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Abstract: Piezoelectric composites are considered excellent core materials for fabricating various
ultrasonic devices. For the traditional fabrication process, piezoelectric composite structures are
mainly prepared by mold forming, mixing, and dicing-filing techniques. However, these techniques
are limited on fabricating shapes with complex structures. With the rapid development of
additive manufacturing (AM), many research fields have applied AM technology to produce
functional materials with various geometric shapes. In this study, the Mask-Image-Projection-based
Stereolithography (MIP-SL) process, one of the AM (3D-printing) methods, was used to build
BaTiO3-based piezoelectric composite ceramics with honeycomb structure design. A sintered sample
with denser body and higher density was achieved (i.e., density obtained 5.96 g/cm3), and the
3D-printed ceramic displayed the expected piezoelectric and ferroelectric properties using the
complex structure (i.e., piezoelectric constant achieved 60 pC/N). After being integrated into an
ultrasonic device, the 3D-printed component also presents promising material performance and
output power properties for ultrasound sensing (i.e., output voltage reached 180 mVpp). Our study
demonstrated the effectiveness of AM technology in fabricating piezoelectric composites with complex
structures that cannot be fabricated by dicing-filling. The approach may bring more possibilities to
the fabrication of micro-electromechanical system (MEMS)-based ultrasonic devices via 3D-printing
methods in the future.

Keywords: 3D-printing; piezoelectric materials; stereolithography; barium titanate; ultrasonic device

1. Introduction

Researchers from various fields have applied rapidly developed additive manufacturing
(3D-printing) technology to their studies, for example, synthesis of biomimetic materials with
complex shapes such as nacre and lobster claw, fabrication of micro-electromechanical system (MEMS)
devices or piezoelectric medical devices, combining 3D-printing techniques with smart materials
for application of 4D-printing, etc. [1–7]. In fabrication of piezoelectric devices, alignment modes
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could cause different piezoelectric performance [8]. 3D-printing technology has enabled the produced
materials to have isotropic or anisotropic properties for identical layers via the controlled filler
alignment [9]. Malakooti et al. illustrated that a 3D-printed nanocomposite could fabricate energy
harvesters with high performance when using spatially controlled filler orientation to create embedded
nanostructures [10]. Besides, various complex structures could also be fabricated conveniently
via 3D-printing methods. Some multiscale structures that were not feasible before can now be
constructed, e.g., utilizing an electrically assisted 3D-printing system to fabricate a hierarchical
structure with biomimetic nacre-inspired design [11]. In general, the 3D-printing methods are suitable
for producing microstructures with comparatively high accuracy and resolution. For cardiovascular
stents, a biodegradable stent in mm level with roughly 85–95% accuracy was achieved via a 3D-printing
process, which presented an alternative to the conventional laser cutting method [12]. Furthermore,
the simplified digital manufacturing process with low cost and high efficiency also illustrated the
advantages of the 3D-printing method [13]. At present, 3D-printing methods could be divided into
chemical and physical types based on the material forming process. The first type of 3D printing process
mainly depends on chemical reactions such as curing agents using optical or thermal resources [14,15].
For example, Kim et al. demonstrated that piezoelectric materials combined with photocurable resin
could be cured by visible or invisible lights, and the piezoelectric coefficient was also improved
in the printed materials [16,17]. Another type of 3D printing process mainly depends on physical
processes such as sintering the material directly using high temperatures provided by devices such as
a high-energy laser [18]. Selecting an appropriate 3D-printing method based on the desired functional
material and geometric shape is vital for conducting the related research.

As a long-established research field, piezoelectric materials have been widely applied in
transducers, ultrasonic motors, sensors, energy harvesters, etc. [19–21]. The energy induced by
ultrasound or kinetic energy has promising potential in various medical applications, especially in the
development of piezoelectric energy harvesters or ultrasonic sensors. For example, a flexible energy
harvester with outstanding acoustic, electrical, and mechanical properties was recently implanted
wirelessly into eyeballs for the electric stimulation of nerves, in which the piezoelectric part was
induced by ultrasound that is harmless to the human body [22]. In general, piezoelectric materials
can be classified into the three categories: inorganic materials, organic materials, and composites
of both. Some popular examples include lead zirconate titanate (PZT), poly(vinylidene fluoride)
(PVDF), and PZT/PVDF composite [23,24]. Currently, PZT is widely utilized in various piezoelectric
applications because of its excellent piezoelectric properties (e.g., high piezoelectric coefficient) and
ease of manufacturing [23,25]. The fabrication methods of piezoelectric materials include solid-state
reaction (SSR), mold forming, casting, dicing-filing techniques, etc. [26–28]. For instance, dicing-filling
techniques involve implementing parallel cuts on materials via a mechanical dicing saw. Afterwards,
the diced material is filled with a polymer in order to create a composite material. Although these
traditional fabrication methods can achieve materials with high-density performance, they are tedious
with high cost and cannot satisfy the requirements of manufacturing microstructures with complex and
meticulous shape design. In MEMS fabrication, stereolithography (SL) has been applied to fabricate
MEMS devices with multiple structures [29]. Nonetheless, to overcome the limited two-dimensional
device structure, 3D-printing methods have been widely applied to build MEMS devices, such as
microfluidic devices or microactuators [30,31]. The advantages of 3D-printing techniques are the ability
to fabricate complex micro-shapes, customized design, and relatively low cost. Song et al. reported that
resolution of the Mask-Image-Projection-based Stereolithography (MIP-SL) process for layer thickness
can reach up to 100 µm [32]. In addition, the development of lead-free piezoelectric materials to
replace PZT for environmentally friendly fabrication is a promising trend for future ultrasonic device
study [33,34]. Barium titanate (BaTiO3, BTO) is the first lead-free perovskite ceramic material that
has been developed with excellent dielectric and piezoelectric properties. Previous studies have also
demonstrated BTO can be photocured to specific microstructures via 3D-printing methods [16,35,36].
Composite material with a complex structure can also improve material properties (e.g., acoustic and
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piezoelectric properties) [19]. Moreover, the honeycomb structure could be fabricated as a composite
material by introducing low-permittivity epoxy. As a result, the voltage coefficient (g33 = d33/ε) can be
augmented by lowering the permittivity, effectively improving the sensitivity of the piezocomposite
to sense ultrasound [22]. Kim et al. also showed the 3D-printed honeycomb structure could be
optimized to achieve better material properties, such as excellent electric properties, mechanical
strength, and larger specific surface area [37–39]. Inspired by this work, we further exploited the
use of 3D-printing techniques to fabricate piezoelectric materials with complex structure design to
understand the full potential of 3D-printing for ultrasound applications.

Herein, using a selected 3D-printing method, we present the study of using the
Mask-Image-Projection-based Stereolithography (MIP-SL) process to fabricate lead-free piezoelectric
material with a complex honeycomb structure. Relevant piezoelectric properties of the 3D-printed
samples were studied to understand the effectiveness of the 3D-printing approach. To further test
the material performance of ultrasound sensing, an ultrasonic device was integrated. Comparing
with other fabrication methods, the MIP-SL approach simplifies the fabrication process and enables
piezoelectric materials with complex structures to be designed for ultrasonic devices. The test results
show the fabricated piezoelectric structures possess adequate ferroelectric and piezoelectric properties.
The fabricated honeycomb composite structure optimized the piezoelectric properties and reduced the
acoustic impedance. Such benefits could be further investigated as a potential wireless power source.
Thus, the MIP-SL method offers researchers a good fabrication tool that enables the design of various
structure shapes so related piezoelectric devices can have satisfactory piezoelectric performance.

2. Materials and Methods

Barium titanate particles (BaTiO3, Sigma-Aldrich Co., Saint Louis, MO, USA) of 50 wt%, 60 wt%,
and 70 wt% were mixed with 50 wt%, 40 wt%, and 30 wt% photocurable resin (SI500, EnvisionTec Inc.,
Ferndale, MI, USA) respectively, to create the composite slurry via ball milling in pulverisette (model
LC-105-4, Gilson company. Inc., Lewis Center, OH, USA). The highest concentration of piezoelectric
powder for successful printing can reach up to 70 wt%. The BaTiO3 and resin mixtures went through
ball milling at 200 rpm for 30 min to become a homogeneous slurry. The slurry was then vacuumed for
10 min to remove all the inside air bubbles. Afterwards, the mixture of prepared slurry was spread on
a building platform of the MIP-SL system (Figure 1a) using a blade. The slurry was evenly tape-casted
on the platform by the blade. The dispersed slurry layer was then transmitted to the visible light area
(wavelength of 405 nm) defined by a LED-based digital light projector using a linear stage to induce
the photocuring process (Figure 1b). With several experiments, the doctor blade height was set to
be 100 µm, while the exposure time was optimized as 37 s per layer, and the thickness of each layer
could be fabricated equally as 30 µm. The model built from Solidworks (Figure 1c) was sliced into
two-dimensional (2D) images using an in-house developed control system (Figure 1d). After repeating
the layer-based fabrication process, the green part of the model was fabricated (Figure 1e). Based on
it, the printed samples were first debinded to remove the photocured resin in the green parts of the
structures. The debinded samples were then sintered at 1350 ◦C for 4 h to create dense ceramic parts,
which converted the debinded sample into a fully sintered ceramic part with a dense structure between
each layer [36,40,41].

Both the fabricated green parts (before debinding) and the sintered samples were observed and
compared under a microscope (SZ61, Olympus, Tokyo, Japan). The density of the sintered samples was
measured using the Archimedes method, and the sintered samples were poled under the condition
of 2 kV/cm at 25 ◦C for 30 min. The capacitance and impedance spectrums were characterized
by an impedance analyzer (,Agilent 4294A, Santa Clara, CA, USA). The polarization-electric field
(P-E) hysteresis loop of the samples was measured by a ferroelectric measuring system (Hysteresis
Version 3.1.1, Radiant Technologies, Inc., Albuquerque, NM, USA). The piezoelectric coefficient d33

was characterized by a d33 m (YE2730A, APC international, Ltd., Mackeyville, PA, USA). Moreover,
simulations for the ultrasound-induced piezoelectric potential were conducted with finite element
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analysis software (Comsol Multiphysics 5.3a, COMSOL Inc., Stockholm, Sweden), as illustrated
in Figure 2.

An accordingly designed ultrasonic device was constructed using the 3D-printed piezoelectric
structure after the debinding and sintering procedures in order to further investigate the performance
of the 3D-printed sample. Each hole of the sintered sample with honeycomb structure design was
filled with epoxy (Epo-Tek 301, Billerica, MA, USA) in order to gain a composite material sample. After
curing the filled epoxy, the top and bottom sides of the sintered sample were sputtered with Au/Cr
electrodes (NSC-3000 Sputter Coater, Nano-Master Inc., Austin, TX, USA) and connected with copper
wires. Liquid Rubber (Ecoflex 00-30, PA, USA) was mixed to fill the sample to construct the device.
The output voltage amplitudes were measured for different input voltages using the built ultrasonic
system with the integrated ultrasonic transducer to achieve the ultrasound sensing.

Micromachines 2020, 11, x 4 of 12 

 

finite element analysis software (Comsol Multiphysics 5.3a, COMSOL Inc., Stockholm, Sweden), as 
illustrated in Figure 2. 

An accordingly designed ultrasonic device was constructed using the 3D-printed piezoelectric 
structure after the debinding and sintering procedures in order to further investigate the performance 
of the 3D-printed sample. Each hole of the sintered sample with honeycomb structure design was 
filled with epoxy (Epo-Tek 301, Billerica, MA, USA) in order to gain a composite material sample. 
After curing the filled epoxy, the top and bottom sides of the sintered sample were sputtered with 
Au/Cr electrodes (NSC-3000 Sputter Coater, Nano-Master Inc., Austin, TX, USA) and connected with 
copper wires. Liquid Rubber (Ecoflex 00-30, PA, USA) was mixed to fill the sample to construct the 
device. The output voltage amplitudes were measured for different input voltages using the built 
ultrasonic system with the integrated ultrasonic transducer to achieve the ultrasound sensing. 

 

Figure 1. (a) Mask-Image-Projection-based Stereolithography (MIP-SL) system to print green parts. 
(b) Sliced 2D pattern of a 3D model projected by a digital light projector. (c) Computer-aided design 
model of the printed sample with honeycomb structure. (d) Graphical user interface of the MIP-SL 
system developed in-house. (e) Picture of the green part fabricated using the MIP-SL system. 

 

Figure 2. The simulated piezoelectric potential distribution inside the samples with (a) honeycomb 
structure and (b) solid brick structure. 

  

Figure 1. (a) Mask-Image-Projection-based Stereolithography (MIP-SL) system to print green parts.
(b) Sliced 2D pattern of a 3D model projected by a digital light projector. (c) Computer-aided design
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system developed in-house. (e) Picture of the green part fabricated using the MIP-SL system.
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3. Results and Discussion

3.1. Simulation Performance

In this work, the sample was placed in deionized water, and the holes of the honeycomb structure
were filled with insulating epoxy. The mechanical deformation induced by ultrasound waves occurred
throughout the whole structure. During the polarization process, charge dipoles were produced
in the ceramic structure of the piezoelectric composite. When the structure of the sample was
mechanically deformed, piezoelectric potential emerged between the top and bottom electrodes.
Induced electrons flowed through the external structure so that the generated piezoelectric field could
be balanced. Electrons accumulated at the bottom electrode, which produced a signal of voltage and
current. Thus, the ultrasonic energy could be converted by the piezoelectric sample into an output of
piezoelectric potential.

To illustrate the advantages of printed ceramics, a finite element analysis was employed to
demonstrate the ultrasound sensing process. Specifically, the performance of the composite honeycomb
structure (Figure 2a) was compared with a solid single crystal structure (Figure 2b). The parameters of
the sample were selected from the COMSOL material library. The density and piezoelectric constant
were corrected according to the test results in order to mimic real conditions of the sintered sample.
Both samples were 8.5 mm × 8.5 mm × 0.8 mm, and the simulation had a density of 5.96 g/cm3,
a piezoelectric constant of 60 pC/N, a Young’s modulus of 67 GPa, and a 0.33 Poisson’s ratio. The epoxy
in the composite structure had a density of 1.67 g/cm3, a Young’s modulus of 3.96 GPa, and a
0.33 Poisson’s ratio. The bottom of samples was mechanically fixed and connected to the ground.
An ultrasound field at 1.6 MHz with the same intensity transmitting from top to bottom was applied
to both samples. The distribution of ultrasound-induced piezoelectric potentials was calculated and
plotted in Figure 2. The color bar represents the normalized ultrasound-induced electric potential
distribution. It is shown that the generated piezoelectric potential in the honeycomb structure was
about twice that of the solid brick structure. Thus, the honeycomb structure can perform better than
solid structures. The application of the proposed honeycomb structure for high-sensitivity ultrasound
sensing deserves to be studied further.

3.2. Characterization of Green Parts and Sintered Samples

BaTiO3 green part samples with a brick structure, using 100% and 80% ratio sizes of a honeycomb
structure, were built via the MIP-SL system (Figure 1a). Figure 3a–c shows images of the 3D-printed
piezoelectric green parts. The size ratio refers to the proportion of a different structure’s basal side
length to the basal side length with a fixed basal area of 1 cm × 1cm. One hundred percent size ratio
samples gained the designed shape with the basal area size of 1 cm × 1 cm, while 80% size ratio
samples obtained shapes with the basal area size of 0.8 cm × 0.8 cm. Each hole of the structure (100%
ratio) was defined by a hexagon with side length 800 µm, and the wall thickness of the structure was
450 µm. Figure 3d–f shows the layer details of the samples under the microscope with a scale bar of
500 µm. Each sample had a dense structure made by the MIP-SL system. However, due to the limited
Z curing depth and XY resolution of the MIP-SL system, layers of the 80% size ratio sample had small
gaps and were not perfectly dense. Furthermore, the brick structure sample showed obvious cracking
during the sintering process due to the internal stress of the brick structure. Hence, the small holes of
honeycomb structure were then filled with epoxy after the sintering process to construct the required
piezoelectric composites for further study.
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Figure 4b shows that the whole size of the sample (100% ratio) became smaller after sintering.
The sintered sample size became 8.5 mm × 8.5 mm. In particular, comparing Figure 4a,c, few gaps
existed after the photocured resin was removed from the structure during the debinding process.
The layered structures became denser after sintering. To compare with pure BaTiO3, Table 1 shows the
density of BaTiO3 ceramic samples measured using Archimedes’ principle before and after sintering [42].
The density of the printed samples after sintering increased significantly, indicating the 3D-printed
BaTiO3 ceramics converted to dense bodies during the sintering process.

Table 1. The density of BiTO3 in different conditions.

Characteristics Before Sintering After Sintering Pure BaTiO3 [42]

Density (g/cm3) 1.21 5.96 6.02
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3.3. Device Fabrication

An ultrasonic device was constructed using the sintered BaTiO3 ceramic sample fabricated with the
MIP-SL technique. Figure 5a,b illustrates the sintered sample filled with epoxy under the observation
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of a microscope. The epoxy was filled into the holes of the sample. After curing the filled epoxy at 40 ◦C
for 4 h, the sample was ground to 800 µm in thickness. Then, the top and bottom sides of the sample
were sputtered with Au/Cr electrodes for electrical connection. The sputtered sample was poled under
a DC electrical field of 20 kV/cm at 25 ◦C for 30 min. Figure 6a shows the spectrum of impedance and
phase angle of the poled sample, which was measured using an impedance analyzer (Agilent 4294A,
Santa Clara, CA, USA). The electromechanical coupling coefficient (kt) of the piezoelectric material can
be defined as Equations (1) and (2) [36].

kt =

√
Mechanical energy stored
Electrical energy applied

(1)

kt

√
π f r
2 f a
× cot

π f r
2 f a

(2)

where fr is resonant frequency, and fa is anti-resonant frequency. Figure 6a shows that fr and fa are
1.60 MHz and 1.66 MHz, respectively. Thus, kt is calculated to be about 31.1%. The coupling coefficient of
the 3D-printed sample was measured three times using the same method, and the measured coefficient
value did not have a significant difference (it ranged from 31.1%–31.5%). The piezoelectric constant is
60 pC/N. The results show that the 3D-printed BaTiO3 ceramics gained the piezoelectric property.
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To characterize the ferroelectric properties, the polarization-electric field (P-E) hysteresis loop was
measured. Figure 6b shows the P-E curves of the sputtered samples, which were measured under an
electric field with an intensity of 30 kV/cm. The P-E curve clearly demonstrates a typical ferroelectric
hysteresis loop. Furthermore, it displays the remnant polarization (Pr) was 0.346 µC/cm2 and the
maximum polarization (Pmax) was 2.29 µC/cm2. The coercive field (Ec) was 3.645V/cm. In summary,
our experimental results illustrate that the 3D-printing method can produce piezoelectric ceramics
with complex structures to achieve desired ferroelectric properties.
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After testing the properties of the 3D-printed sample, in order to test the material performance,
the sputtered sample was further utilized to fabricate an ultrasonic device for ultrasound wave sensing.
Figure 7a shows the schematic design of the device. Both sides of the sputtered device were connected
with copper wires, and then the combined components were encapsulated with Ecoflex resin to form
the final ultrasonic device (Figure 7b). Finally, an ultrasound test system consisting of a 1 MHz
ultrasound transmitter, a function generator, an amplifier, and an oscilloscope was used to evaluate the
ultrasound sensing performance of the device [22].
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To characterize the sensing capability of the manufactured ultrasonic device, the ultrasound
transmitter generates ultrasound under various input voltages at a frequency of 1 MHz, and then the
ultrasound directly propagates to the area of the device. The 3D-printed device receives the transmitted
ultrasound waves and converts them into electricity through the piezoelectric effect. The input voltage
amplitudes of the device for various input voltages from 0 V to 200 V are shown in Figure 8a–f,
which show the output power of the device with the 3D-printed sample. The oscilloscope was set at an
internal impedance of 1 MΩ. Interestingly, as shown in Figure 8g, by increasing the input voltage of the
system, the amplitude of the output voltage demonstrated a sharp increase at first, then, after the input
voltage was over 150 V, the amplitude increased less. Finally, the maximum output voltage reached
180 mVpp without any further amplification. Correspondingly, the voltage efficiency was about 0.1%
and the output power about 9 nW. The test results demonstrate that the output voltage could be
induced during ultrasonic propagation from the device using the piezoelectric structure fabricated
via the 3D-printing method. Additionally, Table 2 summarizes essential performance parameters of
the ultrasonic device with honeycomb structure. Although the output power was not high enough,



Micromachines 2020, 11, 713 9 of 12

it can be applied by devices with low power. In future investigations, the output power will be further
optimized by improving mechanical, electric, and acoustic properties of the printed material [43–45].

Table 2. Performance parameters of the ultrasonic device.

Characteristics Ultrasonic Device with Honeycomb Structure

d33 (pC/N) 60
Ec (kV/cm) 3.645

Pmax (µC/cm2) 2.29
Thickness (µm) 800
Density (g/cm3) 5.96

Resonant frequency (MHz) 1.6
Output voltage (mVpp) 180

Output power (nW) 9
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4. Conclusions

In summary, an ultrasonic device with honeycomb structure design was fabricated using a
3D-printing method (Mask-Projection-based stereolithography) from a composite slurry of mixed
BaTiO3 powder and photocurable resin. One designed complex structure (honeycomb structure) was
faithfully fabricated using the 3D-printing method. Fabricated layers observed using a microscope
demonstrated dense structures after the sintering process. The 3D-printed sample achieved prospective
piezoelectric and ferroelectric performance. The capability of the 3D-printing process to fabricate
piezoelectric ceramics with complex structures that may lead to the increase of piezoelectric efficiency
has also been demonstrated. Furthermore, the sintered 3D-printed sample was integrated into
an ultrasonic device for ultrasound sensing. The result of the output voltage amplitudes showed
comparable ultrasound sensing performance of the 3D-printed sample. The advantages of utilizing
3D-printing to fabricate MEMS devices with complex structures for biomedical applications need to be
further explored in the future.
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