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1. Introduction

Additive manufacturing (AM) is a new manufacturing
process that can directly fabricate a physical object from a

computer-aided design (CAD) model with-
out tooling and fixturing.[1] It is a collection
of technologies for manufacturing solid
objects by the sequential delivery of material
or energy to specified points in space
to produce the objects in a layer-by-layer
manner.[2,3] Due to the additive and discrete
nature, this collection of technologies needs
to find a trade-off between process resolu-
tion and layerwise throughput. The process
resolution is generally controlled by the
motion resolution (e.g., linear-stage plotter
for planner motion, and galvano-mirror
scanner for rotational motion[4,5]), and the
tool resolution including the size of the tool
(e.g., nozzle diameter and laser spot size[6])
and the tools’ location for multiple-tool pro-
cesses (e.g., print-head array for multijetting
process, and micromirror array for projec-
tion stereolithography process[7,8]). The
layerwise throughput is primarily deter-
mined by the changing frequency of the
tool, including the update of the tool posi-
tion and the tool status (e.g., nozzles’

on/off state and the change of energy intensity), as well as the
forming volume per controlled status (e.g., deposited material
per motion step,[9] and cured material per laser spot). Due to sev-
eral common factors, the resolution and throughput are generally
at odds with each other.[10] For example, a reduced tool size results
in higher resolution but lower throughput.

Two common strategies to improve the layerwise throughput
without compromising the process resolution include: 1) increas-
ing the number of tools and 2) increasing the changing
frequency of a tool. These two strategies represent the fundamen-
tal mechanism to optimize the AM performance by the process
planning in the spatial domain (using multiple tools) and tem-
poral domain (controlling changing frequency of the tool). More
specifically, Figure 1a shows the most commonly used vat photo-
polymerization (VPP) processes and their location in the spatio-
temporal domain. The horizontal axis represents the size of the
exposure light pattern, which is associated with the spatial
domain. The vertical axis represents the changing frequency
of the exposure light pattern in the temporal domain. For exam-
ple, the laser-based Stereolithography apparatus (SLA) and scan,
spin, and selectively photocure (3SP)[11] processes use a single-
tool (laser) in a serial fabrication process, in which the toolpaths
are mainly planned in the temporal domain by changing the tool
status at desired timestamps. Their resolution is controlled by the
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Additive manufacturing (AM) is a digital manufacturing process that can directly
convert a computer-aided design model into a physical object in a layer-by-layer
manner. Due to the additive and discrete nature of the digital manufacturing
process, AM needs to find a trade-off between process resolution and production
efficiency. Traditional AM processes balance the resolution and efficiency by
tuning the processes either in the temporal domain (e.g., higher speed in serial
processes) or in the spatial domain (e.g., more tools in parallel processes). To
improve the resolution without sacrificing efficiency, a data-driven mask image
planning method based on subpixel shifting in a split second by tuning the
process in both temporal and spatial domains is presented. The method is based
on the optimized pixel blending principle and a fast error diffusion-based opti-
mization model. Various simulation and experimental tests are carried out to
verify the developed subpixel shifting method. The experimental results dem-
onstrate the data-driven-based mask image calibration and planning techniques
significantly improve the fabricated part quality without compromising the
process efficiency. The presented spatiotemporal strategy may shed light for
future research on the projection-based AM processes.
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laser spot size (�0.1mm) and the motion resolution of the scan-
ning mirrors (�0.01–0.1 mm). The throughput of the SLA and
3SP processes is mainly controlled by the changing frequency
of the laser location. Consequently, the 3SP process has a higher
throughput than the SLA process due to its higher changing fre-
quency in the temporal domain.

Different from the laser-based SLA and 3SP processes, the
mask-image-projection-based stereolithography (MIP-SL) pro-
cesses use multiple tools such as millions of micromirrors
and are essentially a parallel process, in which the process plan-
ning is mainly in the spatial domain by tuning the tools’ status at
desired spatial locations. The regular MIP-SL process forms a 2D
layer by exposing a static light pattern defined by a digital mask
image, where the pixels of the light pattern serve as the parallel

fabrication tools. As the motion of the tool is not involved during
the curing process, the resolution is mainly defined by the num-
ber of pixels provided by the mask projection device. A projection
device such as a Digital Micromirror Device (DMD) has a limited
number of micromirrors (e.g., 1024� 768). Consequently, the
process resolution and the layerwise throughput have to be bal-
anced when using the limited number of tools to form a layer
simultaneously. For example, the macroscale MIP-SL processes
using a large pixel size (e.g., 0.15mm) can form a large 2D layer
with high throughput, but the process resolution is low. In com-
parison, the microscale MIP-SL processes using a small pixel size
(e.g., 0.01mm) can have a high resolution, but the throughput is
low as the projection area is small and needs to be moved to form
a larger layer.[12]

(a) (b)
Mask image size (mm)

Changing 
frequency (Hz)

0

10-1

100

101

102

103

104

105

106

0 10-1 100 101 102 103

Laser SLA

3SP

Scanning DLP

Regular DLP

uDLP

Moving uDLP

Vibration uDLP

Pixel shifting 
DLP (this work)

Project 
Mask1

Project 
Mask2

Project 
Mask3

Digital Micromirror 
Device

(Translate mask images 
in XY within a pixel)

Z

192 mm

Y

X

1
08

 m
m

Trans3Trans2Trans1

0.1 mm

XY Linear Stage

Mask1

Mask2

Mask3

{Layeri:

Maski

Transi

0.1 mm

Z linear 
stage

Liquid resin to 
be cured O(M )

Project 
Mask4

Mask4

(c) (d)

(e) Mask1 Mask2 Mask3 Mask4

Trans4

Figure 1. Subpixel shifting in a split second. a) Various vat photopolymerization processes in the spatiotemporal domain. b) Principle of subpixel shifting
for n¼ 2. Four mask images will be used to photocure a 2D layer. c) The binary mask image (middle) for one layer of a given cylinder model (left) and its
simulated curing profile in the lateral direction (right). d) The grayscale mask image (left) for the same layer and its simulated curing profile (right). e) A set
of optimized mask images (Mask1–Mask4) for the same layer using the subpixel shifting method and its simulated curing profile (right).
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In the past decade, tremendous effort has been devoted to var-
ious process planning for the MIP-SL processes, either in the
temporal domain or the spatial domain, to improve the process
performance including the resolution and throughput.[13,14]

However, little work has been done on the process planning
in both spatial and temporal domains. In this article, we develop
a process planning method for a subpixel shifting MIP-SL
(sps-MIP-SL) process that combines spatiotemporal considerations
to significantly improve the overall process performance (both res-
olution and throughput). In the sps-MIP-SL process, the projection

image is moved at a subpixel size distance (Sizepixeln , n≥ 2) in a split
second. Figure 1b shows the basic concept and hardware configu-
ration of the sps-MIP-SL process for n¼ 2. For each layer, we pre-
compute a set of n2 optimized images and then project the mask
images in a predefined sequence (from Mask1 to Mask4) with a

controlled exposure time (Tcuring

n2 ). Between two consecutive expo-

sures, the projection device is moved by a small distance Sizepixel
n

using a fast and precise XY linear stage. The total exposure time
of the layer is still equal to the regular curing time for photopoly-
merizing a layer. Such a method extends the traditional static MIP-
SL process from the pure spatial domain to the spatiotemporal
domain by increasing the changing frequency of the projection
images by n2 times (in 1–102Hz). Consequently, the process res-
olution of sps-MIP-SL can be significantly improved using better-
controlled light exposure in the curing process.

However, the hardware change alone using the traditional
image planning method cannot achieve such performance
improvement. A key challenge of the sps-MIP-SL process is
how to plan a set of mask images for accurate light exposures
at n2 tool locations. The traditional 2D layer slicing method is
insufficient; instead, we present a fast error diffusion-based opti-
mization method for the sps-MIP-SL process. Figure 1c,d,e
shows the comparison of the mask images and the simulated
curing profiles between the static MIP-SL process and the sub-
pixel shifting method for a circular layer. The sps-MIP-SL pro-
cess with optimized mask images can achieve higher product
surface quality without sacrificing the process throughput. The
main contribution of this article is to explore a data-driven
and hardware-software-integrated intelligent system, which lev-
erages mask image planning and optimization, process synchro-
nization and control, light and material characterization, and
system calibration. Both subpixel shifting and error diffusion-
based optimization are generic methods. They can be used in
various MIP-SL systems, including the moving-projection sys-
tems,[14–16] as well as the continuously printing AM systems such
as CLIP,[17] HARP,[18] and FLOAT.[19]

2. Principle of Subpixel Shifting

In the traditional MIP-SL process, a set of dynamically controlled
mask images are projected on a surface area to selectively convert
liquid resin into solid layers. Before the building process, the 3D
CAD model of an object is firstly sliced by a set of horizontal
planes. Each slice is then converted into a 2D image and sent
to a digital device used in the light projection system, such as
a DMD. The planned mask images are then projected onto a
resin surface to selectively solidify liquid resin into 2D layers

of the object. By repeating the layer-based fabrication process,
the 3D object can be formed from multiple 2D layers.

Compared with the laser-based SLA, the MIP-SL process can be
much faster by simultaneously forming a layer using millions of
pixels. However, the accuracy and resolution of the MIP-SL pro-
cess are constrained by the limited number of tools such as the
micromirrors of a DMD. The energy delivered by the micromir-
rors is spatially discontinuous, which causes the well-known alias-
ing effect that is unique to digital devices. Such an effect will be
significant for a large-scale MIP-SL process when its XY resolution
is close to or even larger than its Z resolution. Figure S1,
Supporting Information, shows a test example in which a binary
bitmap generated from a sliced contour was used. The surface
quality will be poor due to the aforementioned aliasing effect
(Figure S1–left, Supporting Information). In our previous work,[20]

we presented an optimized pixel blending method to address the
aliasing issue, which can significantly improve the part accuracy
and surface finish by intelligently setting mask images used in
MIP-SL. The fast error diffusion model in this work will be built
upon the optimized pixel blending method.

Like the toolpath used in computer numerical control (CNC)
machining, the mask images used in the light projection are
among the most critical process parameters in the MIP-SL pro-
cess. We studied the interaction between the projection light of
neighboring pixels and how to manipulate the pixel values to
achieve desired accuracy and resolution. In particular, we math-
ematically formulated a pixel blending problem in an optimiza-
tion model and developed a two-stage optimization method.[20]

Accordingly, an optimization tool was built to solve the opti-
mized pixel blending problem by intelligently manipulating
the grayscale values of each pixel so the energy input required
to cure a layer can be controlled. Such an approach based on
intelligently setting mask images provides an effective method
to achieve desired accuracy and resolution in the MIP-SL process
(Figure S1–right, Supporting Information). Based on the con-
cept of pixel blending, Kang et al. proposed a pixel-based solidifi-
cation model for MIP-SL to predict the patterning results.[21]

Emami et al. proposed an energy-based model for the scanning-
projection system to study the scanning and curing properties.[22]

Recently, Emami et al. studied the light field effect in grayscale
MIP-SL system by finite element-based Multiphysics simula-
tion.[23] However, all these models focus on the vertical resolu-
tion instead of the lateral resolution. The optimized mask image
planning methods in the aforementioned work and others[24–26]

do not consider the subpixel shifting problem critical in the
sps-MIP-SL process.

The cutting behavior of a tool in CNC machining is uniform
both across the cutter and the part (i.e., the cutting depth under
the cutting tool is the same while it is zero outside the cutting
tool). Unlike CNC machining, the material’s photocuring behav-
ior in MIP-SL is highly nonuniform, including 1) nonuniform
within each tool (a projection image pixel) and 2) nonuniform
across the whole layer.

1) Nonuniform in a pixel: the pixel of a projection image is
Gaussian distributed rather than uniformly distributed.[27]

Hence, the curing depth varies at different locations according
to the Beer–Lambert law of absorption.[28] In particular, a single
pixel generates a paraboloidal shape instead of a cubic or cylin-
drical shape.[1] Figure 2a–left shows the Gaussian profile of a
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Figure 2. Principle of subpixel shifting. a) The 2D (the projection of 3D) and 3D visualization of the Gaussian-shaped energy distribution of a pixel and the
accumulated energy of multiple pixels. b) The simulated cured shape based on the accumulated energy and curing threshold. c) The accumulated energy
of pixels with different shaped Gaussian distribution. d) 1D simulation shows the dimensional accuracy can be tuned by adjusting the grayscale value of
the boundary pixel. e) An example to show the pixel shifting technique can achieve high positional tolerance. f ) Two examples to show the pixel shifting
technique (bottom) can achieve high shape tolerance. g) The dimensional accuracy can also be tuned by the location of the boundary pixel in the pixel
shifting system. h) The comparison between the regular pixel blending and pixel shifting shows the pixel shifting approach can achieve higher-contrast
images and hence sharper and cleaner cured edges.
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single pixel, and Figure 2b–left shows the simulated curing pro-
file in the paraboloidal shape (blue color) for a single pixel. Also,
each pixel spreads into neighboring pixels and causes additional
energy deposition, which is called pixel blending.[20] Figure 2a–
right shows the energy-deposition effect of multiple overlapped
pixels, and the red curve shows the accumulated energy contrib-
uted by all the associated pixels. Figure 2b–right shows the cur-
ing result of these pixels, and the blue curve shows the curing
profile with a top-hatted paraboloidal shape. Depending on the
optic configuration, the projection image pixels have different
Gaussian profiles at the focal plane. Figure 2c–left shows the
pixel profile of a highly focused image from a high-quality pro-
jector. The crest and trough of the ripples correspond to the cen-
ter of the micromirrors and the gap between the adjacent
micromirrors. The highly focused image is beneficial for high-
quality fabrication in MIP-SL systems; however, the ripple profile
will be replicated onto the printed part with undesired
marks.[16,23] In contrast, Figure 2c–right shows the pixel profile
of a less focused image, where the pixels are blurred and
spread to neighboring pixels. According to the curing profile
(Figure 2b–right), the over-blurred image will affect the edge
sharpness of the cured part and the accuracy of the lateral dimen-
sion. Figure 2c–middle shows a pixel profile that achieves a good
balance between the fully focused and over-blurred profiles.
Based on the projection image calibration,[29] this pixel profile
will be used for the process planning in our study.

2) Nonuniform across the whole layer: MIP-SL is a multiple-
tool process (using a pixel array), and the pixels have different
geometries and intensities. The approach to characterize the
pixels’ geometric and intensity nonuniformity will be discussed
in Section 3. In addition, the CNC machining provides sharp
edges by cutting since only the materials along the toolpath are
removed. However, in the photopolymerization process, the pix-
els of a projection image solidify the material by providing
exposed energy doses. Hence, sharp edges in MIP-SL can only
be achieved using high-contrast energy doses defined by the pro-
jection images.

In the remainder of the section, we will discuss how the
subpixel shifting technique can address the energy dose control
challenge in the MIP-SL process. The quality of a manufacturing
process is typically evaluated by the tightness control of the
dimensional tolerance and geometrical tolerance.[30] The geomet-
ric tolerance includes positional tolerance and shape tolerance
(e.g., straightness, flatness, circularity, squareness, etc.). The
sps-MIP-SL system can meet these geometric dimensioning
and tolerancing (GD&T) criteria in the following ways:
a) Dimensional tolerance: although the pixels are Gaussian dis-
tributed and overlap with each other, these properties can be
taken advantage of by intelligently setting the grayscale values
of the projection images to tune the part dimension. As shown
in Figure 2d, a boundary pixel merges with the neighboring pix-
els, so the cured boundary can be fine-tuned by assigning the
grayscale level of the boundary pixel. Accordingly, a tight dimen-
sion tolerance can be achieved by the optimized pixel blending
algorithm. The subpixel shifting technique provides another
degree of design freedom to control the dimension by moving
the location of the boundary pixel (green color in Figure 2g).
As both the grayscale value and the location of the boundary pixel
can be adjusted in the near-continuous motion mode, the

dimensional accuracy can be more precisely controlled. The blue
color curves in Figure 2 show the predicted shapes of the cured
part by adjusting both the grayscale value and the location of the
boundary pixel. b) Positional tolerance: positional tolerance is
crucial for part assemblies. Although the pixel blending algo-
rithm can achieve a reasonable control on the dimensional tol-
erance, the discretized nature of the light projection device
brings challenges to the positional tolerance control. It is almost
impossible to precisely align all the features with the pixels in a
layer for a generic digital model. This problem can be effectively
addressed by subpixel shifting. An example is shown in
Figure 2e, in which a slab part has six slot-hole features. Also,
these holes are misaligned within the pixels, and the size of
the gap between the adjacent holes is not a multiple of the pixel
size. Hence the locational tolerance cannot be tightly controlled
by adjusting the layout of the part. In comparison, with subpixel
shifting, the features can be fabricated by exposing the shifted
projection images that may be perfectly aligned with the features.
An example of these pixels is shown in cyan color in Figure 2e.
c) Shape tolerance: the MIP-SL process fabricates parts by tessel-
lating the target geometry with discretized unit cells. Such
approximation introduces shape errors. For example, as shown
in Figure 2f, the inclined line feature and curve feature lost the
linearity and circularity during the tessellation process (top fig-
ure). This problem can be addressed by moving the mask image
in a subpixel distance to better approximate the features (bottom
figure). Essentially, shape tolerance is benefited by the increased
resolution from the subpixel shifting motion. d) Surface finish-
ing and sharpness: due to the Gaussian distribution and pixel
blending effect, it is challenging to achieve a high-contrast image,
i.e., the accumulated energy gradually increases from 0 to maxi-
mum value across the boundary (the red curve in Figure 2d,g,h).
It is desirable to plan the images such that the accumulated
energy curve has a steeper slope around the shape boundary.
Hence: 1) a higher contrast can facilitate the separation between
the solid and liquid areas without resulting in the gel state
(partially cured), because the gelled features affect the surface
finishing and part accuracy during the post-processing stage.
2) According to the absorption law (Cd ¼ Dp lnðE=EcÞ), the cur-
ing depth is logarithmically proportional to the accumulated
energy. Hence the higher contrast results in a steeper side sur-
face in the vertical direction, which is more desired in the layer-
based AM process. As shown in the simulated result in
Figure 2h, the subpixel shifting-based image projection can form
a steeper energy curve (solid red curve) than the regular pixel
blending images (dashed red curve). Consequently, sharper side
edges (blue curves) can be achieved for a high-contrast layer
boundary.

The aforementioned discussion elucidated the basic principle
of subpixel shifting to improve MIP-SL’s process resolution and
fabrication accuracy without sacrificing production throughput.
However, the shapes of all the demonstrated cases are relatively
simple, and the forward problem (i.e., from mask images to the
cured profile) is computationally inexpensive. The real-world
applications in the sps-MIP-SL process are more complicated
in terms of the given geometric shape, the number of pixels,
and the nonuniformity of the projection pixels. More impor-
tantly, the mask image planning to compute a set of mask images
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from a given cured profile is an inverse problem. Such a back-
ward problem is much more computationally intensive, typically
requiring an iteration-based optimization solver. In the next
section, we will present a highly efficient optimization solver,
namely error diffusion, to address the complex mask image plan-
ning problem for sps-MIP-SL and account for the non-uniformity
of the projection pixels.

3. Mask Image Planning and Optimization of
Calibrated Pixels

3.1. Optimized Pixel Blending Model Based on Image
Calibration Results

As demonstrated in our previous work,[20] the pixel blending of
light intensity would present tremendous capability in selec-
tively solidifying liquid resin into desired shapes. However, a
single Gaussian function was used to approximate the light
intensity of all the pixels in the work. The actual projection sys-
tem, however, has inherent optical defects caused by spherical
aberration, astigmatism, dispersion, spatial incoherence,
and distortion.[29] Hence the energy distribution is generally
nonuniform. These geometric and energy differences in a pro-
jection image would affect the pixel blending results and, there-
fore, part quality. Also, the original pixel blending method can
only solve a small-scale problem. It falls short when dealing
with real-world CAD models to be fabricated in the sps-MIP-SL
process. We presented a mask image calibration method for
MIP-SL to address the nonuniformity of a DMD-based projector
before.[29] Our approach was based on two types of calibration
systems, i.e., a geometric calibration system that can calibrate
the position, shape, size, and orientation of a pixel, and an
energy calibration system that can calibrate the light intensity
of a pixel.

By integrating the geometric and energy calibration results, we
can compute an approximation function for the light intensity of
each calibrated pixel by using the following equation

gðx, yÞ ¼ Aexp

(
� 1
2

"
ðx � x0Þ cosðθÞ � ðy � y0Þ sinðθÞ

σx

� �
2

þ ðx � x0Þ sinðθÞ � ðy � y0Þ cosðθÞ
σy

 !
2
#) (1)

where the parameters x0, y0, σx, σy, and θ are computed from the
geometric calibration system, and the parameter A is computed
from the energy calibration system.

Accordingly, a database of such functions g(x,y) can be
built by storing all the parameters (x0, y0, σx, σy, θ, A). For a
pixel not directly calibrated, an approximated function can be
computed by identifying its direct neighbors and, accordingly,
using a simple linear interpolation to calculate the related
parameters. Based on the calibrated approximation function
g(x,y), we can derive a new optimized pixel blending model
shown as follows.

GIVEN Fp,q,Gx,y

FIND Hij, δ

SATISFY F0
pq ¼

(1, P
ði, jÞ∈Spq

GpqðHijÞ > δ

0, else
Hij ∈ ½0, 1�

MINIMIZE
Xn�w

p¼1

Xn�h

q¼1

jFp,q � F0
pqj

(2)

where

GpqðHijÞ ¼ Aijexp

(
� 1
2

" ðp� x0ij Þ cosðθijÞ � ðq� y0ij Þ sinðθijÞ
σxij

 !
2

þ
ðp� x0ij Þ sinðθijÞ þ ðq� y0ij Þ cosðθijÞ

σyij

 !
2
#)

(3)

Aij ¼ H
1
3
ijAij, σxij ¼ H

1
3
ijσxij , σyij ¼ H

1
3
ijσyij (4)

Hij ¼
1

255
, I ¼ 1, 2, · · · 255 (5)

where x0ij , y0ij , Aij, σxij , σyij are the calibrated parameters for

native pixel (i, j) with full light intensity (grayscale ¼255 or
Hij¼ 1). Aij, σxij , σyij are the Gaussian parameters for pixel (i, j)

with partial light intensity (i.e., grayscale <255 or Hij< 1).
Compared with the original pixel blending model,[20] the objec-
tive function and the constraints are identical; however, the
Gaussian function Gx,y has been replaced by the image calibra-
tion results. The new optimized pixel blending model is more
general than the original model; however, it is also more difficult
to solve since Gx,y may vary from pixel to pixel in the newly for-
mulated model.

3.2. Error Diffusion Algorithm

In the formulated model defined in Equation (1), the shape
parameters are not linearly decreasing with the light intensity,
even though all the calibrated parameters are constant coeffi-
cients. Thus, such an optimized pixel blending model cannot
be solved by linear programming solvers. An iteration-based opti-
mization method called discrete direct search (DDS) was devel-
oped in our previous work.[15] The DDS method is independent
of the properties of the constraints, variables, and objective func-
tions in the optimization model, and can only provide a subopti-
mal solution for images with medium size. It cannot be used for
large-scale mask image planning required by the sps-MIP-SL
process. In this work, we investigated two fast optimization
methods: boundary erosion and error diffusion, where error dif-
fusion was built upon boundary erosion. Experimental results
demonstrated that both algorithms could solve the optimized
pixel blending problem in a reasonable time. However, the error
diffusion method performed substantially better than the bound-
ary erosion method.
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The boundary erosion method is purely based on geometric
information. The detailed algorithm is discussed in Section
S1, Supporting Information. Although boundary erosion works
well for parts with large sizes, it has difficulty dealing with sharp
features and small features. To overcome this problem, we com-
bined the boundary erosion method and the pixel blending
model, and developed a new method called error diffusion.
The error diffusion method is based on both geometrical and
energy information. Unlike the optimization methods used
before, the error diffusion method considers the error informa-
tion and compensates the energy distribution by diffusing the
errors back to the planned mask images.

The basic idea of the pixel blending process is schematically
shown in Figure S3, Supporting Information. A 3D solid model
(a) is first sliced by a set of horizontal planes. Each slice is then
converted into a 2D image (b) by some sampling methods. In our
case, we use super-sampling. That is, the sampling resolution is
n times higher than the projection image’s resolution. Hence,
for each pixel of the projecting image, we subdivide it into n� n
subpixels and use the subpixel resolution as the input image’s
resolution. According to the target image (b), we use optimiza-
tion algorithms (geometric algorithm, linear programming opti-
mization, or iterative optimization algorithm, etc.) to get a mask
image (c). The grayscale level of each pixel H in mask image (c)
represents the corresponding light intensity. Since each pixel fol-
lows a Gaussian function (d), the mask image will convolute with
the Gaussian function and get the accumulated intensity (e) as
I ¼ H ⊗ G. According to the polymerization reaction process,
the material will be cured only when the energy is higher than
the critical energy. Thus, the blending result (g) is computed as
F0 ¼ TðIÞ, where T is the gate function (f ) with the threshold of
critical energy for a given resin, and F 0(g) is a binary image rep-
resenting the blending result. Comparing the blending result F 0

with the target F, we get the error image E (h). The colorful pixels
show the errors (red color denotes extra portions and green color
denotes missing portions). The objective of mask image plan-
ning is to reduce the error as small as possible without violating
the constraints.

Although the theoretical pixel blending model is straightfor-
ward, solving it for the global optimum is difficult, if not impossi-
ble in practice. It becomes even worse when the calibrated
database is integrated into the optimization model. Different opti-
mization techniques such as the gradient-based optimization
approach and the iteration-based heuristics approach can be used.
Unfortunately, they cannot achieve an acceptable solution in a rea-
sonable time. The main problem is that they work in an open-loop
manner without considering the essential property of the pixel
blending process. For example, the iteration-based DDS method
arbitrarily assigns light intensity to pixels without considering the
direction and amount of the pixel change,[15] while the gradient-
based method only relies on the mathematical model that is quite
generic.[20] Here, a new error diffusion method has been devel-
oped to solve the mask image planning problem. It updates the
light intensity according to the error changes, as shown in
Figure 3a, using similar notations in Figure S3, Supporting
Information. In essence, the pixel blending process now evolves
from an open-loop system to a closed-loop system.

The error diffusion method is similar to other algorithms listed
before, except that it diffuses errors and updates the light intensity

according to the diffused errors. An initial solution from the geo-
metric method or the aforementioned boundary erosionmethod is
used as a starting point of the error diffusion method. According
to the current light intensity and the calibrated Gaussian distribu-
tion of each pixel, the accumulated energy for each subpixel is cal-
culated. Based on the accumulated energy and the threshold
energy, the error of each subpixel is judged based on
Equation (6). Accordingly, the error is diffused to its neighboring
pixels to rectify their light intensity as in Equation (7). Note that,
the error is diffused with the weight proportional to the Gaussian
distance as used for convolution. The flowchart of the error diffu-
sion method is shown in Figure S4, Supporting Information, and
is discussed using examples as follows.

Like other closed-loop systems in engineering problems, this
algorithm is converged asymptotically. A constant parameter λ
can be used as a multiplier for the diffused error to control the
convergence speed. The larger the parameter, the faster the algo-
rithm can converge, but it may oscillate when approaching the
steady-state. In contrast, a smaller parameter can lead to slower
but smoother convergence. Figure 3b shows the error convergence
with different coefficients. It shows that the algorithm converges
pretty fast in the initial steps. During these steps, the algorithm
erodes the boundary pixels to match the target dimensions.
The algorithms converge much slower in the following steps as
it manipulates the pixel values to recover the sharp features during
these steps. In Figure 3b, (a) shows a portion of a typical target
image, (b–d) shows the error images corresponding to the target
image at different optimization stages.

epq ¼
(0 F0

pq ¼ Fp,q

δ� P
ði, jÞ∈Spq

GpqðHijÞ F0
pq 6¼ Fp,q

(6)

Hij ¼ Hij þ λ
X

ðp, qÞ∈Sij
GijðepqÞ (7)

Figure 3c shows the detailed error diffusion procedure based
on a simplified example. Suppose the image size is 4� 4, and the
target geometric shape is a circle. In this example, the supper
sampling level n¼ 3. According to the image coverage, a supper
sampled image with small pixels is shown in Figure 3c(a). An
initial mask image is generated by counting the ratio of small
white pixels, as shown in Figure 3c(b). After applying the
Gaussian function to each big pixel and distributing the light
intensity to its neighborhood, the accumulated effect for each
small pixel is shown in Figure 3c(c). In this case, the
Gaussian parameter σ ¼1.0. After comparing the accumulated
effect with the predefined threshold, the error of each small pixel
can be calculated according to Equation (1). The threshold is set
as 1.8 in this example. As shown in the figure, errors occur on the
boundary of the geometry. In this case, the circular feature is a
small feature, and some portions of the boundary are missing.
Accordingly, the error of each super-sampled pixel will be dif-
fused into its neighboring original pixels following the
Gaussian function. Hence, all the diffused errors on each origi-
nal pixel will be accumulated together. The final result is shown
in Figure 3c(d). After adding the diffused errors to each pixel of
the previous mask image, the updated mask image is generated
in Figure 3c(e). Note that the grayscale value is truncated in the
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range of [0, 1]. In this example, as the boundary has missing por-
tions, the grayscale values of the updated mask image are higher
than the initial mask image. With the new mask image, the accu-
mulated effect will be updated. This process is repeated until the
error is converged.

Once the parameters are obtained using the image calibration
method, the error diffusion method is ready to solve the optimi-
zation problem. However, the error diffusion method is still iter-
ative, and the efficiency could still be a problem if the image size
is large. The convolution process shows that the pixels around
the part boundaries are more important and more challenging
to solve in the mask image planning. Based on this observation,
a more efficient error diffusion method using adaptive sampling
has been developed. Figure 3d shows two examples of adaptive
sampling. That is, only the regions (defined as Bp in Figure S4,
Supporting Information) that are close to the boundary (shown
as blue and green dots) are finely sampled. The adaptive error
diffusion method can dramatically improve the mask image

planning efficiency without losing solution quality. Also, the
algorithm complexity now only depends on the length of the con-
tour rather than the image area. Thus, the adaptive sampling-
based error diffusion is a more general and robust method
for the sps-MIP-SL process.

The subpixel shifting method significantly expands the search-
ing space of mask images. However, the dramatically increased
amount of data brings significant challenges to the computa-
tional algorithms. The error diffusion method will consider
the interplay between the pixels and light–material interactions,
the shifted mask images’ coordination, and the optical and mate-
rial properties. The revised optimization model incorporating the
calibrated pixel blending model in Equations (2)–(5) can be aug-
mented by replacing the single image (pixel location: x0ij , y0ij ) with

a set of images (pixel location: x0ij þ Δx, y0ij þ Δy, where Δx and

Δy are the shifted subpixel distances). Similarly, the error diffu-
sion algorithm shown in Figure S4, Supporting Information,
can be revised by adding another loop to evaluate all the subpixel

(a) 3D Solid (b) Layer i

Sampling

H IG T 'F

'F E

0

1

n=3

(c) (d) (e) (f) (g)

(h)

(d)

(b)(a)

(c)

(a) (b) (c) (d) (e)

Figure 3. Calibrated image planning and optimization. a) Error diffusion algorithm based on a closed-loop pixel blending process. b) Iteration
process controlled by the optimization parameters. c) An example to show the error diffusion process. d) Adaptive error diffusion with improved
efficiency.
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images for each iteration. Note the supersampling level n can be
the same or larger than the subpixel shifting level.

4. Results and Discussion

4.1. Computational Results and Simulation Verification

The presented mask image planning algorithm based on adap-
tive error diffusion has been implemented using Cþþ program-
ing language with Microsoft Visual Cþþ compiler. The used
test platform was a commodity personal computer with a
3.2 GHz processor and 16 GB random-access memory running
Windows 10. A 3D simulation software was developed using
Microsoft Foundation Class (MFC) and OpenGL library to verify
the effectiveness of the computation results. The simulation soft-
ware implemented the visualization of the profile of individual
pixels (gold color), accumulated energy (red color), and the cured
part (blue color) for any planned mask image or a set of shifted
mask images (Figure 4a). Several test cases were designed to
demonstrate the effectiveness of the subpixel shifting technique
based on adaptive error diffusion in controlling dimensional and
geometric tolerances.

4.1.1. Shape Tolerance Control

A test case of a simple circular shape was used to verify the cir-
cularity control of the developed method. Figure 4a shows the
comparison of the accumulated energy (red color) between the
traditional image planning method (top) and the subpixel shift-
ing method (bottom). It can be seen that the mask images gen-
erated by the subpixel shifting method can achieve a much
smoother distribution of the accumulated energy. Figure 4c
shows the top view of the accumulated energy (red) and the cured
profile (black) for the static MIP-SL process (top), the regular
pixel blending approach (middle), and the subpixel shifting
approach (bottom), respectively. Among them, the subpixel shift-
ing approach has a smoother boundary and higher circularity.

Due to the Gaussian distribution and pixel blending in the
layer curing process, the traditional MIP-SL process cannot pre-
serve sharp features. A set of squared features (Figure 4e–left,
magenta color) were designed to validate the squareness control
of the subpixel shifting technique. Figure 4d shows the planned
images (left) and the associated cured profile (right: magenta
color) by the traditional grayscale image planning approach
(top) and the error diffusion-based image planning approach
(bottom). Note the error diffusion method generated optimized
mask images with intriguing grayscale patterns around the cor-
ners, which is nonintuitive to humans. The underlying reason is
that the corner features are located at the boundaries of the part;
hence less exposure energy is allocated due to the pixel blending
effect. Therefore, a sharp corner will be lost where the light
energy is less than the critical exposure energy (Ec). To retrieve
the missing portions, the optimized mask images using adaptive
error diffusion automatically assign positive grayscale values out-
side the part and around the corners to increase the accumulated
energy at the sharp corners. However, the grayscale values of the
outside pixels should be delicately assigned to avoid curing the
regions outside the CAD model. In the optimized mask image

result, higher grayscale values were assigned to the pixels close to
the corner. The simulated curing results (Figure 4d—right)
clearly show the subpixel shifting method (bottom) can preserve
the sharp corners, where the static MIP-SL process generates
undesired round corners (top).

4.1.2. Dimensional Tolerance Control

Section 2 demonstrates adjusting the grayscale value of the
boundary pixels and using subpixel shifting can achieve tight
dimensional control in principle (refer to Figure 2d,g). In this
section, we will mainly focus on the validation of the dimensional
tolerance control for small features. Figure 4e–right (red color)
shows the test cases with a set of line strips with a varying width
from one single pixel to multiple pixels. We observed that the
dimensional tolerance of large features (over 10 pixels) is easy
to control for both the traditional MIP-SL and sps-MIP-SL pro-
cesses. However, the traditional MIP-SL process will completely
lose the small features with only a few pixels (e.g., 1-pixel wide
strip in Figure 4f—top). In comparison, the adaptive error diffu-
sion method can preserve such small features by automatically
assigning positive grayscale values to the pixels outside the small
features (Figure 4f–bottom).

4.1.3. Positional Tolerance Control

Figure 2d demonstrates the positional tolerance control for some
simple test cases. In this section, we will validate the effectiveness
of the error diffusion method for more nonintuitive test cases.
Figure 4g shows a test case with a micropillar array that consists
of micropillars with 2-pixel width and the incremental gaps with a
subpixel size (g.1). The traditional image planning method gener-
ates rounded corners and incorrect gap sizes (g.2) due to the com-
bination of the small geometric features and the subpixel-size
locations. Like the test cases of sharp-feature and small-feature,
the error diffusion method intelligently tuned the grayscale values
of the neighboring pixels and computed non-intuitive mask
images (two example mask images are shown in g.3 and g.4).
The light energy accumulation of the planned mask images can
generate both sharp corners and desired gap size (g.5).

4.1.4. Sharpness Control

We discussed the steeper accumulated energy with higher
energy contrast could generate sharper part boundary to enhance
the surface smoothness in Section 2. In this section, we used the
same cylindrical feature used in the shape tolerance study to vali-
date the sharpness control. Figure 4b shows the side view of the
accumulated energy (red) and the cured part (blue). The subpixel
shifting approach (bottom) can achieve steeper accumulated
energy and a sharper cured surface. The improvement is mainly
attributed to the larger searching design space introduced by the
mask image motion in the sps-MIP-SL process. Hence the error
diffusion method can intelligently assign the grayscale values to
the mask image pixels to maximize the contrast of the accumu-
lated energy. Such optimized results are non-intuitive to users
and cannot be achieved by simple mask image planning
methods.
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4.1.5. Computational Cost Study

The adaptive error diffusion method considers the specific
property of the MIP-SL’s mask image planning problem.

Hence, it can significantly improve computational efficiency
and part quality. In this study, different mask image planning
methods, including the linear programming method, the DDS
method, and the error diffusion method, were compared based

Figure 4. Subpixel shifting process. a) The perspective view of the 3D simulation software. b) The side view of the 3D simulation software shows the pixel
shifting approach (bottom) can achieve steeper accumulated energy and a sharper cured surface. c) The top view of the 3D simulation software shows the
pixel shifting approach (bottom) can achieve higher circularity of the printed feature than the static MIP-SL process (top) and the regular pixel blending
approach (middle). d) Sharp feature simulation: the mask image (left) and simulated cured profile in the lateral direction (right) for the grayscale-based
mask image planning method (top) and the error diffusion-based mask image planning method (bottom). e) The benchmark test cases designed to
simulate the mask image planning algorithms for sharp features and small features. f ) Small feature simulation: the mask image (left) and simulated
cured profile in the lateral direction (right) for the grayscale-based mask image planning method (top) and the error diffusion-based mask image planning
method (bottom). g) Dimensional accuracy and positional accuracy simulation: a micropillar array consists of micropillars with 2-pixel width and incre-
mental gaps with subpixel size (g.1). The regular image planning results in rounded corners and incorrect gap size (g.2), whereas the masks (g.3 and g.4)
from the error diffusion method can achieve both sharp corners and desired gap size (g.5).
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on various image sizes for one slicing layer of a Stanford dragon
model.[20] In the tests, the iteration number for the error diffu-
sion method was set to 15, and the CPU time for optimizing
each image is less than 30 s for each layer. The results are
shown in Table 1. In comparison, the linear programming
method can only solve very small-scale problems, which is
not acceptable for industrial applications. Both DDS and error
diffusion methods can achieve satisfactory results in a reason-
able time. However, the error diffusion method as a closed-loop
approach can achieve smaller errors in much less computa-
tional time.

4.2. Physical Test Results and Experimental Validation

4.2.1. Prototype Machine

A prototype machine to achieve the sps-MIP-SL process was built
for physical tests (Figure 5a). In the prototype system, a DMD-
based projector from SprintRay Inc. (Los Angeles, CA) was used
as the mask image projection device. The pixel number of the
projector was 1024� 768, and the envelope size of the projection
image was 160� 120mm2. Hence each pixel size was 0.156mm.
Commercial photocurable resin (Perfactory SI500 from
EnvisionTec Inc., Dearborn, MI) was used in the tests. The layer
exposure time was 4 s based on the curing depth analysis.[31]

A high-performance eight-axis motion control board
KFLOPþ SnapAmp (Dynomotion Inc., Calabasas, CA) was used
to drive the linear stages. The piezo stage was controlled by a
high-precision and fast-speed piezo-driver (Viking Industrial
Products, Marlboro, MA) with input voltage from 0 to 200 V.
For each layer with subpixel level n¼ 4, the piezo-driven XY lin-
ear stage moves the projected mask images in a step-wise moving
mode within a pixel (Figure 5b). The increment size of each step
is 1

4 of the pixel size (i.e., 0.039mm) and the projection time of
each mask image is 4

16 s (i.e., 0.25 s or 4Hz) (Figure 5d). The
accuracy and resolution of the piezo-stage were verified, as
shown in Figure 5c for one voltage pulse to the Y-piezo.

4.2.2. Dimensional Accuracy Study

A part built using MIP-SL is usually larger than the desired
size if no compensation is applied. To verify the adaptive
error diffusion method on building parts with accurate
dimensions, a test case with an incremental stair size was
designed, as shown in Figure 6a. Furthermore, the part was
duplicated six times and placed at six different positions within
the building platform to verify the algorithm’s effectiveness
in considering the mask image calibration result. The size
of each built stair was measured using a micrometer in both
X and Y directions. The measurement results of the eight stairs
are shown in Figure 6a. Almost all the dimensions are
controlled within 50 μm (note the pixel size was 156 μm and
the subpixel size was 39 μm), and the error percentage is less
than 1% (an average of 0.15% with the standard deviation
of 0.2%).

4.2.3. Thin Feature Verification

The simple boundary erosion method may lose thin features,
whereas the error diffusion method is general for parts with dif-
ferent dimensions. This test case is to verify the error diffusion
method on building such thin features. The CAD model is

Table 1. Computational cost study.

Image size Linear programming DDS Error diffusion

Error CPU [s] Error CPU [s] Error CPU [s]

80� 60 0 35 14 5 10 1.2

800� 600 N/A N/A 823 45 525 10

1024� 768 N/A N/A 962 76 850 12

1280� 1024 N/A N/A 1525 265 1345 15

1920� 1200 N/A N/A 2152 425 1562 25

Pixel (1, 0) Pixel (1, 1)

Pixel (1, 0)
Pixel (0, 0)

O(Mn×n)

0.039 mm 0.156 mm
(Pixel size)(Sub-pixel size)

(n = 4)

O(Mi)
O(M1)

Trans i

Input voltage (V)

200

0
T0

X-Piezo Y-Piezo

Control piezo stage to 
move the projection 
mask by one pixel

(b)
(c)

(d)(a)

Figure 5. a) Experimental setup of the sps-MIP-SL system. b) The subpixel shifting sequence of Mask1–Mask16 for n¼ 4. c) The mask image movement
by a piezo-drive XY linear stage for one voltage pulse in the Y-axis. d) The XY-piezo stage control to achieve the subpixel shifting sequence in building
a layer.
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composed of thin strips and cubes with incremental pixel sizes
shown in Figure 6b. Note the same model was used in the simu-
lation test shown in Figure 4e. All the tiny features were success-
fully built in the tests, and the size variation is within 50 μm.
Figure 6b shows the built results of the error diffusion method,
in which all the thin features are retrieved. In comparison, the
same part built using the boundary erosion method lost all the
one-pixel size features.

4.2.4. Sharp Feature Verification

The boundary erosion method does not consider the energy
information. Hence the fabricated sharp features are rounded
due to the pixel blending effect. In comparison, the error
diffusion algorithm considers both the geometric and energy
information to recover the sharp corners. The same squared
features in the previous section were used in sharp feature tests.
The mask images generated by the error diffusion method
were used in the building process. The built parts were digitally

scanned using a high-resolution scanner (2400 dpi, HP Scanjet
7400). The scanned images are shown in Figure 6c. It can be
seen that all of the corners are rounded for the part built by
the boundary erosion method (Figure 6c–left), while the corners
are much sharper for the part built by the error diffusion
method (Figure 6c–right). Some extra materials exist at the built
corners, which can be further optimized by a better calibration
and optimization procedures in the future.

4.2.5. Real-World Testcase Verification

Finally, the error diffusion-based subpixel shifting technique was
tested using a real-world test case. As shown in Figure 6d, a teeth
model was fabricated using the traditional MIP-SL process, the
regular pixel blending technique,[20] and the subpixel shifting
method. It is clear the subpixel shifting method outperforms
the other two approaches in terms of surface finishing and pro-
cess resolution, which verified the effectiveness of the data-
driven subpixel shifting method for MIP-SL.

Figure 6. Experimental results and analysis. a) Dimensional accuracy study. b) Thin feature verification. c) Sharp feature verification. d) A real-world case
study.
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4.3. Discussion

A critical barrier of current AM technologies is how to address the
performance trade-off between process resolution and production
throughput.[32] For example, for the material-deposition-based AM
techniques, the multinozzle jetting process has higher throughput
than the single-nozzle writing process. However, the resolution is
affected by the limited gap size between adjacent nozzles.[1] For
the energy-deposition-based AM techniques, EnvisionTec devel-
oped the 3SP process to increase the single-tool SLA process by
increasing the changing frequency of the laser status up to
106Hz and traveling speed over 200m s�1.[11] However, the reso-
lution is now affected by the synchronization of the laser status
and the spinning mirror location at ultrahigh scanning speed.
In general, the laser-based SLA has lower throughput than the
MIP-SL technology due to its multitool parallel photocuring
nature. However, the resolution is now affected by the fixed posi-
tion of the micromirrors used in light projection.[16]

One potential solution to address the resolution and through-
put trade-off is a marriage between the motion-driven SLA pro-
cesses (in the temporal domain) and the multitool-based MIP-SL
processes (in the spatial domain) by moving the projected image
with controlled motions. Once the spatially static images are
replaced by dynamic images assisted by linear movements,
the process resolution will now be defined by the motion resolu-
tion in addition to the pixel resolution. In particular, the pixel
resolution is directly related to the ability to print fine features
and to control dimensional tolerance, whereas the motion reso-
lution is directly related to the ability to print features at accurate
locations and to control geometric tolerance. Furthermore, an
interesting property of the MIP-SL process is that the pixel
energy takes a continuous value when varying the grayscale level
and/or the exposure time; hence the size of the cured material
can be continuously tuned by adjusting the pixel energy.[20]

Consequently, the resolution contributed by the pixels can be
infinitely high if the light–matter interaction effect is modeled
and optimized. Theoretically, the process resolution of the
motion-assisted MIP-SL system can be mainly determined by
the motion resolution even though the pixel resolution is limited.

In the past years, various motion-assisted processes have been
studied by several research groups. Ha et al. proposed a moving-
projector approach to expand the printing area for the micro-
MIP-SL process.[33] Lee et al. extended the moving-projection
system for the micro-MIP-SL process and addressed the part
size limitation by stitching the projected image.[34] Although
high-resolution was reserved in these systems, their discrete
moving-projector systems have very low changing-frequency in
the temporal domain, even lower than the regular MIP-SL.
Emami et al. introduced a scanning-projection-based MIP-SL
process by continuously moving the projection device over the
printing area to achieve large-scale fabrication with improved
resolution.[35] Later they proposed an analytical model for the
scanning-projection system to investigate the scanning and curing
properties.[22] Zheng et al. presented a novel scanning-projection-
based MIP-SL process,[4] whereas a customized F-theta lens was
required that severely limits the printing area size. Several com-
mercial machines have also been developed based on the scan-
ning-projection technique, including the MovingLight 3D

printers from Prodways Technology (Les Mureaux, France) and
the Large Area Maskless Photopolymerization (LAMP) from
DDM Systems (Atlanta, Georgia). Compared with the discrete
moving-projector approaches, these continuous scanning-
projection systems have a much higher changing frequency. The
number of the mask images is increased from one to 1000
(defined by the projection width such as 1920� 1280 for 1080 P
projectors and the exposure time such as 2 s). Although the con-
tinuous scanning systems can increase the throughput by projec-
ting mask images in parallel with motion, the resolution is still
limited by the pixel resolution as themotion is only used to expand
the printing area rather than to improve the process resolution.

Instead of moving the projection image with a distance
defined by the projection image width (for the discrete moving-
projector systems) or the pixel size (for the continuous scanning-
projection systems), we considered another strategy of using
subpixel shifting in a split second in this article. This strategy
was first studied in our previous work,[15] in which a novel
video-projection MIP-SL process was developed. In such a pro-
cess, a set of mask images are projected and synchronized with
the one-axis linear motion to increase the process resolution.
However, the one-axis movement of the projection image in
the diagonal direction limited the number of mask images used
in the process. The stepper motor-driven linear motion system
also limited the motion speed and the related image changing
frequency. Recently, Yuan et al. reported another interesting
motion-assisted micro-MIP-SL by oscillating the projection
device within one pixel to fabricate smooth microlens arrays.[16]

However, the same projected image was used for a 2D layer dur-
ing the vibration. Without increasing the changing frequency of
mask images, such a temporally static image planning approach
may not improve the process resolution for more general geo-
metric shapes.

In comparison, the developed sps-MIP-SL system dynamically
changes the used mask images during a layer exposure while
maintains the total exposure time the same as the regular
MIP-SL process. To achieve a high image changing frequency,
we used a piezo-driven XY linear stage to move the projection
device. The piezo-stage used in this work has submicrometer res-
olution andmicrosecond response time. In comparison, the pixel
size of a projection image is in hundreds of micrometers, and the
photocuring time of a mask image is in hundreds of millisec-
onds. Hence, both the time of moving the projection device
and the motion error of a piezo-stage can be omitted in the
sps-MIP-SL system. Compared with the stepper motor-driven
linear motion system used in the video-projection MIP-SL pro-
cess,[15] the piezo-stage provides several orders of magnitude
higher motion speed and resolution.

Much more mask images are now enabled in the sps-MIP-SL
process due to the increased hardware resolution and speed;
however, the computational cost is also dramatically increased
to compute the larger number of mask images. Accordingly,
we developed a process planning framework for the sps-MIP-SL
process in this work. Such an efficient mask image planning
method considers both the spatial and temporal domains in
MIP-SL and shows to be effective for various test cases.
Further development of such mask image planning methods
for faster projection image movement and higher mask image
changing frequency is critical for the motion-assisted MIP-SL
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process[36,37] and volumetric lithography.[38] Finally, although
developed for the sps-MIP-SL process, the presented data-driven
process planning framework is applicable to other energy-
deposition-based AM processes by considering their spatio-
temporal properties.

5. Conclusion

AM processes suffer from limited tools available for material
deposition and energy control. Most AM processes are either
planned in the temporal domain or the spatial domain to balance
process resolution and production throughput. In this work, we
have presented a subpixel shifting-based MIP-SL process by fast-
moving the projection device with a subpixel distance in a split
second, so the mask images used in the sps-MIP-SL process can
have significantly increased design space to address limited tools
available. Furthermore, an efficient error diffusion-based optimi-
zation method based on calibrated light projection systems has
been developed to fully utilizes the spatiotemporal property of the
MIP-SL process. Both simulation and experimental results show
that the data-driven mask image planning method based on sub-
pixel shifting can significantly improve the process accuracy and
resolution without losing production throughput. Finally, the
developed subpixel shifting technique is a generic method that
can be integrated into various MIP-SL systems to advance their
use in future industrial applications.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
Y.C. acknowledges the support of the National Science Foundation (NSF)
(grant no. CMMI-1151191) and SprintRay Inc. The authors also acknowl-
edge the help of Dr. Huachao Mao and Mr. Shutao Cai, who helped build
the piezo-driven linear stage used in the prototype system.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
Research data are not shared.

Keywords
additive manufacturing, error diffusion, pixel blending, pixel shifting,
process planning, stereolithographies

Received: April 26, 2021
Revised: June 15, 2021

Published online:

[1] I. Gibson, D. Rosen, B. Stucker, M. Khorasani, Additive Manufacturing
Technologies, Vol. 17, Springer, Cham 2014.

[2] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams,
C. C. L. Wang, Y. Shin, S. Zhang, P. D. Zavattieri, Comput.-Aided Des.
2015, 69, 65.

[3] Y. Yang, X. Song, X. Li, Z. Chen, C. Zhou, Q. Zhou, Y. Chen, Adv.
Mater. 2018, 30, 1706539.

[4] X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte,
E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge, J. A. Jackson,
S. O. Kucheyev, N. X. Fang, C. M. Spadaccini, Science 2014, 344, 1373.

[5] Y. Li, H. Mao, P. Hu, M. Hermes, H. Lim, J. Yoon, M. Luhar, Y. Chen,
W. Wu, Adv. Mater. Technol. 2019, 4, 1800638.

[6] H. Mao, C. Zhou, Y. Chen, J. Manuf. Process. 2016, 24, 406.
[7] Y. Pan, Y. Chen, Z. Yu, J. Micro- Nano-Manuf. 2017, 5, 014501.
[8] C. Zhou, Y. Chen, Z. Yang, B. Khoshnevis, Rapid Prototyp. J. 2013,

19, 153.
[9] Y. Pan, C. Zhou, Y. Chen, J. Manuf. Sci. Eng. 2012, 134, 051011.
[10] S. Guessasma, W. Zhang, J. Zhu, S. Belhabib, H. Nouri, Int. J. Simul.

Multidiscip. Des. Optim. 2015, 6, A9.
[11] C. Zhou, J. Manuf. Sci. Eng. 2014, 136, 061019.
[12] Q. Ge, Z. Li, Z. Wang, K. Kowsari, W. Zhang, X. He, J. Zhou, N. Fang,

Int. J. Extreme Manuf. 2020, 2, 022004.
[13] S. T. Newman, Z. Zhu, V. Dhokia, A. Shokrani, CIRP Annals 2015,

64, 467.
[14] X. Li, H. Mao, Y. Pan, Y. Chen, J. Manuf. Sci. Eng. 2019, 141, 081007.
[15] C. Zhou, Y. Chen, J. Manuf. Process. 2012, 14, 107.
[16] C. Yuan, K. Kowsari, S. Panjwani, Z. Chen, D. Wang, B. Zhang,

C. J.-X. Ng, P. V. Y. Alvarado, Q. Ge, ACS Appl. Mater. Interfaces
2019, 11, 40662.

[17] J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz,
A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland,
A. Ermoshkin, Science 2015, 347, 1349.

[18] D. A. Walker, J. L. Hedrick, C. A. Mirkin, Science 2019, 366, 360.
[19] N. Anandakrishnan, H. Ye, Z. Guo, Z. Chen, K. I. Mentkowski,

J. K. Lang, N. Rajabian, S. T. Andreadis, Z. Ma, J. A. Spernyak,
Adv. Healthc. Mater. 2021, 10, 2170051.

[20] C. Zhou, Y. Chen, R. Waltz, J. Manuf. Sci. 2009, 131.
[21] H.-W. Kang, J. H. Park, D.-W. Cho, Sens. Actuators, A 2012,

178, 223.
[22] M. M. Emami, F. Barazandeh, F. Yaghmaie, J. Mater. Process. Technol.

2015, 219, 17.
[23] M. M. Emami, D. W. Rosen, Addit. Manuf. 2020, 36, 101595.
[24] J. Bonada, A. Muguruza, X. Fernández-Francos, X. Ramis, J. Manuf.

Process. 2018, 31, 689.
[25] Z. D. Pritchard, M. P. De Beer, R. J. Whelan, T. F. Scott, M. A. Burns,

Adv. Mater. Technol. 2019, 4, 1900700.
[26] V. Meenakshisundaram, L. D. Sturm, C. B. Williams, J. Mater. Process.

Technol. 2020, 279, 116546.
[27] C. Sun, N. Fang, D. Wu, X. Zhang, Sens. Actuators, A 2005,

121, 113.
[28] P. F. Jacobs, Rapid Prototyping & Manufacturing: Fundamentals of

Stereolithography, Society of Manufacturing Engineers, Dearborn,
MI 1992.

[29] C. Zhou, Y. Chen, in Proc. of Solid Freeform Fabrication Symp., The
University of Texas at Austin, Austin, TX, USA 2009.

[30] A. Krulikowski, Fundamentals of Geometric Dimensioning and
Tolerancing, Cengage Learning, Clifton Park, NY 2012.

[31] X. Li, Y. Chen, J. Manuf. Process. 2017, 28, 531.
[32] D. Bourell, M. Leu, D. Rosen, Roadmap for Additive Manufacturing –

Identifying the Future of Freeform Processing, NSF Workshop Report,
NSF, Alexandria, VA 2009.

[33] Y. M. Ha, J. W. Choi, S. H. Lee, J. Mech. Sci. Technol. 2008,
22, 514.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2021, 2100079 2100079 (14 of 15) © 2021 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


[34] M. P. Lee, G. J. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett,
L. Cronin, Sci. Rep. 2015, 5, 1.

[35] M. M. Emami, F. Barazandeh, F. Yaghmaie, Sens. Actuators, A 2014,
218, 116.

[36] Y. Yang, X. Li, X. Zheng, Z. Chen, Q. Zhou, Y. Chen, Adv. Mater. 2018,
30, 1704912.

[37] X. Li, W. Shan, Y. Yang, D. Joralmon, Y. Zhu, Y. Chen, Y. Yuan, H. Xu,
J. Rong, R. Dai, Q. Nian, Y. Chai, Y. Chen, Adv. Funct. Mater. 2021, 31,
2003725.

[38] B. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. Spadaccini,
H. Taylor, Science 2019, 363, 1075.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2021, 2100079 2100079 (15 of 15) © 2021 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com

	Spatiotemporal Projection-Based Additive Manufacturing: A Data-Driven Image Planning Method for Subpixel Shifting in a Split Second
	1. Introduction
	2. Principle of Subpixel Shifting
	3. Mask Image Planning and Optimization of Calibrated Pixels
	3.1. Optimized Pixel Blending Model Based on Image Calibration Results
	3.2. Error Diffusion Algorithm

	4. Results and Discussion
	4.1. Computational Results and Simulation Verification
	4.1.1. Shape Tolerance Control
	4.1.2. Dimensional Tolerance Control
	4.1.3. Positional Tolerance Control
	4.1.4. Sharpness Control
	4.1.5. Computational Cost Study

	4.2. Physical Test Results and Experimental Validation
	4.2.1. Prototype Machine
	4.2.2. Dimensional Accuracy Study
	4.2.3. Thin Feature Verification
	4.2.4. Sharp Feature Verification
	4.2.5. Real-World Testcase Verification

	4.3. Discussion

	5. Conclusion


