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ABSTRACT 
Functionally graded materials (FGM) possess superior 

properties of multiple materials due to the continuous 
transitions of these materials. Recent progresses in multi-
material additive manufacturing (AM) processes enable the 
creation of arbitrary material composition, which significantly 
enlarges the manufacturing capability of FGMs. At the same 
time, the fabrication capability also introduces new challenges 
for the design of FGMs. A critical issue is to create the 
continuous material distribution under the fabrication 
constraints of multi-material AM processes. Using voxels to 
approximate gradient material distribution could be one 
plausible way for additive manufacturing. However, current 
FGM design methods are non-additive-manufacturing-oriented 
and unpredictable. For instance, some designs require a vast 
number of materials to achieve continuous transitions; however, 
the material choices that are available in a multi-material AM 
machine are rather limited. Other designs control the volume 
fraction of two materials to achieve gradual transition; 
however, such transition cannot be functionally guaranteed. To 
address these issues, we present a design and fabrication 
framework for FGMs that can efficiently and effectively 
generate printable and predictable FGM structures. We adopt a 
data-driven approach to approximate the behavior of FGM 
using two base materials. A digital material library is 
constructed with different combinations of the base materials, 
and their mechanical properties are extracted by Finite Element 
Analysis (FEA). The mechanical properties are then used for 
the conversion process between the FGM and the dual material 
structure such that similar behavior is guaranteed. An error 
diffusion algorithm is further developed to minimize the 
approximation error. Simulation results on four test cases show 
that our approach is robust and accurate, and the framework can 
successfully design and fabricate such FGM structures. 

1. Introduction
In functionally graded materials (FGM), the elemental

composition or structure within a domain varies gradually as a 
function of position, allowing for the gradual transition from 
one material to another. Hence desired material properties can 
be tailored locally. Unlike the sharp interface existing in the 
conventional composite material where most failure is initiated 
[1], the smooth gradient interface in FGM enables optimal 
marriage of different materials (such as metals, ceramics, and 
polymers); hence broader applications based on FGM can be 
enabled compared to the use of a single material. Since first 
introduced in Japan in 1984 [2], functionally graded materials 
have found their applications in aerospace, automobile, 
medicine, sport, energy, sensors, optoelectronics, etc. A number 
of survey papers [3] [4] [5] [6] [7] summarized the progresses 
of FGM research. One exemplary application is an FGM with 
ceramic-metal structure. The gas-turbine community applies 
ceramic coatings, referred as Thermal Barrier Coatings (TBC), 
to protect metals from high-temperature turbine environment 
[8]. This ceramic-metal FGM produces a thermal barrier with 
outside temperature of 2000K and inside temperature of 1000K 
within 10mm thickness [9]. Another emerging application is 
identified in orthopedic prostheses. The FGM-based grafts 
(implants) can be adapted to reproduce the local properties of 
the original bone, which elongates the grafts’ lifespan by 
minimizing the stress shielding effect and reducing the shear 
stress between the implant and the surrounding bone tissue 
[10].  

Several fabrication approaches have been proposed to 
manufacture FGMs. In [11], Naebe and Shirvanimoghaddam 
reviewed most relatively recent FGM fabrication methods, 
including gas based, liquid phase, and solid phase methods, 
which can be used to physically or chemically obtain tailored 
properties. However, most of them can only control the material 
gradient within one dimension or two dimensions. For example, 
the gas-based fabrication is basically a layered method, and 
within each layer, the material composition is identical. In 
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comparison, with the development of multi-material additive 
manufacturing technologies [12] [13] [14], FGM objects with 
arbitrary three-dimensional material compositions can be 
fabricated.  

The individual-voxel controllability in the additive 
manufacturing process enables heterogeneous material 
integration, and thus multi-material AM processes provide 
tremendous flexibility in the design of FGM. Through the 
advanced AM technologies, designers can refine and optimize 
products by exploring both the geometric and material 
distributions to meet customer’s requirements. However, the 
FGM designs are always coupled with manufacturing 
limitations [6]. For example, most FGM manufacturing 
methods have the minimum particulate voxel that can only 
compose a single material within the voxel. For the additive 
manufacturing, the minimum particulate voxel is the printing 
resolution of the AM process for each material. However, most 
FGMs prefer smooth (ideally continuous) gradient interface to 
minimize the fracture. Hence, an open challenge is how to 
design digital material compositions such that they can best 
approximate the desired continuous functional gradient material 
distribution. This is also the focus of this paper.  

A FGM design framework for multi-material AM 
processes is proposed to fill the research gap on designing, 
analyzing and fabricating an FGM object. The framework 
allows a user to design gradient in a spatial domain that has a 
one-to-one location associated with the physical location where 
one material could be deposited in the fabrication process. The 
design then has to be re-adjusted in order for it to be physically 
fabricated using limited number of base materials that are 
available in a multi-material AM machine. However, how to 
determine where to put these limited base materials to achieve 
the same function as the desired gradient materials is an NP-
hard problem. In our framework, we propose to substitute the 
continuous gradient distribution with two or more base 
materials in a discrete manner. When the problem becomes 
small, we can easily find an approximate replacement with our 
data-driven approach. The gradient design is first divided into a 
set of cells and the functional behavior of each cell is being 
matched to a substitution that has similar performance. The 
characteristic of a substitution is determined by the spatial 
pattern of the base materials, such that all the substitutions, 
when putting together, form a heterogenous library. By finding 
appropriate substitutions from the library, the gradient design 
can be approximated and the design is guaranteed to be 
printable by multi-material AM processes. 

The framework also facilitates the finite element analysis 
of FGMs for AM, having a specific location associated with 
each material. Through FEA we can know the properties of the 
FGM, as well as the properties of our approximated solution. 
The resultant performance with respect to the boundary 
deformation is used to evaluate the accuracy of our method. 
Furthermore, studies are presented to demonstrate the effect of 
different discretization schemes that could improve the 
approximation accuracy. 

Compared to the use of topology optimization (TO) to 
transform gradient into optimal printable distribution, our 
method is relatively simple and effective. This is because we 
avoid the burden of iterations; while the TO methods treat each 
discretization as one design variable and the computational 
effort will sharply increase when the domain extent increases. 
This paper aims to introduce a different strategy to design and 
analyze FGMs. The rest of the paper is organized as follows. 
Section 2 briefly reviews the FGM related topics. Our proposed 
method is presented in Section 3. Several testing results and the 
corresponding discussions are given in Section 4. Finally, 
Section 5 concludes the paper with remarks on future work.  

2. Related Work 
To make the paper self-contained, this section briefly 

reviews the FGM related topics, including FGM fabrication, 
design, and analysis.  

FGM fabrication 
FGMs are often fabricated in the specific spatial 

distribution of the constituent phases such as metals, ceramics, 
and polymers under continuing and subtle variation in 
composition makeup. Since the first successful attempt in 
fabricating FGM using thermal barrier coating in 1984, 
numerous approaches have been proposed to manufacture 
FGMs. In the review paper [11], Naebe reviewed most recent 
FGM fabrication methods, including gas based (e.g., vapour 
deposition), liquid phase (e.g., plasma spray) and solid phase 
methods (e.g., powder metallurgy), which can be used to 
physically or chemically obtain tailored properties. Another 
survey paper [15] also presented comprehensive insights on the 
FGM manufacturing processes.  

However, most of these methods can only control the 
material gradient within one dimension or two dimensions. 
With multi-material additive manufacturing technologies [12] 
[13] [14] [16], FGM objects with arbitrary three-dimensional 
material compositions can now be fabricated. Several AM 
methods can fabricate FGM components with ceramic, metal, 
or polymer. Typical AM processes with FGM capability include 
multiple material systems for selective beam sintering [17], 
multiple-nozzle deposition [18], multiple-powder deposition 
[19], multiple-droplet dispensing [20] and multiple-vat mask-
image-projection-based stereolithography (MIP-SL) [21]. 
These multi-material AM processes pave a new path to 
fabricate FGMs and also raise signifcant challenges and new 
requirements on FGM design.  

FGM design methodology 
Biomimetic design is learning from nature, and fortunately, 

FGM is not new to nature. For example, Bamboo, human bone, 
and shell are all FGMs. A lot of research efforts show that these 
biological structures change their geometry to adapt to physical 
environment [22]. Many FGM designs are inspired by these 
biological structures, which are optimized to an external 
stimulus. A recent review paper [23] gives a comprehensive 
understanding of bio-inspired FGM design.  
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FGM design also evolves with the advance of FGM 
manufacturing processes. Initially, FGM is only a one-
dimensional design problem, because the fabricated FGMs’ 
material composition mainly varies only along the layered 
direction. For instance, the design of Thermal Barrier Coating 
is governed by a power law gradient function [24], which 
determines the material distribution. Hence parametric design is 
effective and sufficient in designing FGM problems with one-
dimensional variations.  

When additive manufacturing is applied to the fabrication 
of FGMs, the design problems becomes much more challenging 
due to the number of design variables increasing from several 
function parameters to a vast number of individual voxels with 
given material compositions. To meet this need, another well-
known FGM design methodology called Topology 
Optimization (TO) has been intensively studied. Topology 
optimization is regarded as the process of determining the 
optimal material composition inside a design domain. Readers 
can refer to [25] [26] [27] for a comprehensive coverage of the 
recent developments in topology optimization of multi-material 
problems. However, a down side of topology optimization is it 
is computationally expensive. To address the design efficiency 
and manufacturing limitation, we propose a new design 
methodology in the paper, exemplar-based design, which 
approximates the continuous material distribution to digital 
material compositions. 

FGM analysis 
A typical FGM represents a particulate composite with a 

prescribed distribution of volume fractions of constituent 
phases [6]. The particulate composition determines the FGM’s 
material property. The optimal design of FGM is based on the 
analysis of material property for each particulate composite. 
Numerous empirical and theoretical models have been 
proposed to model the FGMs’ material property [6]. With the 
help of numerical simulation, the Finite Element Analysis 
(FEA) method is prevailing in recent years [28]. Several 
commercialized and open-source FEA packages are now 
available for analyzing FGM properties in multiple disciplines. 
However, FEA is very time-consuming as well, especially for a 
large domain with detailed mesh. There is a trend to utilize 
machine learning algorithms to learn the surrogate material 
property model based on only a few FEA evaluations [29]. The 
exemplar-based design method proposed in the paper can avoid 
the iterative FEA evaluations by reusing the FEA results in the 
exemplars’ material property.  

In the present work we address the issue of designing and 
manufacturing FGMs using multi-material AM processes. We 
mainly focus on the challenge of converting gradient materials 
design into a design that can be printed with limited number of 
materials and limited fabrication resolution that are readily 
available in an AM process. Since the design problem is NP-
hard, we propose an efficient data-driven approach to 
approximate the solution. 

3. Methodology 
Voxel representation is chosen to represent three-

dimensional (3D) computer-aided design (CAD) model in all 
stages including gradient design, printable design, numerical 
analysis, and model fabrication since they all rely on 
discretized volumetric space to specify materials. Fig 1 
illustrates the pipeline of our framework. We first create the 
functional design on a voxel model. The framework will then 
convert the continuous material layout into a dual-material 
layout using our exemplar-based approach. The discrete design 
is able to undergo similar deformation as the continuous design 
under given loads and constraints. Finally, the dual-material 
design defined on voxels can be directly used in simulation 
analysis and model fabrication. 

 
Fig 1: The pipeline of the FGM design framework. 

3.1. Voxel-based design with gradient function 
A voxel here represents an element where the minimal 

volume of single material can be deposited in the FGM 
manufacturing process. Given a CAD model  of an object 
(2.5D in this paper), we voxelize the  to produce its voxel 
representation  and allow each element to associate with one 
material m, such that a voxel is defined as: 
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= ( , , , )									∀	 ∈ , 									( ) 
where the Young’s modulus of the materials must fall within 
two base materials ( < ). 

Initially, a set of candidate elements is selected and set as 
seed , where ⊂ . Then, the rest of the elements will be 
assigned a material based on a given gradient function  that 
maps the distance between the centroid of the element and  
to the Young’s modulus within the range of  and . As 
shown in Fig 2, we present four gradient functions and map 
every element to single material, such that the rectangle domain 
exhibits stiffness shift from soft to hard upon the function 
(color map from blue to red where blue is soft while red is 
hard). Consider the given function can be non-linear or 
discontinuous, the resulted FGM can behave in a nonlinear 
manner, giving much more flexibility in describing composite 
materials.  

 
Fig 2: Functionally graded materials in various functions. (a) Sine 
function; (b) linear function; (c) Cosine function; and (d) Sine function in 
full cycle.  

Although there exist several multi-material AM machines 
that can directly fabricate FGM objects, the materials that are 
available in a multi-material AM process are usually limited 
(e.g. a few types of base materials). To enable AM technology 
to be used in FGM fabrication, it is desired to approximate 
design behavior based on two or more base materials such that 
arbitrary FGM in various functions can be 3D printed even with 
the material choice constrain. 

3.2. Approximate FGM design 
Specifically we assume a given FGM design needs to 

approximate the elastic behavior of the design. The approach to 
approximate FGM design consists of two steps: (1) matching 
gradient design with the library patterns in grids, and (2) 
diffusing localized error to neighbor grids; hence the error can 
be compensated during the later matching process. In the first 
step, we propose to discretize the FGM object into N small 
grids and substitute the gradient materials with two base 
materials individually. The characteristic of each substitution is 
determined by the spatial distribution of the base materials as a 
pattern, such that all patterns together form a heterogenous 
library. By finding the closest behavior-match-pattern from the 
library, the overall gradient layout can be approximated by two 
base materials. Such layout can then be 3D printed using two-
base-material AM processes. 

An important assumption underlying the use of a pattern to 
replace gradient material change is that spatially distributing of 
base materials can generate the intermediate mechanical 
properties of these materials. It has been physically validated 
by Huang et al. [30]. Without loss of generality, our discussion 
focuses on 2.5D cases for the sake of simplicity, and a similar 
process can be extended to 3D cases in future.  

Given a voxel model  we discretize the domain into 
small grids where each of the grids consists of ×  voxels. 
We denote each grid as  and assume  = 3 in the following 
illustration. The matching of materials in a local region by 
“average” properties (e.g., Young’s modulus) has been applied 
in computer graphics [31] and model fabrication [32]. 
However, it is not accurate enough when the materials differ 
vastly in the structure. This is because Young’s modulus does 
not follow a linear relationship with the material composition. 
Hence matching with average properties may lead to significant 
error when the difference between two or more base materials 
is large. Therefore, we define a tensor  to describe the 
mechanical property of a grid. The tensor contains the 
longitudinal and transverse deformations incurred by normal 
stresses σ and shear stresses	τ, and it is used for similarity 
measurement instead of comparing the material composition. In 
other words, the proposed algorithm uses explicit behavior 
matching to approximate the target mechanical properties. The 
tensor is first defined as follows before a library is introduced. 

3.2.1. Tensor Definition 
Given a square ×  grid. It has ×  nodes and is 

made of m linear elastic materials (m = 3). The tensor  is 
defined by four independent components: , ,  
and 	 . The 	 and  represent the deformations 
subjected to axial tensile forces, while the  and 	 	represent the deformations subjected to axial shear forces 
as illustrated in Fig 3(b). We assume that Poisson’s ratio  is a 
deterministic constant, and thus only Young’s modulus varies in 
the grid. In response to the applied loads, deformations can be 
expressed in functions of  and . Considering all the 
elements in the grid as a whole, the main interest is the explicit 
behaviors on boundaries. Thus we can concatenate the 
deformations on exterior nodes to form vectors, which give the 
tensor as follow: 

= ( , ) ( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , ) 			( ) 
where the index ( , ) corresponds to the node index in the 
grid, and each deformation vector is determined by the nodal 
displacement. For example, the element (3,2) is derived at 
node (3,2) (refer to Fig 3(a)), where the line is subjected to a 
force acting in the -direction. The amount of elongation 
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depends upon the displacement at nodes (0,2) and	 (3,2). If 
end node displaces (3,2) and start node displaces	 (0,2), the 
deformation at (3,2)  is equal to 	 (3,2) − (0,2) . Each 
node along the boundary captures a unique response of the 
element to the load. Thus, by combining them together, the 
tensor can form an identification of the grids. Structural finite 
element analysis can be applied to calculate the nodal 
displacements and to extract the tensor information.  

 
Fig 3: (a) Element ( , ) of deformation vector  is derived from 
two node points. And (b) four boundary conditions (represented in four 
types of arrow) are applied on a tile to extract the corresponding behavior. 

3.2.2. Construct heterogenous library 
First of all, as a pre-processing step, we construct a library 

to enumerate the possible spatially distributed patterns from the 
base materials.  Consider each pattern is defined by a 3-by-3 
unit-square grid. Elements in the grid are assigned to one of the 
base materials such that the combination of these elements in 
terms of location and the materials in each grid form a unique 
pattern in the library. The material library is a collection of grid 
patterns that can have various behaviors when subjected to 
external forces. The pattern can be constructed in a different 
size, which could lead to different approximation result. The 
choice of the pattern size will be discussed in Section 7. 
Assume two base materials are selected for constructing the 
library (i.e. = 3, 	 = 	2, 	 	 ) , the number of 
patterns is		 × = 512. A tensor  (  stands for a pattern 
in the library) is then computed to describe the mechanical 
properties of each pattern. We employ the k-d tree data 
structure to store the result and to speed up the high-
dimensional search in the matching step. 

3.2.3. Similarity Measures for Tensor 
To determine the best-match pattern in the library for a 

grid, we compare its tensor with the library tensors by 
conducting two similarity calculations. One of the similarity 
calculations is trend-based, which compares the changes of the 
current column of a tensor with the last one to see the 
underlying behavior. Another similarity calculation is to 
measure the absolute distance between the components of a 
tensor.  

Trend-based Analysis. The purpose of the analysis is to find 
patterns that have similar behavior, regardless of the actual 
values. For example, a grid deforms and its boundary remains 

flat. In this case, we should look for a pattern that generates flat 
boundary after applying the same loading and constrain.  

Now let us consider two tensors, one is from the FGM 
object (denote as ), and another is from the library (denote 
as ). Then we describe the trend of a tensor as 

= ( , ) ( , ) ( , )( , ) ( , ) ( , )( , ) ( , ) ( , )( , ) ( , ) ( , ) 				( ) 
where ( , ) = ( ( , ) − ( , − 1))/max	( ( , ), ( , − 1)) ( , ) = ( ( , ) − ( − 1, ))/max	( ( , ), ( − 1, )) 
And the similarity of and  is defined as the Frobenius 
norm of their difference: 

= ‖ ‖ =  

where = − , 
and =	 (3,1) − (3,1) ⋯ (3,3) − (3,3)⋮ ⋱ ⋮(3,1) − (3,1) ⋯ (3,3) − (3,3)  

Distance-based Analysis. Similarly, we define the distance of 
two tensors,  and , using the same approach: 

 

= ‖ ‖ =  

where = − , 
and =	 (3,0) − (3,0) ⋯ (3,3) − (3,3)⋮ ⋱ ⋮(0,3) − (0,3) ⋯ (3,3) − (3,3)  

In this way, we have two lists of patterns that best match 
the FGM grid,  and , with respect to the similarity 
calculation method. The final step is to determine the closest 
pattern among them. Therefore, we seek a pattern that has the 
lowest ranking in both lists, i.e.  argmin∈ ( ( ) + ( )) 
where  is the index for the patterns in the library. 
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3.2.4. Error Diffusion 
Although the matching algorithm gives a good 

approximation of the gradient input, conversion is not yet fully 
accomplished. Since an approximation in each grid often leads 
to an error, the errors of all the grids can be cumulative. 
Inspired by the error diffusion methods [33] that have been 
widely used in two-dimensional (2D) color printing, we extend 
the concept of half-toning in our framework. Errors among 
neighbors are distributed for error compensation. 

We divide the error into four components. Each component 
represents the deformation error between two grids under the 
same loadings in single DOF. The error components are spread 
individually across the domain, and each of them needs to 
follow the physical governing equation. For example, assuming 
there are two neighboring grids,  and	 . They are assigned 
to materials with Young’s modulus 	  and 	  respectively. 
If  is approximated by a Young’s modulus , our target is 
to find a new value of Young’s modulus 	  such that the 
deformation at the end will be the same. Following the stress-
deformation equation, the compensation can be governed by + = +  

where  is the length of the grid and σ is the stress applied 
along the -direction. With this equation, we can understand 
how  should perform to compensate the approximation error 
in . We extend this idea to a grid with multiple Young’s 
modulus and the performance is not described simply by a 
scalar value. The tensor representation is used here to describe 
both the tensile and shear responses along the - and -
directions and the complex behavior of the multi-material 
structure. 

Let’s define the approximation error for a tile as =	 −
 and the components of the error λ = 	 Δ Δ Δ Δ 	 are independent of each other. 

Given an example of diffusing the component Δ  into 3 
neighbors as shown in Fig. 4. For the first grid at the left 
bottom corner, error will be diffused to the other three 
neighbors, and we consider these grids as one block. At first, 

 matches  with the new displacement	 . As our goal is 
to maintain the same length deformation ∆ = 	 ̅ −  of the 
block after the substitution, we diffuse the error ∆ = −	to the grid 2 such that ∆ = ( − ∆ ) −   remains the 
same. The new target =	 − ∆  for grid 2 compensates 
the error from the grid 1. While for the grid 3 and grid 4, the 
shear error is diffused such that the top edge of the block can 
stay in the same position. Every grid in the block will diffuse 
the error to other three grids and a final diffusing direction (e.g. 
grid 2 diffuse to grid 1,3,4 could be more accurate than grid 1 
to 2,3,4) with minimum error is selected in order to avoid 
directional bias. After the direction is determined, the three 
grids that receive error will update their tensors and get ready 
for diffusion in another block. In other words, we determine the 

local diffusion for every four grids and repeat the operation 
over the entire domain in order to improve the overall accuracy. 

 
Fig 4: Error diffusion of shear component	 . (a) A big tile with edge 
length  is formed by four 3-by-3 grids; (b) the big tile is deformed under 
shear stress, such that the edge length is deformed to	 ; (c) tile  replaces 
the original tile with new displacement	 ; (d) in order to compensate the 
error	∆ = 	 − ,  has to deform ( − ∆ )	to reach to the same 
deformed edge length; and (e) for the tiles  and	 , they have to move ∆  to reach to the original positions of top edge. 

3.3. Numerical Analysis and Model Fabrication 
Once the dual material layout is obtained, we can directly 

proceed to analysis and fabrication. In this paper, we use finite 
element analysis to simulate the characteristics of the FGM 
design and use it to evaluate the behavior of the approximation 
result. 

The deformation behaviors of four gradient designs (Fig 2) 
on a 2.5D rectangle object in resolution 60 × 60 are being 
examined. The rectangle domain is discretized into volumetric 
elements, and each element is created individually in the FEA 
software (COMSOL Multiphysics 5.1). The materials are 
designed on COMSOL 5.1 with Matlab as stated in Section 3.1. 
We set the Young’s modulus of two base materials as = 2 	and 	 = 350 , therefore the FGM gradient 
will be varied within this range. After applying loading and 
boundary conditions (shown as red arrows in Fig 7), simulation 
results from COMSOL are obtained and complied.  

For physical demonstration, a mask-image-projection based 
stereolithography (MIP-SL) process [21] is adopted to fabricate 
heterogeneous objects with digitally controlled multi-material 
deposition. Our design framework can also be applied to other 
AM processes. In the multi-material MIP-SL process, an input 
3D model is sliced into 2D layers, which are defined as mask 
images. The generated mask images are then projected onto 
photocurable resin to selectively solidify corresponding pixels 
to build the related layer. Based on the 3D model and the 
material distribution obtained in the framework, mask images 
are generated as an input to the MIP-SL process. The resolution 
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of input domain is defined by the printer’s XY resolution, such 
that each element corresponds to a regular grid of pixels. 
Because the framework assumes using two materials in one 
designed object, the MIP-SL printer projects two mask images 
to specify the position of two base materials in each layer. An 
example is shown in Fig 5(c). Currently, the minimal feature 
that can be reliably built by our MIP-SL system is around 
0.25mm, which can be used to define the voxel size in our 
design framework.  

 
Fig 5: Mask images generated for fabrication. (a) The green pixels indicate 
the position of hard material; (b) while the red pixels refer to soft material; 
and (c) the fabrication result. 

4. RESULT AND DISCUSSION 
The goal of this work is to use two base materials to 

approximate the mechanical properties of the given gradient 
material distribution. One of the issues that FGM can address is 
the displacement and the applied stress can be gradually varied 
in space, such that specific loading requirements can be met 
without any abrupt interface at the macroscale. In this paper, we 
take the deformation as the most important mechanical 
properties to consider and aim to achieve the same behavior of 
FGM using only two base materials that a multi-material AM 
machine provides. To validate our method, we compare the 
displacements between the approximation result and the given 
continuous FGM design under the same loading and boundary 
condition in the FEA simulation.  

The distance-based analysis is carried on the boundary 
nodes to evaluate the accuracy. We compare the deformation of 
the FGM design and our solution node by node to calculate the 
maximum error. Fig 6 and Fig 7 compare the behavior of the 
FGM designs with our approximated dual material designs. We 
first perform the matching process to convert the continuous 
design into a dual material layout (Fig 7(b)).  

Next, as shown in Fig 7(c), the localized error is 
compensated using error diffusion. The tensor information is 
readjusted so that we are able to approximate a better result by 
coupling the matching process. The result in Fig 7(d) also 
shows that the errors are further reduced by performing error 
diffusion twice. These results indicate that the proposed method 
is capable of converting FGM design to an AM printable layout 
with predictable deformation behavior. While the approach is 
heuristic, it enables fast and effective approximation for design 
problem with very large degrees of freedom.  

 
Fig 6: Comparison of deformation between FGM ( column) and the 
dual-material layouts generated using method A ( column) & B 
( column). (a) Sine function; (b) Linear function; and (c) Sine-cycle 
function. 

Table 1 presents the approximation errors on the four 
gradient designs, where the dual material layouts are generated 
via two methods. The method A stands for performing matching 
using 4 × 4	library, while the method B stands for coupling 
error diffusion and matching process for approximation. The 
average and maximum -norm distance,  and , 
between their boundary nodes are computed. Generally 
speaking, adding error diffusion is able to improve the overall 
performance (refer to Fig 6 for the computed results). However, 
for the sine-cycle case, the performance of method A is better 
than method B (refer to Fig 6(c)). This is mainly because the 
failure of the error diffusion in approximating the cusp feature. 

Table 1: An average  and maximum 	 -norm distance (% of 
the voxel length) between a deformed FGM and our approximation results.  

Method  Sine Linear Cosine Sin-
cycle 

A  0.13% 0.34% 1.12% 0.094% 
A  0.38% 0.42% 1.64% 0.84% 
B  0.06% 0.2% 0.6% 0.12% 
B 0.24% 0.5% 0.92% 0.985% 
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Fig 7: Displacement of the FGM layout and dual-material layout designs. (a) Deformed FGM under prescribed loading and boundary condition. Same loading 
and boundary condition are applied on the dual-material layout design that created by (b) matching process ( = . %); (c) error diffusion and 
matching ( = . %); and (d) and error diffusion twice and matching ( = . %). 

 
Fig 8: Matching results using different grid size ( ) of library. (a) = ,	library size = 2; (b) = ,	library size = 16; (c) = ,	library size = 512; and (d) = ,	library size = 65536. 
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In addition to error diffusion, another factor that affects the 
accuracy of approximation is the number of patterns that are 
used in matching. By increasing the grid size (n), the FGM 
object is discretized into larger grids; therefore the number of 
patterns for substitution is increased. Different exemplar set are 
created depending on the grid size, and the matching 
performance can be varied. The matching result of using 
different size of libraries is shown in Fig 8. When the number 
of patterns is decreasing (i.e. the grid size decreases), the 
localized error (see Table 2) becomes very large due to the 
difficulties in finding the closest pattern (i.e. the closest pattern 
is not close to the gradient grid at all). Therefore, even we 
readjust the tensor information via error diffusion, a close 
pattern for substitution can still not be found. 

Table 2 presents the matching error induced by the four 
different set of libraries (see Fig. 8). The result suggests that 
using the library with grid size ≥ 3 is more accurate than < 3. On the other hand, because our method is scalable and 
able to adapt to different library size, it is possible for us to 
handle very large domain using larger library size. And there is 
no limitation on the maximum elements for a pattern. However, 
it is necessary to consider the computation effort when using 
larger library size. Therefore, in the future, more focus should 
be placed on the data processing of very large number of 
patterns in a library, especially when we extend our framework 
to 3D cases. 
Table 2: Matching error (% of the voxel length) for different library size as 
shown in Fig. 8. 

 1 × 1 2 × 2 3 × 3 4 × 4 
Sin 0.41% 0.37% 0.22% 0.19% 

Linear 0.94% 0.611% 0.473% 0.42% 
Cos 1.49% 1.17% 1.06% 1.13% 

Sin-cycle 1.09% 0.97% 0.68% 0.77% 

5. CONCLUSION AND FUTURE WORK 
A novel framework to design functionally graded materials 

(FGM) for advanced manufacturing process such as multi-
material additive manufacturing is presented in the paper. 
FGMs possess all the advantageous material property of 
different materials by continuously varying the material 
distribution. However, in order to fabricate FGMs with the 
multi-material additive manufacturing that has limited number 
of base materials and fabrication resolution, one way is to build 
FGMs in a volume discretization manner. Accordingly, a 
critical issue in the FGM designs for AM is how to generate 
discretized material compositions that can closely approximate 
the continuous material distribution. Existing design methods 
based on topology optimization are time-consuming for the 
intensive use of finite element analysis simulations, and the 
designed structures are limited by number of elements used in 
the simulation. In comparison, the proposed design method is 
goal-oriented and able to convert gradient material composition 
into a dual-material composition that can best approximate the 
mechanical behavior of FGMs. Several numerical simulation 

results are presented to illustrate our method, and one of the 
approximation structures was successfully fabricated using the 
multi-material additive manufacturing technology.  

Currently, we have only demonstrated our design methods 
in 2.5D. The future work would be to explore larger tensor in 
3D and to figure out the efficient way of approximating FGM 
in a more complicated shape. Also, the proposed method could 
be integrated with topology optimization, which may be able to 
boost the FEA evaluations required in such a design method.  
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