 17. The elongation ∆  of the tensile test for different dithering settings. 

 
Figure 18. Approximation performance for different input continuous Young’s modulus distribution. 

Test case 1: A tensile bar 
The first test case is a simple tensile bar as shown in Figure 16. 
The dimension of the tensile bar is 6mm×50mm×2mm. The 
dimension of each cubic element in the generated cubic mesh is 
0.5mm. Hence the cubic mesh resolution is 12×100×4 or 4,800 
elements. The boundary condition of the tensile test is 
represented in Figure 16. The soft end of the bar is fixed while 
a vertical tensile force is applied at the hard end. The force is 
increased 4 times from 0.1N to 2.0N. Elongation of the hard 

end is recorded as the results, which are shown in Figure 17. 
The FEA-based simulation using Vega library is conducted on 
both the input tetrahedron mesh and all the resultant cubic 
meshes from different dithering settings. The material 
distributions of the input tet-mesh and resultant dithered cubic 
mesh are shown in Figure 16. The input tet-mesh has a 
continuous Young’s modulus distribution and its elongation is 
used as the target of the approximation. We tried three different 
tile settings, 1×1 tile, 2×2 tile level-0, and 3×3 tile level-0. We 
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also added the error diffusion into our dithering approach. We 
implemented both the error diffusion method used in displaying 
half toning (Floyd and Steinberg), and our newly derived 
tensile-based error diffusion method. In Section 5.2, the tile 
selection by comparing the results of 1×1, 2×2 and 3×3 tiles 
has been discussed. 

Another comparison we made is the tensile testing 
performance of the error diffusion methods. We can see from 
Figure 17 that the material dithering results based on error 
diffusion methods (no matter which kind of error diffusion 
methods) have better approximations on the target elongation 
than without using it. After further comparison, we can see that 
our tensile-based error diffusion method gives a closer 
approximation than the Floyd and Steinberg method for both 
2×2 and 3×3 tiles. 

For the tensile test case, we also evaluated the performance 
of our material dithering algorithm on approximating different 
continuous Young’s modulus distribution in the input tet-mesh. 
In Figure 18, we generated dithering results for two different 
types of continuous Young’s modulus transition within the 
input tet-mesh (i.e. linear transition and exponential transition). 
We used 2×2 level-0 tile with the tensile-based error diffusion 
for the dithering process. As a benchmark, we also provided the 
FEA responses of pure soft and pure hard bars. As can be seen 
in Figure 18, our tensile-based material dithering method is 
highly effective in approximating different continuous Young’s 
modulus distributions. Note that, in Figure 18, the exponential 
scale is used for the Y-axis values, which are the elongation 
recorded at the loading end of the bar.  

 

 
Figure 19. The dithering result of a long tweezers model. 

Test case 2: A long tweezers 
We applied our digital material design framework to test the 
tweezers design as shown in Figure 2. Figure 19(a) shows a 
pure aluminum tweezers’ clipping force on the capsule. Figure 
19(b) shows the continuous Young’s modulus distribution in 
order to largely reduce the clipping force to only 0.02N [10]. 

Figure 19(c) shows the dithered cubic mesh based on the given 
continuous Young’s modulus distribution as shown in Figure 
19(b). In addition, Figure 19(c) also shows the slicing mask 
images on a layer for the multi-material MIP-SL process. In 
this test case, we used 2×2 level-1 tile in the dithering approach. 
The continuous Young’s modulus distribution within the tet-
mesh is generated using the approach presented in [10]. As can 
be seen, the input tet-mesh with continuous Young’s modulus 
is converted into a cubic mesh with all the necessary material 
compositions that are ready for the 3D printing process. 
Test case 3: A short tweezers 
In test case 2, the continuous Young’s modulus distribution is 
generated by the material space reduction method as discussed 
in Section 3.1. Another tweezers test case that we conducted is 
based on the continuous Young’s modulus distribution 
generated by the feature-based material design tool as discussed 
in Section 3.2.  

Figure 20 shows the short tweezers test case. The 
dimensional size of the tweezers model is 30mm×18mm×8mm. 
In this tweezers design, we used three point-based control 
features to indicate where the part needs to be soft. Accordingly, 
a continuous Young’s modulus distribution can be generated by 
the feature-based design tool. After the FEA simulation, the 
designer can further edit the continuous material distribution 
until a satisfactory design performance is obtained. Based on 
the designed material distribution, a level-1 2x2 tile library is 
used in material dithering; each cubic element’s dimension is 
set as 0.5mm. Our dithering method generates a cubic model 
that carries 3D printable material information. Accordingly, the 
cubic mesh can be sliced into binary images for each layer as 
discussed in Section 6. Figure 20 shows the mask images of a 
layer for both soft and hard materials. The 3D-printed object 
using our prototype MIP-SL system is shown in Figure 20. 

 

 
Figure 20. The design and fabrication of a short tweezers. 

(a) 

3D printed 
physical object  
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8   CONCLUSIONS 
The paper presents a digital material design framework that can 
compute 3D-printable material distribution for given 
component shape and design requirements. A user can specify 
the response of the CAD model under certain loads and 
constrains. Accordingly, the slicing data to fabricate a multi-
material heterogeneous object will be generated by our design 
framework to closely achieve the given design requirements. 
The presented digital material design framework consists of 
three stages. In the first stage, a continuous material property 
distribution is computed to achieve the given design 
requirements. In the second stage, a material dithering method 
is used to convert the continuous material property distribution 
into discrete 3D-printable material compositions. A material 
pattern library based on N-level tiles has been developed to 
efficiently compute close material approximation based on the 
presented material dithering method. A cubic model with its 
resolution chosen based on 3D printers is used in the material 
dithering process. In the third stage, slicing data for the selected 
3D printing process is generated. Physical experiments have 
been performed to verify the developed N-level material pattern 
library. Three test cases have also been presented to illustrate 
the effectiveness of the developed design framework. 

Digital material design for 3D printing processes is a 
challenging problem due to its extremely large design space. In 
our future research, further investigation will be conducted to 
improve the approximation accuracy of the dithering method.  
Some approaches such as adopting more material patterns and 
more sophisticated error diffusion techniques will be 
investigated. In addition, we plan to test the digital material 
design framework on other material properties other than 
mechanical responses. 
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