Back to MJ's Publications
Publications about 'Integral quadratic constraints'


S. HassanMoghaddam.
Analysis, design, and optimization of largescale networks of dynamical systems.
PhD thesis,
University of Southern California,
2019.
Keyword(s): Consensus,
Control for optimization,
Convex Optimization,
Distributed control,
Forwardbackward envelope,
DouglasRachford splitting,
Global exponential stability,
Integral quadratic constraints,
Networks of dynamical systems,
Nonsmooth optimization,
PolyakLojasiewicz inequality,
Proximal algorithms,
Primaldual methods,
Proximal augmented Lagrangian,
Regularization for design,
Sparse graphs,
Sparsitypromoting optimal control,
Structured optimal control,
Structure identification,
Topology design.
[bibtexentry]

H. Mohammadi,
S. Samuelson,
and M. R. Jovanovic.
Transient growth of accelerated optimization algorithms.
IEEE Trans. Automat. Control,
2022.
Note: Doi:10.1109/TAC.2022.3162154.
Keyword(s): Accelerated firstorder algorithms,
Control for optimization,
Convex optimization,
Gradient descent,
Heavyball method,
Integral quadratic constraints,
Nesterov's accelerated method,
Nonnormal dynamics,
Transient growth.
[bibtexentry]

S. HassanMoghaddam and M. R. Jovanovic.
Proximal gradient flow and DouglasRachford splitting dynamics: global exponential stability via integral quadratic constraints.
Automatica,
123:109311,
January 2021.
Keyword(s): Control for optimization,
Convex Optimization,
Forwardbackward envelope,
DouglasRachford splitting,
Global exponential stability,
Integral quadratic constraints,
Nonsmooth optimization,
PolyakLojasiewicz inequality,
Proximal algorithms,
Primaldual methods,
Proximal augmented Lagrangian.
[bibtexentry]

H. Mohammadi,
M. Razaviyayn,
and M. R. Jovanovic.
Robustness of accelerated firstorder algorithms for strongly convex optimization problems.
IEEE Trans. Automat. Control,
66(6):24802495,
June 2021.
Keyword(s): Accelerated firstorder algorithms,
Consensus networks,
Control for optimization,
Convex optimization,
Integral quadratic constraints,
Linear matrix inequalities,
Noise amplification,
Secondorder moments,
Semidefinite programming.
[bibtexentry]

H. Mohammadi and M. R. Jovanovic.
On the noise amplification of primaldual gradient flow dynamics based on proximal augmented Lagrangian.
In Proceedings of the 2022 American Control Conference,
Atlanta, GA,
pages 926931,
2022.
Keyword(s): Control for optimization,
Convex Optimization,
Integral quadratic constraints,
Linear matrix inequalities,
Noise amplification,
Nonsmooth optimization,
Proximal algorithms,
Primaldual gradient flow dynamics,
Primaldual methods,
Proximal augmented Lagrangian,
Secondorder moments,
Semidefinite programming.
[bibtexentry]

S. HassanMoghaddam and M. R. Jovanovic.
Global exponential stability of the DouglasRachford splitting dynamics.
In Preprints of the 21st IFAC World Congress,
Berlin, Germany,
pages 73507354,
2020.
Keyword(s): Control for optimization,
Convex Optimization,
Forwardbackward envelope,
DouglasRachford splitting,
Global exponential stability,
Integral quadratic constraints,
Nonsmooth optimization,
PolyakLojasiewicz inequality,
Proximal algorithms,
Primaldual methods,
Proximal augmented Lagrangian.
[bibtexentry]

S. Samuelson,
H. Mohammadi,
and M. R. Jovanovic.
On the transient growth of Nesterov's accelerated method for strongly convex optimization problems.
In Proceedings of the 59th IEEE Conference on Decision and Control,
Jeju Island, Republic of Korea,
pages 59115916,
2020.
Note: (Invited paper).
Keyword(s): Accelerated firstorder algorithms,
Control for optimization,
Convex optimization,
Gradient descent,
Integral quadratic constraints,
Nesterov's accelerated method,
Nonnormal dynamics,
Transient growth.
[bibtexentry]

H. Mohammadi,
M. Razaviyayn,
and M. R. Jovanovic.
Performance of noisy Nesterov's accelerated method for strongly convex optimization problems.
In Proceedings of the 2019 American Control Conference,
Philadelphia, PA,
pages 34263431,
2019.
Keyword(s): Accelerated firstorder algorithms,
Control for optimization,
Convex optimization,
Integral quadratic constraints,
Linear matrix inequalities,
Noise amplification,
Secondorder moments,
Semidefinite programming.
[bibtexentry]

D. Ding,
B. Hu,
N. K. Dhingra,
and M. R. Jovanovic.
An exponentially convergent primaldual algorithm for nonsmooth composite minimization.
In Proceedings of the 57th IEEE Conference on Decision and Control,
Miami, FL,
pages 49274932,
2018.
Keyword(s): Control for optimization,
Convex optimization,
Euler discretization,
Exponential convergence,
Global exponential stability,
Integral quadratic constraints,
Proximal augmented Lagrangian,
Nonsmooth optimization,
Primaldual gradient flow dynamics,
Proximal algorithms,
Regularization.
[bibtexentry]
Back to MJ's Publications
Disclaimer:
This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein
are retained by authors or by other copyright holders.
All person copying this information are expected to adhere to
the terms and constraints invoked by each author's copyright.
In most cases, these works may not be reposted
without the explicit permission of the copyright holder.
Last modified: Sun Oct 23 23:45:07 2022
Author: mihailo.
This document was translated from BibT_{E}X by
bibtex2html